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Abstract
Given the shortcomings of the existing anomaly detection methods based on IoT devices, including insufficient feature
extraction, poor model fitting effect and low accuracy, this paper proposes an unsupervised IoT device traffic anomaly
detection model called HaarAE, which introduces Haar wavelet transform to enhance the feature expression of original data
and improve the model’s ability to identify anomalies. The convolutional autoencoder was used to construct the network
structure, the memory module is introduced to increase the reconstruction error, and the ConvLSTM layer was added to the
encoder to extract the temporal characteristics of the data. The output of each layer of decoder is cascaded with the output of
the corresponding ConvLSTM layer, so that the decoder can obtain more coding information of each layer to reconstruct the
original data and enhance the fitting ability of the model. Experiments on public datasets and real traffic datasets indicate
that compared to the mainstream unsupervised models, HaarAE improves the anomaly detection effect.
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1 Introduction

At present, the IoT (Internet of Things) has penetrated
into all levels of social life and has been deeply applied
in intelligent environment, personal and social fields [1].
While the IoT brings convenience to social production, it
also easily leads to security risks that cannot be ignored. The
existing method is to found abnormal behaviors or network
attacks of devices by detecting network traffic of the IoT, so
as to protect the security of the IoT to the maximum extent.
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With the development of intelligent devices, IoT traffic
detection technology based on machine learning has been
widely studied [2]. Traditional traffic detection methods,
such as Bayesian, support vector machine [3], are mostly
based on statistics, requiring experts to mark traffic
data and extract statistically significant features, including
transmission rate, byte change and time interval of network
traffic. Kong et al. [4] proposed an abnormal traffic
identification system based on multi-classification support
vector machine, which can classify and identify various
attack traffic and has good performance through the
experiment of KDDCUP99 dataset. Shafiq et al. [5] used
NetMate to extract features of data packets from HIT and
MIMS datasets. Vu et al. [6] proposed a feature engineering
technique to extract important attributes of network traffic
by analyzing data packets and mine the correlation of
data packets. Experiment results show that this method
can significantly improve the identification accuracy of
abnormal traffic and the calculation efficiency of the model.
With the exponential growth of IoT device traffic data, the
above methods will face huge challenges that are difficult to
overcome to extract statistical features from massive data.

In recent studies, some researcher try to apply deep
learning method to network traffic anomaly detection.
Radford et al. [7] used the improved recursive neural
network (RNN) to learn the computer network traffic
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sequence, and the experiment proved that the model could
detect malicious traffic patterns in the computer system.
Zou [8] proposed a new method to identify network traffic
by deep neural network, and improved the accuracy of
classification results by combining convolutional neural
network (CNN) and RNN. Experimental results show that
the model has a great improvement in efficiency and
reliability. However, these solutions are based on supervised
learning and and require a large amount of labeled data.
But, in actual scenarios, it is extremely difficult and time-
consuming to obtain abnormal sample labels. Especially,
with the rapid development of network attacks, the model
needs to be retrained to detect new attacks, resulting in low
detection efficiency of the model for unknown attacks.

In order to break through the bottleneck and difficulties
of supervised learning, researchers turn their attention to
semi-supervised/unsupervised learning methods. In recent
years, unsupervised algorithms based on Auto-Encoder
(AE) [9] have attracted extensive attention and in-
depth research. Nguyen et al. [10] proposed a network
framework based on variational AE, which can effectively
detect and interpret various network traffic anomalies.
Yisroel et al. [11] proposed a plug and play Network
Intrusion Detection system (NIDS) named Kitsune, which
extracted characteristic data from data stream using
damping increment statistical method, and then used the
core algorithm KitNet to detect abnormal traffic in real
time. Realize online efficient detection of network attack
under unsupervised learning. Akcay et al. [12] used GAN
(Generative Adversarial Networks) to train an encoder
model with jump connections, which could learn the
normal distribution of sample. Experiments proved that this
model had a high detection rate for images in different
fields. Zenati et al. [13] achieved effective results by
jointly training two sub-networks to capture normal data
distribution. In general, anomaly detection based on AE
is judged by the reconstruction loss of original sample
and decoder output sample. Under normal circumstances,
the reconstruction of the abnormal loss is bigger, the
reconstruction of the normal loss is smaller, but the decoder
refactoring effect is limited by a fixed length of latent
vector, less available information in the decoding process.
Therefore, in the IoT scenario with stronger data diversity
and more data, the reconstruction loss of some normal
samples is larger, while that of some abnormal samples is
smaller, which will reduce the anomaly detection accuracy.

