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Abstract
The theory of rough sets is one of the most representative models for handling supervised data entangled with vagueness,
impreciseness, or uncertainty. However, little work has been devoted to learning from partially labeled data using rough
sets. In this study, a rough sets-based tri-trade model is proposed for partially labeled data. More specifically, a new
discernibility matrix that considers both labeled and unlabeled data is first proposed, based on which a beam search-based
heuristic algorithm is provided to generate multiple semi-supervised reducts. Then, a tri-trade model using three diverse
semi-supervised reducts is developed, in which a data editing technique is embedded to generate reliable pseudo-labels for
unlabeled data to improve the tri-trade model. Both theoretical analysis and comparative experiments on the UCI datasets
show that the proposed model can effectively utilize unlabeled data to improve generalization performance and compare
favorably to other representative methods.
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1 Introduction

Rough set theory [1] is an effective method for dealing with
vague, imprecise, or uncertain data and has been widely
used in various fields such as machine learning, pattern
recognition, and data mining [2–5]. In rough set theory,
each attribute or subset of attributes is considered to be
an indiscernibility relation. On this basis, a rough set is
defined by two approximations, called the lower and upper
approximations, to represent vague, imprecise, or uncertain
concepts [6]. Attribute reduction is a primary research
topic in rough sets [7–19]. It aims to remove irrelevant
and redundant attributes while retaining important attributes
to maintain discriminating power over the data. Many
rough sets-based attribute reduction methods have been
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proposed, including positive region-based, discernibility
matrix-based, and information entropy-based methods.
Among them, discernibility matrix-based methods have
received extensive attention because of their simplicity and
ease of implementation [20–24], where heuristic methods
initialized with core attributes are often used to generate
optimal reducts.

Existing rough sets-based attribute reduction algorithms
mainly deal with labeled data or unlabeled data. However,
in many practical tasks, such as web-page categorization
[25], intrusion detection [26], and medical diagnosis
[27], unlabeled training objects are easily available, but
labeled ones are difficult to obtain because labeling
objects is labor intensive and expensive. If only a small
number of labeled objects are used, it often causes
overfitting of the model to the data, resulting in weak
generalization ability. Additionally, learning a supervised
model without considering unlabeled objects leads to a
massive waste of exploitable data. Thus, how to utilize
a large number of unlabeled objects to improve learning
performance has emerged as a hot research topic in machine
learning.

In the rough sets field, many scholars have researched
the topic of attribute reduction based on discernibility
matrix. Wei et al. [20] developed a discernibility-matrix
based incremental attribute reduction algorithm to gen-
erate the optimal reduct of dynamic data. Ma et al.
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[21] constructed a compressed binary discernibility matrix
for group dynamic data and developed an incremental
attribute reduction algorithm, which considered both single
dynamic objects and group dynamic objects. By optimiz-
ing the space constraint of storing discernibility matrix, Liu
et al. [22] designed an incremental attribute method on
fused decision table. Additionally, some attribute reduc-
tion methods have been proposed for partially labeled data.
Dai et al. [28] introduced the concept of discernibility
pair and developed two attribute reduction measures for
partially labeled categorical data. Based on mutual infor-
mation, Hu et al. [29] defined the significance measure
for attributes in partially labeled data and utilized it as
heuristic information to speed up the attribute reduction
process. Xie et al. [30] proposed two types of induced hyper-
graphs for partially labeled decision systems and designed
a fast algorithm based on low-complexity heuristics to
compute the optimal reduct. Unlike traditional methods
that use only one fitness function, Liu et al. [31] intro-
duced an ensemble voting mechanism to select a more
appropriate semi-supervised reduct by constructing multi-
ple fitness functions. Gao et al. [32] generated proxy labels
for unlabeled data using prior class-distribution informa-
tion and developed the granular conditional entropy mea-
sure for semi-supervised attribute reduction. In addition,
some related semi-supervised learning methods have also
been proposed. Wang et al. [33] used Gaussian kernel-
based fuzzy rough sets to measure the inconsistency of
unlabeled objects and provided an active learning model
based on SVM. By integrating three-way decision the-
ory and cost-sensitive learning, Min et al. [34] developed
an active learning model based on the k-nearest neighbor
classifier. By introducing the idea of tri-partition in the
three-way decision, Gao et al. [23] proposed the three-way
co-decision model to improve the semi-supervised learn-
ing performance. In addition, rough set theory has also
been successfully applied to address some practical semi-
supervised tasks, such as short text classification [35],
defect detection [36], relationship categorization [37, 38],
and so on [39].

The aforementioned studies primarily focus on rough
sets-based semi-supervised attribute reduction or practi-
cal applications. However, little work has been devoted
to the construction of semi-supervised models to directly
learn from partially labeled data using rough sets.
Tri-training [40] is a typical disagreement-based semi-
supervised model that employs three learners to learn
from each other using unlabeled data but encounters
the problems of the weak diversity of the base learn-
ers and low quality of selected unlabeled data. In this
study, we propose a rough sets-based tri-trade model for
partially labeled data. The primary contributions are as
follows:

1. To address the attribute reduction problem for partially
labeled data, a new semi-supervised discernibility
matrix is proposed, based on which a beam search-
based heuristic attribute reduction algorithm is designed
to generate optimal semi-supervised reducts. The semi-
supervised discernibility matrix considers both labeled
and unlabeled data and allows for a certain degree
of inconsistency, which contributes to improving the
robustness and adaptability of semi-supervised attribute
reduction.