However, complex feature selection combined with
well-designed neural network structure can help anomaly
detection. In this paper, an unsupervised anomaly detection
model named Haar-AE is proposed. Specifically, HaarAE
firstly uses Haar wavelet transform to enhance the input
features of the original data, and the wavelet transform can
retain the characteristic information of the original data in

time domain and frequency domain. Then the data is input
into the convolution encoder, and the convolution results
of each layer in the encoding stage are not only input into
the next layer of convolution, but also into the ConvLSTM
layer. Cascade the results of ConvLSTM and deconvolution
of each layer in the decoding stage, and input the cascade
results into the next deconvolution layer, so as to increase
the information that can be captured by the decoder and
strengthen the reconstruction effect of normal samples. At
the same time, a memory module is added to the AE, and
a small number of limited normal sample latent vectors are
stored in the memory module.

The contributions and innovations are as follows:

1) An unsupervised IoT traffic anomaly detection model
named HaarAE is proposed, through this method, the
reconstruction error of the model to normal samples can
be kept at a low level, and the reconstruction error of the
model to abnormal samples can be kept at a high level.

2) The combination of Haar wavelet transform and AE
is applied to traffic anomaly detection of IoT devices.
Besides analyzing the timing characteristics of traffic
data, the characteristics of frequency domain are also
analyzed to obtain the periodicity and fluctuation
information of traffic data. The remainder of this
paper as follows. Section 2 describes the related
work. Section 3 proposes the HaarAE model and
introduces its structural design. Section 4 verifies
the effectiveness of this method by experiments.
Conclusions and prospective research directions are
described in Section 5.

2 Related work and theories

2.1 Spectrum analysis

With the development of deep learning, although RNN
[14], Convolutional Neural Network (CNN) [15] and
other methods can make use of their network structure
to autonomously learn the feature of samples. However,
feature analysis still plays an significant role in obtaining
desirable results from network models. Among them,
spectrum analysis is one of the typical representative
technologies, which analyzes the frequency properties of
time series to find the hidden periodicity. It has been widely
used in time series processing, acoustics, computer vision,
biomedicine and other fields [16, 17]. According to Fourier
theory [18], each time domain signal has the corresponding
frequency domain signal, the traditional spectrum analysis
is to transform time series signal from time domain to
frequency domain, and reveals the time domain can be
difficult to find the information. Livera et al. [19] proposed a
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state space modeling framework based on Fourier transform
for predicting complex seasonal time series, such as time
series with high-frequency seasonality and dual calendar
effect. Experimental results show that this framework can
reduce the computational burden of maximum likelihood
estimation and can effectively identify and extract seasonal
features in time domain. Wang [20] proposed a face
recognition algorithm based on fractional Fourier transform,
which improved the robustness to illumination, noise and
other factors and effectively improved the face recognition
rate. Due to the natural defects of Fourier transform in
the processing of discrete signals, it can no longer meet
the actual needs. However, wavelet transform can retain
information in time domain and frequency domain and
process local similarity of signals and data, showing great
advantages in feature extraction and data mining [21].
Zhao et al. [22] used wavelet transform to reveal the
frequency domain information of univariate time series, and
used different neural networks to simultaneously capture
time-frequency feature and long-term trends. Furthermore,
attention mechanism is used to blend local and global
features, which improves the prediction accuracy of time
series effectively. Yuan et al. [23] proposed a full-
convolutional neural network based on wavelet transform
to capture frequency domain information of multivariate
time series through wavelet transform. Experimental results
show that adding wavelet transform can effectively improve
the detection effect of convolutional neural network. Ma
et al. [24] proposed an anomaly detection method named
WAGAN for industrial sensor, which removes noise and
enhances data features by means of decomposition and
reorganization of multi-level discrete wavelet transform.
Attention mechanism is introduced into WAGAN model,
thus improving the accuracy of anomaly detection. Zhang
et al. [25] roposed a new unsupervised learning framework
P2GAN, which can map the input samples to Gaussian
distribution factors through discriminators, so as to fully
extract the true distribution information. The author verified

the effectiveness of P2GAN from both theoretical and
experimental aspects. Hou et al. [26] proposed a framework
called Divide and Assembly Anomaly Detection (DAAD),
which interprets image reconstruction as a process of
divide and assembly. And add memory module to adjust
the reconstruction ability of the model. It is difficult for
common network models to capture the frequency domain
information of data, which leads to the failure of models
to learn more data features. However, a full understanding
of data flow feature of the IoT is a great significance
for analyzing equipment anomalies and judging network
attacks. Therefore, in the real environment of device traffic
of the IoT, more advantages can be brought by using wavelet
transform to expand data features.