2. To learn from unlabeled data, a tri-trade model that
uses three diverse semi-supervised reducts to train base
classifiers is constructed, and a novel data editing
technique is developed to reliably identify useful
unlabeled data. By selecting useful unlabeled objects
and simultaneously eliminating mislabeled unlabeled
objects, the proposed data editing technique can enable
the base classifiers to learn from each other on high-
quality unlabeled data.

3. To obtain insight into the proposed model, a theoretical
analysis is offered from the perspective of noise learn-
ing. Furthermore, extensive experiments are carried out
to validate the effectiveness of the proposed model, and
good results are achieved.

The rest of this paper is organized as follows. Section 2
introduces some concepts in rough sets and semi-supervised
learning, respectively. Section 3 provides a detailed
description of the proposed tri-trade model for partially
labeled data as well as the theoretical analysis. Section 4
reports the experimental results and analysis. Finally,
Section 5 summarizes the paper.

2 Preliminaries

In this section, some concepts related to rough sets and
semi-supervised learning are briefly reviewed. A detailed
description of these theories can be found in [1, 6, 41–45].

2.1 Rough sets

In rough set theory, data of interest can be represented in
an information system [6]. An information system consists
of quadruple, denoted as IS = (U, A, V, f ), where U is
a non-empty finite set of objects, called the universe; A

is a non-empty finite set of attributes; V is the union of
attribute domains, and let Va denote the domain of attribute
a such that V = ⋃

Va for each a ∈ A; f is called the
information function such that f (x, a) ∈ Va for each x ∈ U

and a ∈ A, which assigns a unique value to each attribute of
an object in U . When the attribute set A can be categorized
into condition attribute set C and decision attribute set D
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and C ∩ D = ∅ , the information system is also called a
decision table or decision information system [6].

Definition 1 Let IS = (U, A = C ∪ D, V, f ) be a
decision table. For any non-empty attribute subset B ⊆ A,
the indiscernibility relation induced by B is defined as:

IND(B) = {(x, y) ∈ U × U : a(x) = a(y), ∀a ∈ B} (1)

Definition 2 Let IS = (U, A = C∪D, V, f ) be a decision
table and IND(B) be the equivalence relation induced by
an attribute subset B ⊆ A, the set of equivalence classes of
U induced by IND(B) is denoted as:

U/IND(B) =
⋃

{[x]B : x ∈ U} , (2)

where [x]B = {y ∈ U : (x, y) ∈ IND(B)} is called the
equivalence class of x under the equivalence relation
IND(B).

Definition 3 Let IS = (U, A = C ∪ D, V, f ) be a
decision table. For any subset X of U , the lower and upper
approximations with respect to an attribute subset B ⊆ A

are defined as:

B(X) = {x ∈ U | [x]B ⊆ X}
B(X) = {x ∈ U | [x]B ∩ X = ∅} (3)

B(X) is also called the B-positive region of X over U ,
denoted as POSB(X). The difference set between B(X)

and B(X) is called the B-boundary region of X over U ,
denoted as BNDB(X). And the universe after removing the
objects in B(X) is called the B-negative region of X over U ,
denoted as NEGB(X), namely NEGB(X) = U − B(X).

Definition 4 Let IS = (U, A = C∪D, V, f ) be a decision
table and U/D = {

Y1, Y2, . . . , Y|U/D|
}

be the partition
derived from the decision attribute D over U . The positive,
boundary, and negative regions of D given an attribute
subset B ⊆ C are defined as:

POSB(D) =
⋃

Yi∈U/D

B (Yi)

BNDB(D) =
⋃

Yi∈U/D

(
B (Yi) − B (Yi)

)

NEGB(D) = U −
⋃

Yi∈U/D

B (Yi) (4)

Definition 5 Let IS = (U, A = C∪D, V, f ) be a decision
table. For an attribute subset S of C, S is a reduct of C if
and only if:

1) POSS(D) = POSC(D) and
2) ∀a ∈ S, POSS−{a}(D) �= POSS(D)

Meanwhile, the classification ability of an attribute or
attribute subset can be represented by a discernibility
matrix whose entry describes the discernible information
to each pair of objects with different decisions. Formally,
the disernibility matrix, the core attribute, and its attribute
reduction are defined as follows.

Definition 6 Let IS = (U, A = C∪D, V, f ) be a decision
table. The element of the discernibility matrix M is denoted
as:

eij =
{ {

a ∈ C | a (xi) �= a
(
xj

)}
, d (xi) �= d

(
xj

)

∅, otherwise
(5)

In the discernibility matrix, if two objects have different
decisions, the element is a set of discernable attributes,
on each of which the two objects have different values;
otherwise, the element is empty.

Definition 7 Let IS = (U, A = C∪D, V, f ) be a decision
table and M be the discernibility matrix of IS. An attribute
a ∈ C is a core attribute if and only if there exists a singleton
e in M such that e = {a}.

Definition 8 Let IS = (U, A = C∪D, V, f ) be a decision
table and M be the discernibility matrix of IS. For an
attribute subset S of C, S is a reduct of C if and only if:

1. ∀e ∈ M ∧ e �= ∅, S ∩ e �= ∅ and
2. ∀a ∈ S ∧ S∗ = S − {a}, ∃e ∈ M ∧ S∗ ∩ e = ∅

Different from the positive region-based reduct in
Definition 5, the reduct in Definition 8 is a minimal subset
of attributes that intersects with every non-empty element
in the discernibility matrix. In other words, a discernibility
matrix-based reduct is a jointly sufficient and individually
necessary attribute subset to discriminate all objects in the
original data.

2.2 Semi-supervised learning

In semi-supervised learning, a given partially labeled data
U = L ∪ N contains a set of labeled objects L =
{xi, yi}li=1 and a set of unlabeled objects N = {

xj , ?
}l+n

j=l+1,
where xi and xj are described by m attributes, yi belongs
to one of the k classes or unknown, and l � n.
Generally, semi-supervised learning can be classified as
semi-supervised clustering, semi-supervised classification,
and semi-supervised regression [42, 46, 47]. This paper
mainly concentrates on semi-supervised classification.
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Semi-supervised classification aims to exploit a large
amount of unlabeled data to improve the learner trained
only on labeled data. Semi-supervised classification meth-
ods can be roughly classified as low-density separation
methods, generative methods, graph-based methods, and
disagreement-based methods [47]. Self-training [48] is a
classic semi-supervised method that retrains the learner by
self-labeled objects. More specifically, the model first trains
a classifier on labeled objects, and then iteratively annotates
some confidently unlabeled objects to retrain the classifier.
Co-training [23] is a disagreement-based model that could
enable two classifiers to learn from each other on unlabeled

data. Standard co-training requires two sufficient and redun-
dant views to describe data. On each view, a classifier is
trained on labeled objects, and then the two classifiers share
some unlabeled objects with high confidence prediction
labels to improve each other. Tri-training [40] is another
popular disagreement-based model. It resamples the set of
labeled objects to obtain three labeled training sets, on each
of which a base classifier is trained. In each iteration of tri-
training, if two classifiers have the same prediction on an
unlabeled object, this object with its predicted label is used
to update the third classifier, until the stopping condition is
met.

Fig. 1 Framework of the
proposed tri-trade model
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However, standard tri-training suffers from several
problems. On the one hand, due to the constraint of a single
view, resampling inevitably leads to high redundancy of
the generated data. In particular, when only a few labeled
objects are provided, the quality of the generated data is
difficult to guarantee. On the other hand, the evaluation
of unlabeled objects is judged by only the consistency of
base classifiers, without considering their confidence and
uncertainty. If base classifiers are weak, unlabeled objects
may be mislabeled and classification noise is introduced.
Therefore, it is highly desirable to improve the mechanism
of training base classifiers and the strategy of selecting
unlabeled objects.

3 Tri-trade for partially labeled data

In this section, the overall framework of the proposed
model is first described. After that, a semi-supervised
attribute reduction algorithm based on discernibility matrix
is presented. Subsequently, the tri-trade model is proposed
based on three distinct semi-supervised reducts. Finally, the
effectiveness of the model is analyzed theoretically.

3.1 Overall framework

Tri-training is an efficient semi-supervised model that
employs three classifiers to learn from unlabeled data.
However, due to the single-view constraint, the tri-training
model suffers from the problem of high redundancy of
generated data after resampling. In fact, some datasets,
particularly those with a large number of attributes, may
generally be reduced to multiple attribute subsets, each
of which can completely and competently represent the
original data. In addition, these attribute subsets describe the
original data from different perspectives, resulting in diverse
induction biases. Therefore, by utilizing the diversity of

multiple reduced subspaces, we can construct an effective
multiview tri-trade model for partially labeled data, which
is illustrated in Fig. 1.

Different from standard tri-training, the tri-trade model
employs the attribute reduction technique to generate
different views. More specifically, a semi-supervised
discernibility matrix is first constructed for partially labeled
data, and a heuristic algorithm is designed to generate three
distinct semi-supervised reducts. On each reduct (view), a
base classifier is trained using initially labeled data. Then,
by utilizing data editing technique, two base classifiers
select some confidently unlabeled data to update the third
classifier. When no classifier can be updated, the algorithm
terminates and yields a final classifier by combining the
three refined classifiers. In the next sections, we elaborate
on the details of the proposed model.

3.2 Discernibility matrix-based semi-supervised
attribute reduction

In rough sets, traditional discernibility matrix-based
attribute reduction methods are often used to deal with
completely labeled or unlabeled data. However, in semi-
supervised tasks, objects are only partially labeled. To deal
with partially labeled data, a new discernibility matrix is
developed. In a traditional discernibility matrix, discernible
information is generated only from labeled objects or unla-
beled objects. Intuitively, a reduct for partially labeled data
should distinguish all kinds of objects. Thus, it is desirable
that a semi-supervised discernibility matrix can consider
both labeled and unlabeled objects. For this purpose, a semi-
supervised discernibility matrix is constructed as follows.