2.2 Autoencoder

AE is an unsupervised neural network model, which
is widely used in anomaly detection, data dryness,
data dimensionality reduction, image repair, information
retrieval and other fields. The AE can learn the hidden
features of the input data, this process called encoding, and
hidden features learned can reconstruct the original input
data, this process called decoding. The basic AE consists of
two parts, the first part is the encoder and the second part is
the decoder, as shown in Fig. 1

In training phase, the encoder learns the nonlinear
mapping between the original data space and latent vector
H, and maps the high-dimensional data to the low-
dimensional data to reduce the amount of data. The process
can be expressed by the following formula:

H = f (x) = s(Wx + p)) (1)

Among them, S represents nonlinear mapping function,
W represents weight matrix. After the latent vector is
obtained, the decoder learns the nonlinear mapping of the
potential vector to the original input space to realize data

Fig. 1 Structure of AE
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reconstruction. The formula used in the decoder phase is
defined:

x′ = g(x) = α(WH + p) (2)

The main work of the AE is to accurately reconstruct the
input data, and its objective functions mainly include Mean
Square Error (MSE) and Kullback-Leible(KL) divergence.
MSE can be defined as:

MSE = 1

N

N∑

i

(yi − y′
i )

2 (3)

KL divergence describes the relative entropy between two
probability distributions p and q. Its formula can be defined
as:

DKL(p||q) = −
∑

x

p(x) log(
q(x)

p(x)
) (4)

Finally, the back-propagation algorithm is used to propagate
the error back to the hidden layer, so as to optimize the loss
function and model parameters.

2.3 Conclusion

The traffic of IoT devices belongs to time series data, so
it has the same frequency domain information as other
time series data. In our work, Haar wavelet transform is
introduced to bring more diverse features to the device
traffic data of the IoT, which effectively makes up for
the deficiency of neural network in feature engineering.
Build unsupervised AE network structures to avoid tagging
large data sets, At the same time, aiming at the poor of
model fitting effect, and the insufficiency of access to
information, a memory module is added in AE to increase
the reconstruction error of abnormal samples. In addition, a
ConvLSTM layer is added, and the output of each layer of
the decoder is cascated with the output of the corresponding
ConvLSTM layer, which can not only capture the timing
features of the data, but also enable the decoder to make full
use of the coding information of each layer to reconstruct
the original data, enhancing the fitting ability and detection
accuracy of the model.

3 Unsupervised anomaly detectionmodel
based on Haar wavelet transform

3.1Wavelet transform of original data

Wavelet transform can analyze signals in different fre-
quency bands with different resolutions, so it can find
the complex feature of signals. The idea is to use scale
function to represent the original data and obtain the low
frequency part of the data, which contains the global fea-
tures of the original data. As the scale becomes larger,
the scale function becomes more ambiguous to the orig-
inal signal, and the difference from the original signal
becomes larger and larger, so the wavelet function needs to
be introduced to represent the difference. The wavelet func-
tion can obtain the high frequency part of the data, which
contains the details of the data. Specifically, the wavelet
transform decomposed the original data into approximate
coefficient and detail coefficient under the action of wavelet
function and scale function [27]. Figure 2 describes the
process of wavelet transform. Given a set of raw traffic
data X = (x1, x2, ...., xN−1), N is the length of the data,
given the scale function β = {β1, β2, . . . , βN−1} and the
wavelet function ε = {ε1, ε2, . . . , εN−1}, Next, for the given
sequence of traffic data X, projection on the two functions
β and ε, the approximate coefficients and detailed coeffi-
cients are obtained respectively, as shown in formula (5) and
formula (6).

Wβ(f0, c) = (x, βf0,k) = 1√
N

N−1∑

m=0

x[m]βf0,k[m] (5)

Wε(f, c) = (x, εf,k) = 1√
N

N−1∑

m=0

x[m]εf,k[m] (6)

Wβ is the approximate coefficient, Wε is the detail
coefficient, c is the wavelet transform translation, f0 and
f is wavelet transform scale level. The detail coefficient
reveals the variance of the data on different scales, and
the approximate coefficient gets the smoothed average on
that scale. Furthermore, the decomposition result of each

Fig. 2 Process of wavelet
transform
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level of wavelet transform is that the low frequency part
obtained from the previous decomposition is decomposed
into two parts, low frequency and high frequency. After l-
level decomposition, the source signal X can be expressed
by the following formula:

X = Wε1 + Wε2 + Wε3 + . . . + Wεl
+ Wβl

(7)

Among them, Wε1Wε2Wε3 . . . Wεl
are the high-frequency

signal decomposed from the first, second layer to the
l th level, Wβl

is the low-frequency signal obtained by
decomposition of the l th level. The detail coefficients
and approximate coefficients obtained through wavelet
transform can provide multi-scale data features for the
model, which is difficult to be achieved by ordinary neural
networks.