Definition 9 Let PS = (U = L ∪ N, A = C ∪ D, V ′, f )

be a partially labeled data, the non-empty element of the
semi-supervised discernibility matrix SM is defined as:

eij =
⎧
⎨

⎩

{
a ∈ C | a (xi) �= a

(
xj

)}
, d (xi) �= d

(
xj

) ∧ (
xi ∈ L ∧ xj ∈ L

)
{
a ∈ C | a (xi) �= a

(
xj

)}
,

(
xi ∈ L ∧ xj ∈ N

) ∨ (
xi ∈ N ∧ xj ∈ L

)
{
a ∈ C | a (xi) �= a

(
xj

)}
, xi ∈ N ∧ xj ∈ N

(6)

In the definition, labeled objects with different labels are
compared to generate discernible information. Due to the
decision uncertainty of unlabeled data, all unlabeled objects
are discerned from each other. In addition, to distinguish all
kinds of objects, discernible information between labeled
and unlabeled objects is generated. In the following, an
example is given to illustrate the proposed discernibility
matrix.

Example 1 Let PS = (U = L ∪ N, A = C ∪ D, V ′, f )

be a partially labeled data shown in Table 1, where U =
{x1, x2, . . . , x8}, C = {a1, a2, a3, a4, a5} , Va = {0, 1} for
every a ∈ C, and VD = {d1, d2, ?}.

In Table 1, there are two labeled objects and six unlabeled
objects. According to Definition 9, the discernibility matrix
can be derived in Table 2. In Table 2, labeled objects with
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Table 1 A partially labeled
data a1 a2 a3 a4 a5 d

x1 1 1 1 0 0 d1

x2 0 0 0 1 1 d2

x3 1 1 1 1 1 ?

x4 0 0 0 0 0 ?

x5 1 1 0 0 0 ?

x6 0 0 1 1 1 ?

x7 1 0 0 0 0 ?

x8 1 1 1 1 0 ?

different labels are compared to generate elements in L×L;
unlabeled objects are compared to generate elements in
N × N ; labeled objects and unlabeled objects are compared
to generate elements L × N .

To perform semi-supervised attribute reduction based on
the proposed discernibility matrix, we first introduce the
concepts of the relevant set and the complement set of
attributes:

Algorithm 1 Beam search algorithm for attribute reduction based on
semi-supervised discernibility matrix.

Definition 10 Let PS = (U = L ∪ N, A = C ∪ D, V ′, f )

be a partially labeled data and SM be the semi-supervised
discernibility matrix of PS. Then, for an attribute subset
B ⊆ C, its relevant set is defined as:

RMSM(B) =
⋃

{e ∈ SM | ∃a ∈ B ∧ a ∈ e} (7)

Definition 11 Let PS = (U = L ∪ N, A = C ∪ D, V ′, f )

be a partially labeled data and SM be the semi-supervised
discernibility matrix of PS. Then, for an attribute subset

B ⊆ C, the complement set with respect to its relevant set
is defined as:

OMSM(B) = {e − B|e ∈ RMSM(B)} (8)

According to the above definitions, for an attribute set,
its relevant set consistes of the elements that contain the
attributes in the attribute set, and the relevant set after
eliminating the attributes in the given attribute set comprises
its complement set.

Based on the set operators presented above, an attribute
reduction algorithm can be designed to generate reducts
for partially labeled data. However, finding all reducts, or
finding a minimal reduct, i.e., a reduct with the minimum
number of attributes, is NP-hard. Thus, heuristic algorithms
are preferred. By designing reasonable heuristic costs,
heuristic algorithms can quickly obtain optimal reducts.
Due to its simplicity and efficiency, the greedy forward
search strategy of iteratively adding attributes is widely
used in practical applications. However, greedy forward
search tends to fall into local optimum. Beam search is a
forward search heuristic algorithm utilized in this paper.
It can explore several optimal reducts in parallel, which
can be used as views for semi-supervised learning. More
specifically, beam search utilizes a breadth-first strategy to
find optimal reducts. In each iteration, candidate attributes
are sorted according to the heuristic cost, and a certain
number (called the beam width) of attributes with the
minimum costs are preserved. Since the tri-trade model
requires three distinct reducts to train three base classifiers,
the beam width is set to three. In attribute reduction process,
it is desired that attributes with strong discriminating power
can be be preferentially selected, and optimal reducts should
contain fewer attributes. Therefore, to evaluate the cost of
each attribute, the heuristic function is defined as follows:

heuristic cost(a) = |S|
|C| + |RMSM(a)|

|SM| (9)

For an attribute a, the heuristic information consists of two
parts: the ratio of the number of selected attributes |S| in
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the current attribute subset to the number of all attributes
|C|, which aims at minimizing the number of attributes
contained in the reducts, and the ratio of the number of
elements in the attribute complement set |RMSM(a)| to the
number of all elements |SM|, which aims at selecting the
attributes with strong discriminating power. By using this
heuristic information, the beam search algorithm can select
the most important attributes to generate multiple reducts.
This process can be described by Algorithm 1.

The algorithm starts with the construction of a semi-
supervised discernibility matrix for partially labeled data.
Since the core attributes have unique discriminating power
(see Definition 7), the attribute subset is initialized with
the core attributes to accelerate the search process (step 1
and step 2). In each iteration, the algorithm selects three
attributes with the minimum heuristic costs and discards
their relevant set. The search process terminates until the
semi-supervised discernibility matrix is empty (step 3 to
step 9). Finally, three optimal reducts are yielded, each
of which has a nonempty intersection with any nonempty
element of the semi-supervised discernibility matrix, thus
maintaining the same discriminating power as all condition
attributes.