Yuan et al. [23] pointed out that as the smooth average
of the original data, the approximate coefficient is easy to
be learned by the CNN, and due to the non-orthogonality
of the approximate coefficient, the additional input will
bring redundant parameters to the convolution. calculate.
In fact, for IoT device traffic data, the low-frequency
information in the normal sample is still important, because

it represents the normal pattern of the sample. Although
the convolutional neural network can learn part of it,
experiments show that good feature data cooperates with the
neural network can bring better results.

3.2 Convolutional AE based onmemorymodule

Figure 3 includes a wavelet transform module, a memory
module and a ConvLSTM cascade module. First, for each
input original data xd , d ∈ {0, 1, 2 . . .}, apply wavelet
transform to decompose it to a specific level L to obtain
feature information on different scales, where d is the data
dimension, Formally, in scale level l ∈ (1, . . . , L), the
detail coefficient obtained by wavelet transform is Wε =
Wε1(l)+Wε2(l)+ . . .+Wεd

(l), the approximate coefficient
is Wβ1 = Wβ1(l)+Wβ2(l)+ . . .+Wβd

(l). Next, the original
data, detail coefficients and approximation coefficients are
put into an independent convolution decoder, in order to
fully extract the feature in time domain and frequency
domain. The input of each convolutional decoder is x ∈
RD∗N or W(l) ∈ RD∗ N

2c , setting the kernel size of the
first convolution layer to D forces the convolution encoder
to merge all dimensions to capture the global correlation

Fig. 3 The overall structure of the model
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between dimensions. Unified definition Xin is input data,
Xout is the output data, so the output of the convolution
decoder can be expressed as:

Xout = f (A ∗ Xin + b) (8)

Where f represents nonlinear mapping function, ∗ is the
convolution operation, A and b are the parameters learned in
the convolution encoder. Generally, the encoder and decoder
form a symmetric structure through the neural network layer
of reverse stacking. For the input sample X, The encoder
fencoder (·) : x → z encodes data to obtain hidden vector
z, then the original data is restored through the decoder,
and the reconstruction error between the input data and the
restored data is used to judge whether there is an anomaly.
However, in the actual environment, the data imbalance and
difference lead to the strong AE generalization ability, and
the reconstruction error of some abnormal samples is very
small. In this paper, the memory module [28] structure is
introduced after the encoder. and stores a small number of
latent vectors that can represent normal sample distribution
into the memory module. In the test stage, The coding result
of the test sample is used to retrieve the most similar latent
vector Z for reconstruction. Therefore, when a test sample is
an abnormal sample, its reconstruction error will increase.
In essence, the memory module stores a matrix with the size
of N times m, where n represents the number of n samples
and M represents the feature dimension of samples. The
memory addressing module is used to calculate the attention
weight of the latent vector β, as shown in formula (9):

βi = ecos(z,mi)

N∑
j=1

ecos(z,mj )

(9)

Where cos(·, ·) is the cos distance similarity calculation
function between any two vectors. mi represents a storage
item in memory. The specific formula of cos(·, ·) is shown
in (10).

cos(z, mi) = z · mT
i

‖z‖2‖mi‖2
(10)

In practice, some exceptions are still well reconstructed,
so hard shrinkage method is used to constrain β, as shown
in formula (11).Where λ represents the set threshold, which
is valid only when the attention weight is greater than this
value, otherwise it is 0.

β ′
i =

{
max(βi−λ,0)

|βi−λ|+ε
· βi, βi > λ

0, βi ≤ λ
λ ∈

[
1

N
,

3

N

]}
(11)

Finally, the constrained attention weight and the basic
implicit feature vector in the memory module are used to
calculate z′, as shown in formula (12).

z′ = β · M =
N∑

i=1

β ′
imi (12)

3.3 ConvLSTM cascaded structure

The main advantage of memory module is to increase the
reconstruction error, since the hidden vector generated by
encoder is fixed, the decoding effect of decoder is limited
by the expression of hidden vector, and its performance
may decrease as the sequence length increases. A cascade
structure of ConvLSTM [29] is constructed to improve the
decoder performance. As shown in Fig. 3, the output of each
layer in the encoding stage is not only input to the next
layer of convolution, but also input to a ConvLSTM layer.
The result of each layer of deconvolution in the decoding
stage is cascaded with the result generated by ConvLSTM
and input to the next layer of deconvolution. Given the
output XT,l of the l-th convolutional layer, and the previous
hidden state ZT −1,l So the current hidden state is updated
to ZT,l = ConvLST M(XT,l, ZT −1,l) in the ConvLSTM
layer. The specific formula for the ConvLSTM layer is as
follows:

iT ,l = σ(bi,l +Wxi,l ∗XT,l +Wzi,l ∗ZT −1,l +Wci,l ◦CT −1,l)

(13)

fT,l = σ(bf,l+Wxf,l∗XT,l+Wzf,l∗ZT −1,l+Wcf,l◦CT −1,l)

(14)

CT,l = fT,l ◦ CT −1 + it,l ◦ tanh(bc,l + Wxc,l ∗
XT,l + Whc,l ∗ ZT −1,l (15)

oT,l = σ(bo,l +Wxo,l ∗XT,l +Wzo,l ∗ZT −1,l +Wco,l ◦CT −1)

(16)

ZT,l = ot,l ◦ tanh(CT,l) (17)

In this paper, some changes are made to the symbols
of formulas (9), (10), (11), (12) and (13) to make them
consistent in the whole paper. “◦” is known as Hadamard
product. Wxi,l , Wzi,l , Wci,l , Wxf,l , Wzf,l , Wcf,l , Wxc,l , Whc,l ,
Wxo,l , Wzo,l , Wco,l are the parameters of ConvLSTM, all
XT,l , CT,l , ZT −1,l , iT ,l , oT,l , fT,l are tensors in three
dimensions. Finally, in order to reconstruct the original data,
detail coefficients and approximation coefficients, the latent
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vector output by the encoder needs to be decoded. We
design the deconvolution operation as follows:

−
x T,l−1 = f (WT .l ⊗ ZT,l + bT,l), l = 3 (18)

Where f is the same activation function as the
convolution encoder, “⊗” is the deconvolution operation,
and W , b are the learning parameters of the convolution
decoder. In order to be able to cascade with ConvLSTM
layer, we updated the deconvolution operation:

−
x T,l−1 = f (WT .l ⊗ [ZT,l ⊕ −

x T,l] + bT,l), l = 1, 2 (19)

“⊕” is a connection operation. Specifically, when “l” is
equal to 3, the last layer of deconvolution only accepts
information from hidden vectors, when l =1,2, The
deconvolution layer will accept not only the deconvolution
output x−

T ,l−1 from the previous layer, but also the output
ZT,l from the ConvLSTM, and connect these two parts,
further input to the next deconvolution layer, so the decoder
is able to combine the output at different deconvolution
layers and ConvLSTM layers. The ConvLSTM layer
captures data features at different time scales. In this way,
the decoder relies not only on hidden vector features,
but also on features provided by ConvLSTM layer, which
enables the model to comprehensively utilize information of
different scales to reconstruct data, effectively utilizing the
feature extraction capability of ConvLSTM and improving
anomaly detection performance. The reconstruction loss of
the HaarAE is defined as formula (20). Finally, anomaly
detection is carried out based on the reconstruction error of
original data, detail coefficient and approximate coefficient.
The specific results will be described in detail in the next
section.

loss =
∥∥∥∥x − −

x

∥∥∥∥
2
+

L∑

l=1

∥∥∥∥wβ(l) − −
wβ(l)

∥∥∥∥

+
L∑

l=1

∥∥∥∥wε(l) − −
wε(l)

∥∥∥∥ (20)

4 Experiment

This section describes the experimental evaluation of the
HaarAE model, this paper uses a common benchmark
dataset and a collection of real IoT traffic dataset to evaluate
the HaarAE. The aim is to answer the following questions.

Question 1: Is the anomaly detection performance of
IoT device traffic superior to mainstream unsupervised
methods?

Question 2: How does each component of HaarAE affect
its performance (ablation study)?

Question 3: Is HaarAE more robust to input noise?
HaarAE uses the Keras [30] framework, and the Adam
[31] with a learning rate of 0.001 is used to optimize the
model.

4.1 Indicators

In the experimental part, the anomaly detection performance
of the proposed model was evaluated based on three
evaluation indexes. The details are as follows:

Precision = T P

T P + FP
(21)

Recall = T P

T P + FN
(22)

F1 = 2 ∗ Pr e*Rec

Pr e + Rec
(23)

In this paper, the traffic sample with attack as positive
sample and the normal sample as negative sample. In
formula (21), (22) and (23), TP is the number of samples
that are actually attack samples and are predicted to be
attack samples, FN is the number of samples that are
actually attack samples but predicted to be normal samples,
FP is the number of normal samples but predicted to
be attack samples, and TN is the number of normal
samples and predicted to be normal samples. Precision
indicates the predicted correct value in the number of
attack samples predicted, and recall is used to evaluate
whether all attack samples are predicted by the percentage
of coverage. However, it is difficult to objectively describe
the performance of the model with precision and recall
alone, therefore, F1 value is added, which is the harmonic
mean of the two values.