Suppose that the partially labeled data contains |U |
objects described by |C| condition attributes. The time cost
of constructing a semi-supervised discernibility matrix is
O(|C||U |2) . In each iteration, the algorithm selects the
optimal three attributes while deleting the corresponding
relevant set from the matrix. In the worst case, after |C|
rounds of attribute selection, the matrix is empty. Therefore,
the time cost of computing the optimal reducts based on the
semi-supervised discernibility matrix is O(|C|2|U |2). As a
whole, Algorithm 1 has a total time cost of O(|C||U |2 +
|C|2|U |2), which approximates O(|C|2|U |2), and a total
space cost of O(|C||U |2).

3.3 Multi-view tri-trademodel for partially labeled
data

In classic rough sets-based learning methods, the model
typically employs a single classifier and mainly addresses
labeled data. However, partially labeled data usually
comprise relatively little labeled data and a considerable
quantity of unlabeled data. When labeled data are limited,
a learning model with a single classifier can hardly provide
satisfactory results. Tri-training is a disagreement-based
model that has been proven to be effective for partially
labeled data [40]. Unfortunately, tri-training suffers from
problems of the low diversity of base learners and poor
quality of selected unlabeled data. Based on Algorithm 1,
we can obtain three optimal reducts of partially labeled
data. Since each reduct is a jointly sufficient attribute
subset that can completely describe the overall data and the

process of beam search that starts from different branches
in parallel enables certain diversity among reducts, each
reduct can be approximated as a sufficient and redundant
view. Thus, we can utilize these reducts to improve
tri-training.

In addition, not all unlabeled data are conducive to
the learning model, and the selection of unlabeled objects
is another key factor for the success of semi-supervised
learning. Standard tri-training generates pseudo-labeled
objects by majority voting. More specifically, if two
classifiers make a consistent prediction on an unlabeled
object, this object will be annotated with the pseudo-
label and is considered a useful object to update the third
classifier. However, in some circumstances (particularly
in the early iteration), since initially labeled objects are
insufficient to train strong base classifiers, a considerable
number of objects may be wrongly classified.

The data editing technique is a commonly used method
for error estimation, which aims to enhance the quality
of training set by identifying and excluding mislabeled
objects from the learning process. To improve the quality
of training set, Zhang et al. [49] proposed a co-trade
model based on data editing to improve co-training. The
co-trade model first constructs a weighted graph over the
labeled and unlabeled objects to describe the proximity in
the attribute space using the k-nearest neighbor method.
Based on the manifold assumption that objects with high
similarity in the input space should have similar labels, the
cut edge weight statistic is then used to explicitly evaluate
the labeling confidence of unlabeled objects. Through data
editing technique and co-training mechanism, the co-trade
model can obtain high-quality labeled object sets to improve
base classifiers. Motivated by the above fact, the data editing
technique is introduced in tri-training to improve the quality
of generating pseudo-labeled objects. More specifically, in
each iteration of tri-training, two of the classifiers can use
data editing technique to explicitly estimate the labeling
confidence of unlabeled objects and collaboratively select
unlabeled objects to generate pseudo-labels for the third
classifier. This process is described by Algorithm 2.

In Algorithm 2, all parameters are initialized first (step 1
and step 2). In the iterative process, objects in unlabeled set
are predicted first with classifiers clf1 and clf2 under each
view (step 4). Then, a neighborhood graph is constructed to
evaluate the labeling confidence explicitly (step 5). Under
each view of unlabeled set, unlabeled data are sorted by
labeling confidence in descending order, and an object
subset N∗

i is chosen with the minimal expected prediction
error ε′

i . Finally, two classifiers share labeling information
to refine each other (step 6 and step 7). The iterative process
terminates when the prediction error of either classifier
increases on the original labeled set or when the expected
prediction error of classifiers does not decrease. The last
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Table 2 The semi-supervised discernibility matrix of partially labeled data in Table 1

a1 a2 a3 a4 a5 a1 a2 a3 a4 a5

L × L e12 1 1 1 1 1 L × N e13 0 0 0 1 1

N × N e34 1 1 1 1 1 e14 1 1 1 0 0

e35 0 0 1 1 1 e15 0 0 1 0 0

e36 1 1 0 0 0 e16 1 1 0 1 1

e37 0 1 1 1 1 e17 0 1 1 0 0

e38 0 0 0 0 1 e18 0 0 0 1 0

e45 1 1 0 0 0 e23 1 1 1 0 0

e46 0 0 1 1 1 e24 0 0 0 1 1

e47 1 0 0 0 0 e25 1 1 0 1 1

e48 1 1 1 1 0 e26 0 0 1 0 0

e56 1 1 1 1 1 e27 1 0 0 1 1

e57 0 1 0 0 0 e28 1 1 1 0 1

e58 0 0 1 1 0

e67 1 0 1 1 1

e68 1 1 0 0 1

e78 1 1 1 1 0

two classifiers return pseudo-labeled objects with the same
prediction on N∗

1 ∪ N∗
2 (step 13). Since the unlabeled sets

N1 and N2 have been filtered by data editing technique
and the initial classifiers clf1 and clf2 are improved
after the co-training process, the final two classifiers can
be combined to yield pseudo-labeled objects with high
confidence.