4.2 Dataset

This paper uses the following two datasets: KDDCUP99,
Comprehensive data.

1. KDDCUP99: KDDCUP99 can be obtained in the UCI
repository. In KDDCUP99, each sample in the training
dataset contains 41 fixed feature attributes and one
label.

2. Comprehensive data: the comprehensive data is com-
posed of the real IoT device traffic data collected by
Ayyoob [32]. They collected 16 days of data packets
from the test platform, including benign and attack traf-
fic. This paper collates these real traffic data and makes
a balance processing.

Details about the dataset are shown in Table 1.

18131HaarAE: an unsupervised anomaly detection model...



Table 1 Statistics of the datasets

Dataset Instances Anomaly ratio

KDDCUP99 494021 0.20

Comprehensive data 732746 0.20

4.3 Baselinemethods

This paper uses several mainstream unsupervised learning
methods as the baseline method

1. OC-SVM: OC-SVM is a popular kernel based anomaly
detection method.

2. AE: AE is an unsupervised learning algorithm. It
compresses the input into a latent spatial representation,
then reconstructs the output through the representation.
It is mainly used for data dimensionality reduction or
feature extraction.

3. DCN: Deep clustering network (DCN) is a most
advanced clustering algorithm, which adjusts the
performance of automatic encoder through k-means.

4. DAGMM [33]: A depth autoencoder Gaussian mixture
model for unsupervised anomaly detection, which
organically combines the dimension reduction process
and density estimation process for end-to-end joint
training, and avoids the local optimization of the model
due to the independence of two steps.

5. MemAE [28]: The MemAE adds a memory module to
the AE. In the training stage, the content in the memory
module is updated to construct the prototype elements
of normal samples.

6. Kitsune [11]: A network intrusion detection system
uses the damping increment statistical method to
extract the characteristic data from the data flow,
and then uses the core algorithm kitnet to detect the
abnormal traffic in real time, so as to realize the
online and efficient detection of network attacks under
unsupervised learning.

7. InterFusion [34]: A multi-dimensional time series unsu-
pervised detection method, which can simultaneously
model the dependence between different indicators of
multi-dimensional time series and the dependence on
time sequence. In addition, in order to answer question
2, the following variants of HaarAE are used as a base-
line to demonstrate the impact of a single component in
HaarAE on the accuracy of the model.

8. HaarAE-HN: HaarAE-HN (HaarAE-HaarNone) model
does not process the original data by wavelet transform,
but retains the cascade structure and memory module.

9. HaarAE-CN: HaarAE-CN (HaarAE-CascadeNone)
adopts the traditional autoencoder structure to recon-
struct the data, without the cascade structure of

ConvLSTM, and retains the memory module and
processing of original data by wavelet transform .

4.4 Experimental evaluation

1) Unsupervised anomaly detection performance experi-
ment

The ultimate goal of well-designed Feature Engi-
neering and appropriate network model is to achieve
higher accuracy in anomaly detection of IoT devices.
In this experiment, the training dataset containing only
normal samples is used to construct HaarAE model that
can capture the normal mode. 70% of the normal sam-
ples are used as the training set and 5% of the normal
samples are used as the verification set. 25% of the
normal samples are used as the test set.

The level of wavelet transform is the key factor to
expand data features. Therefore, firstly, the relationship
between model performance and wavelet transform
level is studied. In the face of huge data, high-level
wavelet transform will produce high time overhead.
Therefore, in the case of performance permitting,
this paper adopts four levels of wavelet transform,
represented by HaarAE-1, HaarAE-2, Haa-rAE-3 and
HaarAE-4 respectively. HaarAE-1 means that only one
layer of wavelet transform is performed on the original
data, i.e. X = Wε1 + Wβ1 , HaarAE-2 represents the
two-layer wavelet transform of the original data, i.e.
X = Wε1 + Wε2 + Wβ2 , The same goes for HaarAE-3
and HaarAE-4. The effect of wavelet transform level on
model performance is shown in Table 2. It can be seen
from the table that when the wavelet transform level is
Four, the best anomaly detection effect is obtained on
KDDCUP99 dataset and comprehensive dataset, which
are recall = 0.9975/0.9445, precision = 0.9758/0.9599
and F1 = 0.9863/0.9522 respectively. Therefore, the
wavelet transform level used in the experimental part of
this paper is 4, which can meet most anomaly detection
requirements.

Next, for question 1 and question 2, we evaluate
the performance of the model on two datasets. In the
training phase, only normal samples are used as the
training set and verification set. In the test phase, the
reconstruction MSE of training set samples and test set
samples are compared to determine the anomaly. In the
experiment, 1D-CNN (One dimensional convolutional
neural network) is used as the basic structure of encoder
and decoder. Three groups of symmetrical 1D-CNN
layers are set, and the ReLu layer [35] is used as
the activation function. At the end of the encoder,
we further set the global average pooling layer [36].
Compared with the full connection layer, the global
average pooling layer can prevent over fitting by
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Table 2 Wavelet transform level comparison

Level Precision Recall F1

KDDCUP99

HaarAE-4 0.9975 0.9758 0.9863

HaarAE-3 0.9818 0.9569 0.9727

HaarAE-2 0.9775 0.9684 0.9727

HaarAE-1 0.9821 0.9488 0.9652

Comprehensive data

HaarAE-4 0.9445 0.9599 0.9522

HaarAE-3 0.9429 0.9033 0.9227

HaarAE-2 0.9388 0.8685 0.9023

HaarAE-1 0.9437 0.7351 0.8264

reducing the total number of parameters in the model.
The specific results are shown in Table 3.

Table 3 reports recall, precision and F1 of HaarAE
and other baseline models on two datasets. Generally
speaking, the model proposed in this paper achieves the
highest recall, precision, and F1 on two datasets, but the
effect of the two variant models of HaarAE is not as
effective as the latest unsupervised model, which shows
that it is very important to combine effective feature
extraction with appropriate network model. It is worth
noting that the KDDCUP is not a IoT traffic dataset,
but the model also worked pretty well, Therefore, the
proposed model has certain universality in the field of
traffic anomaly detection.

2) Effect of cascade structure on model accuracy
The purpose of cascade structure is to provide more

information for the decoder, so that the decoder can
reconstruct the normal sample better. Therefore, This
paper studied the performance of the model under four
different cascade structures. The schematic diagram of
the network is shown in Fig. 4.

Cascade-Full refers the complete cascade structure in
the HaarAE model. Cascade-None refers the AE model
of none cascade structure. Cascade -None is consistent
with HaarAE-CN. Cascade-1 (Conv2-Deconv1) refers
that it is connected to ConvLSTM layer after conv2
layer and cascaded with the output of deconv1 layer;
Cascade-2 (Conv1-Deconv2) refers that it is connected
to ConvLSTM layer after conv1 layer and cascaded
with the output of deconv2 layer. For these four network
structures, this paper conducted experiments, as shown
in Table 4.

Table 4 shows the recall, precision and F1 of
four cascade structures under two datasets. From
the table, it can be seen that Cascade-Full has

the best result, The result of Cascade-1 (Conv2-
Deconv1) and Cascade-1 (Conv1-Deconv2) is between
Cascade-Full and Cascade-None, which is consistent
with the result that we expect. This shows that the
position of the cascade layer has little effect on
the model performance, but increasing the number
of ConvLSTM layers can improve the effect of
anomaly detection. In order to further observe the
effect of cascade structure and memory module on
the reconstruction of normal samples and abnormal
samples, the reconstruction errors of different models
are counted on comprehensive data, as shown in Figs. 5
and 6.

It can be seen that adding ConvLSTM layer and
memory module can greatly enlarge the reconstruction
error between abnormal samples and normal samples,
and the fluctuation range of normal sample reconstruc-
tion error is also very small. It shows that HaaAE model
can reconstruct most data in normal samples.

3) HaarAE robustness experiment
In the actual environment, the traffic data of IoT

devices usually contain noise. Therefore, whether the
anomaly detection algorithm has strong robustness to
the input noise is of great significance. For problem 3,

Table 3 Precision, recall, and F1 from HaarAE and the baseline
methods

Method Precision Recall F1

KDDCUP99

OC-SVM 0.7457 0.8523 0.7954

AE 0.9355 0.9327 0.9341

DCN 0.7831 0.7697 0.7763

DAGMM 0.9441 0.9296 0.9368

MemAE 0.9655 0.9627 0.9641

Kitsune — — —

InterFusion 0.9668 0.9538 0.9604

HaarAE-HN 0.9543 0.9143 0.9328

HaarAE-CN 0.9361 0.9280 0.9321

HaarAE 0.9975 0.9758 0.9863

Comprehensive data

OC-SVM 0.6526 0.4047 0.4496

AE 0.6683 0.7801 0.7431

DCN 0.7119 0.6944 0.7011

DAGMM 0.6322 0.6871 0.7089

MemAE 0.8293 0.8353 0.8343

Kitsune 0.8113 0.9261 0.8674

InterFusion 0.9011 0.9133 0.9277

HaarAE-HN 0.7921 0.7283 0.7943

HaarAE-CN 0.8940 0.8747 0.8843

HaarAE 0.9445 0.9599 0.9522
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Fig. 4 Model sketch of different cascade structures