Without loss of generality, assume that the partially
labeled data has |L| labeled objects and |N | unlabeled
objects described by |C| attributes, and the time cost of
training a base classifier is approximately O(|C||U |). While
the time cost of constructing the neighborhood graph is
approximately O(|U |2) and the space cost is approximately
O(|U |2). In each iteration, these two classifiers provide new
pseudo-labeled objects for each other. Since the iterations
can converge quickly, the time cost of training these
classifiers is approximated as O(|C||U |). Thus, the total
time cost of Algorithm 2 is O(|U |2), and its space cost is
O(|U |2).

To optimize the tri-training model, the tri-trade model is
developed. By utilizing beam attribute reduction algorithm
on a semi-supervised discernibility matrix, three distinct
attribute subsets are generated from the original attribute
set, on which three base classifiers are trained. By utilizing
the proposed data editing technique, the quality of unlabeled
objects is explicitly estimated and labeling information is
reliably shared. The tri-trade model procedure is presented
in Algorithm 3.

In Algorithm 3, three base classifiers are trained on
three distinct reducts of the original condition attributes.
After initializing all parameters, the classifiers iteratively

learn from each other on unlabeled data. More specifically,
in each round of tri-training, the classification error rate
of each classifier is first estimated. Since it is difficult
to estimate the classification error on unlabeled set, only
the original labeled set is tested here, based on the
heuristic assumption that the unlabeled objects have a
similar distribution as the labeled objects. In detail, the
estimated classification error rate is the proportion of the
objects misclassified by both clfj and clfk to the objects
consistently predicted by clfj and clfk . When there is no
degradation in the performance of the combination of clfj

and clfk , high confidence labeled objects are selected by
data editing technology, and clfi is updated by a certain
number of newly labeled objects; otherwise, the classifier
clfi does not change. It should be noted that the data
editing process has no impact on the three classifiers’
updates. When no classifier can be updated, the algorithm
terminates and yields the final classifier by combining the
three retrained classifiers.

Assume the partially labeled data have |L| labeled
objects and |N | unlabeled objects described by |C| attributes
where |U | = |L| + |N |. In each round of tri-training,
two of the classifiers iteratively label objects for the third
classifier using the data editing technique in Algorithm
2. The time cost of this process is O(|U |2 + |C||U |),
and its space cost is O(|C||U |). In the worst case,
Algorithm 3 terminates after |N | rounds of tri-training.
Therefore, based on three distinct reducts of a given
partially labeled data, the time cost of Algorithm 3 is at
most O(|U |3) and its total space cost is approximated to
O(|C||U |).
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Algorithm 2 The selection of high-confidence unlabeled data using
data editing.

3.4 Theoretical analysis of the tri-trademodel
effectiveness

In the tri-training model, resampling data may deviate
from the original data distribution. However, there is high
redundancy in the generated data. Unlike the tri-training
model, the tri-trade model trains base classifiers on three
distinct reducts. From the perspective of attribute reduction,
each reduct is a jointly sufficient subset of attributes
and can preserve the same discriminating power as the
original attribute set. Furthermore, the beam search attribute
reduction algorithm ensures that the three reducts share
as few attributes as possible; thus, each reduct describes
the original data from a distinct view. The studies in [46]

demonstrated that the co-training process can work well
when the two classifiers have a large diversity, which
guarantees the effectiveness of the proposed model for
partially labeled data.

Another key factor for the success of tri-training is the
quality of unlabeled objects. The tri-trade model employs
the data editing technique to explicitly estimate the labeling
confidence of unlabeled objects and utilizes the jointly
predictive results of two classifiers. Additionally, a certain
number of useful objects are selected for the third classifier
to update only if the estimated performance of the classifier
does not deteriorate. In essence, the principles of noise

Algorithm 3 Tri-trade model for partially labeled data.
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learning are implicitly embedded in the tri-training model.
According to noise learning theory [49], the following
formula holds:

m = c

ε2(1 − 2η)2
, (10)

where ε is the expected worst classification error rate,
η denotes the upper bound of the classification noise
rate, and c is a constant for a specific learning task. By
reformulating inequality (10), the following utility function
for the classification noise rate can be derived:

u = c

(1 − 2η)2
= mε2, (11)

To lower the classification noise rate, the utility function
should be reduced in each iteration, i.e., u′ < u. The
following inequality can be obtained:

m′ε′2 < mε2, (12)

Since the iteration process satisfies ε′ < ε, inequality
(12) can be converted as follows:

m′ε′ < mε, (13)

and the following constraints can be derived:

0 <
ε′

ε
<

m

m′ (14)

Note that m′ε′ may not be smaller than mε since
m′ may be much larger than m. In this case, the

function subsample(L′
i ,

⌈
εli
ε′
i

− 1
⌉
) randomly selects a

certain number of objects L′
i . Let the integer s denote the

size of L′
i after subsampling. If it satisfies:

s =
⌈mε

ε′ − 1
⌉

(15)

the constrained condition of inequality (13) can be satisfied
as well. In this case, m needs to satisfy the following
condition:

m >
ε′

ε′ − ε
, (16)

According to inequality (14), the proposed tri-trade model
considers the classifier to be updated on some unlabeled
objects only when the estimated error rate does not increase.
According to inequalities (15) and (16), the classifier selects
a certain number of unlabeled objects in each iteration to
satisfy the constraint of inequality (13), thus reducing (or
at least maintaining) the classification noise rate. Therefore,
the tri-trade model can make efficient use of unlabeled data
to enhance its performance.