in order to study the robustness of HaarAE in anomaly
detection, in training stage, we add different proportions
of abnormal samples to the training data containing
only normal samples to simulate noise, so that it can be
mixed with normal samples for training. The detailed
results of robustness experiment are shown in Table 5.

Table 5 reports the precision, recall and F1 values
of HaarAE, HaarAE-HN, OC-SVM and DCN on
KDDCUP99 respectively. It can be observed that the
precision, recall and F1 of the four models decrease

Table 4 Effects of different cascade structures on Model

Method Precision Recall F1

KDDCUP99

Cascade-Full 0.9975 0.9758 0.9863

Cascade-None 0.9361 0.9280 0.9321

Cascade-1(Conv2-Deconv1) 0.9721 0.9649 0.9685

Cascade-2(Conv1-Deconv2) 0.9762 0.9649 0.9705

Comprehensive data

Cascade-Full 0.9445 0.9599 0.9522

Cascade-None 0.8940 0.8747 0.8843

Cascade-1(Conv2-Deconv1) 0.9266 0.9109 0.9224

Cascade-2(Conv1-Deconv2) 0.9260 0.9099 0.9182

with the increase of anomaly ratio, which means
that the noise data will have an impact on the
performance of anomaly detection, and the impact is
negatively correlated. It is worth noting that although
the performance of HaarAE model decreases when
facing noise data, but it still maintains a high anomaly

Fig. 5 Reconstruction error of Ordinary AE
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Fig. 6 Reconstruction error of HaarAE

detection performance compared with other models.
Especially the results of Haar-HN and HaarAE show
that the data features obtained by wavelet transform can
enhance the robustness of the model.

4) Some problems of HaarAE
However, HaarAE performs wavelet transform when

facing a large amount of data, which will bring a
certain amount of time overhead. Figure 7 shows
a comparison of time overhead at different wavelet
transform level. It can be clearly found that the level
of wavelet transform is positively correlated with time
overhead, which inevitably increases the time cost of
HaarAE. Therefore, in future work. it is not necessary
to perform wavelet transform on all data, and also the

Table 5 Anomaly detection results on contaminated training data from
KDDCUP99

Ratio Precision Recall F1 Precision Recall F1

HaarAE OC-SVM

1% 0.9890 0.9541 0.9686 0.7129 0.6785 0.6953

2% 0.9881 0.9484 0.9708 0.6668 0.5207 0.5847

3% 0.9415 0.9318 0.9304 0.6393 0.4470 0.5261

4% 0.9029 0.8835 0.8931 0.5991 0.6785 0.4589

5% 0.8673 0.8424 0.8547 0.1155 0.3369 0.1720

HaarAE-HN DCN

1% 0.9399 0.9047 0.9239 0.7611 0.7585 0.7598

2% 0.9260 0.8719 0.8981 0.7424 0.7380 0.7402

3% 0.9240 0.8316 0.8742 0.7293 0.7163 0.7228

4% 0.8997 0.8178 0.8582 0.7106 0.6971 0.7037

5% 0.8375 0.8090 0.8230 0.6893 0.6763 0.6827

Fig. 7 Time overhead at different wavelet transform levels

same anomaly detection performance can be achieved,
further solve the problem of time overhead.

5 Conclusion

In order to solve the problems existing in traffic anomaly
detection of IoT equipment, an unsupervised anomaly
detection model called HaarAE is proposed in this paper.
First, feature extraction of original data is carried out by
using Haar wavelet transform to capture the features in time
and frequency domain and enhance the feature expression
of original data. Next, the original data is input into the
model together with the data from the wavelet transform.
In the encoding phase, the ConvLSTM layer is added to
capture the time feature of data. In the decoding phase, the
ConvLSTM layer results are cascaded with each layer of
the decoder to provide more effective feature information
for the decoder and improve the fitting ability of the model.
Finally, a memory module is added between the encoder
and decoder to increase the reconstruction error of abnormal
samples.The model has been validated on different types of
datasets for its effectiveness and versatility. Experimental
shows that HaarAE has a certain versatility while improving
the effect of anomaly detection.
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