4 Empirical analysis

This experiment serves two purposes. One is to evaluate
the effectiveness of the discernibility matrix-based semi-
supervised attribute reduction algorithm. The other aims to
compare the performance of the proposed model with other
semi-supervised methods. All experiments were carried out
on a Windows 10 machine with an Intel(R) Core (TM)
i7-10700 CPU @ 2.90GHz dual-core processor and 32GB
RAM, and all codes were implemented by Python 3.7 in the
platform of PyCharm.

4.1 Investigated datasets and experimental design

In the experiment, twelve UCI datasets are tested. It should
be noted that some of the datasets are multicategory. To
construct binary classification datasets, the category with
the most objects is treated as one class, which is referred
to as the positive class, and the remaining objects are
grouped into another class, which is referred to as the
negative class. Table 3 reports detailed information about
all datasets. The first column of the table contains the name
of the selected datasets, the second column |C| and the
third column |U | are the number of attributes and objects
in each dataset, respectively, the fourth column “POS/NEG”
gives the percentage of positive objects and negative objects,
the fifth column “Missing” indicates whether the dataset
has missing values, and the last column “Inconsistency”
records the number of inconsistent objects in these datasets.
Note that these datasets do not have multiple and redundant
views.

To facilitate the experiments, the missing values of
attributes in each dataset are replaced by the average
or most frequent values of the respective attributes.
Since the proposed model is designed for partially
labeled data with categorical attributes, each numerical
attribute must be discretized into categorical attributes.
Due to the simplicity and effectiveness, equal frequency
binning with the three bins [50] is employed in the
experiments.

To evaluate the performance of the proposed method,
ten 10-fold cross-validation tests are employed in the
experiments. In each fold, 90% of the objects are selected
as the training set, while the remaining 10% are treated as
the test set. According to the label rates, the training set is
further randomly divided into a set of labeled objects L and
a set of unlabeled objects N . The label rates include 1%,
5%, 10%, 15%, and 20%. Under each label rate, the training
set is divided ten times independently and randomly. For
instance, assuming that there are 1000 objects, 900 objects
in each fold are selected as the training set and the remaining
100 objects are regarded as the test sets. When the label rate
is 10%, 90 objects with labels are placed in the labeled set
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Table 3 Investigated datasets

Datasets |C| |U | POS/NEG Missing Inconsistency

Anneal(anneal) 38(6) 898 76.17%-23.83% N 11

Biodegradation(biodegradation) 41(41) 1055 66.26%-33.74% N 15

Colic(colic) 22(7) 368 63.04%-36.96% Y 0

Credit-a(credit-a) 15(6) 690 55.51%-44.49% Y 6

Credit-g(credit-g) 20(7) 1000 70.00%-30.00% N 2

Gesture-phase-a1va3(gesture1) 32(32) 1743 60.18%-39.82% N 33

Gesture-phase-a2va3(gesture2) 32(32) 1260 61.19%-38.81% N 27

Parkinson-speech-train(parkinson) 26(26) 1040 50.00%-50.00% N 79

Polish-companies-bankruptcy-1year(polish) 64(64) 7027 96.14%-3.86% Y 2

Spambase(spambase) 57(57) 4601 60.60%-39.40% N 141

Turkiye-student-evaluation-specific(turkiye) 31(31) 5820 61.87%-38.13% N 3349

Wall-following navigation task(wall) 24(24) 5456 59.59%-40.41% N 306

L, while the remaining 810 objects after removing labels
are placed in the unlabeled set N , and the data division
between L and N is repeated ten times independently
and randomly. Here, the ratio POS/NEG in the L, N and
test set are maintained to be consistent with the original
dataset.

To investigate the effectiveness of the beam attribute
reduction algorithm for partially labeled data, all selected
datasets are tested at a label rate of 10%, and the results
of attribute reduction in ten times 10-fold cross-validation
are collected. Table 4 shows the statistical results, including
the maximum, minimum, and average number of attributes
in the reducts, which are listed in the third, fourth, and
fifth columns, respectively. In addition, the real reduct
information, i.e., attribute reduction at 100% label rate,
is collected for comparison. The last column provides a

comparison between the semi-supervised reduct and the
ground-truth supervised reduct, denoted as the approximate
rate, i.e., the rate of the average number of attributes
in the semi-supervised reduct to that in the ground-truth
supervised reduct.

Table 4 shows that the number of attributes is reduced
after semi-supervised attribute reduction. It is worth
mentioning that core attributes in the reducts are always
retained. The reason may be that in the semi-supervised
discernibility matrix, some objects must be discriminated
by core attributes. Compared to the ground-truth reduct,
the average approximation rate of semi-supervised attribute
approximation across all datasets is 72.87%. Notably, at
a label rate of 10%, the approximation rates on datasets
“credit-a”, “parkinson”, “turkiye” and “wall” are greater
than 80%. These results indicate the effectiveness of the

Table 4 Results of semi-supervised attribute reduction under the label rate of 10%

Dataset Raw Semi-supervised reduct Ground-truth reduct Approximate rate

Max Min Average Max Min Average

Anneal 38 24 23 23.7 14 13 14.7 62.03%

Biodegradation 41 25 23 23.9 15 14 14.8 61.92%

Colic 22 14 12 12.9 9 8 8.8 68.22%

Credit-a 15 13 13 13.0 11 10 10.8 83.08%

Credit-g 20 14 12 13.1 10 9 9.9 75.57%

Gesture1 32 28 26 26.7 19 17 18.5 69.29%

Gesture2 32 26 23 24.3 17 16 16.6 68.31%

Parkinson 26 20 19 19.4 16 14 15.7 80.93%

Polish 64 33 30 31.2 16 14 15.1 48.40%

Spambase 57 55 52 54.2 38 35 36.8 67.90%

Turkiye 31 31 29 30.2 30 29 29.2 96.69%

Wall 24 22 21 21.6 20 19 19.9 92.13%

Avg. 33.5 25.4 23.6 24.5 17.9 16.5 17.6 72.87%
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proposed attribute reduction method for partially labeled
data.

4.2 The effectiveness of the tri-trademethod

To evaluate the performance of the proposed tri-trade model,
we compare it with the supervised Laplace score and
unsupervised Fisher score. Both are standard filter-style
methods that assign a score to each attribute and then
select the k attributes with the highest score. The main idea
of Fisher score [51] is to identify attributes with strong
distinguishing power, which is reflected as small intraclass
distance and large interclass distance. The main idea of
Laplace score [52] is to construct the nearest neighbor
graph over all data, and the importance of each attribute is
evaluated according to its locality-preserving power [50].
In addition, we compare the proposed tri-trade model to
traditional semi-supervised methods such as self-training,
co-training, co-trade, and tri-training. Self-training [48] is a
self-taught method with only a single classifier. The initial
classifier is trained on labeled data and is iteratively refined
by its most confident self-labeled data. Co-training [23]
is a multi-view disagreement-based method. It trains two
initial classifiers on two attribute sets, and one classifier
updates the other one with high-confidence objects in each
iteration. Since most datasets lack naturally partitioned
views, the requirements of the co-training are difficult to
satisfy. However, it has been proven that [46] unlabeled
objects can still improve the performance of co-training
by randomly splitting the original attribute set into two
subsets. Therefore, in the experiments, the attributes in each
dataset are randomly partitioned into two disjoint sets of
nearly equal size. Moreover, co-trade [49] is improved on
co-training. It selects high-quality unlabeled objects by a
data editing technique to refine the base classifiers. Tri-
training [40] is also a multiview disagreement-based method
but uses three base classifiers. The settings for all selected
methods are shown in Table 5.

In Table 5, to demonstrate the potential of the proposed
tri-trade model, full supervised learning, i.e., under the

label rate of 100%, is set up for comparison. In addition,
supervised learning is also performed on the reduct obtained
from attribute reduction based on the Laplace score over
L ∪ N and Fisher score over L, respectively. The number
of attributes k remains the same as the optimal reduct of
the semi-supervised discernibility matrix-based method. In
addition, self-training trains its base classifier on the optimal
reduct obtained from attribute reduction based on semi-
supervised discernibility matrix over L ∪ N . In co-training
and co-trade, two views are generated by randomly dividing
the original attribute set into two disjoint subsets with
equal size. Tri-training obtains three labeled object subsets
by resampling over L, while the tri-trade model obtains
three views by semi-supervised discernibility matrix-based
attribute reduction over L ∪ N . In the proposed tri-trade
model, the maximum number of iterations of data editing is
set to 30. However, empirical results reveal that the training
process terminates no more than 10 rounds in most cases.
It should be noted that, compared to the co-training, co-
trade, and tri-training, the tri-trade model uses a subset of
attributes rather than all of them.

In the experiments, the label rate is set to 10%.
Two different base classifiers, J48 and Naive Bayes, are
employed and ten 10-fold cross-validations are performed
to evaluate the performance. The average classification error
rates of the selected methods are recorded in Tables 6 and
7. The column “Max” indicates the average error rates of
full supervised learning on different datasets, and the third
to ninth columns represent the average error rates of other
methods in Table 5. The “Avg.” row shows the average
classification error rate of each method on selected datasets.
The best classification results among all methods on each
dataset are highlighted in bold.

As shown in Tables 6 and 7, there is a significant
difference in the performance among the selected methods.
By comparing the results, when evaluated by the number
of datasets with the best classification performance, the
proposed tri-trade model is always the winner. More
specifically, when using J48, the tri-trade model wins 7
out of 12 datasets, while other methods win at most 2

Table 5 Experimental settings
Setting Method

Full supervised learning Ground truth

Choose top k attributes over L ∪ N Laplace score

Choose top k attributes over L Fisher score

Discernibility matrix-based attribute reduction over L ∪ N(1 view) Self-training

Randomly divide all attributes with equal size (2 views) Co-training

Randomly divide all attributes with equal size (2 views) Co-trade

Resampling over L Tri-training

Discernibility matrix-based attribute reduction over L ∪ N(3 views) Tri-trade
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Table 6 Average performance of the selected methods using J48 classifier at 10% label rate

Datasets Max Laplace score Fisher score Self-training Co-training Co-trade Tri-training Tri-trade

Anneal 0.0300 0.1394 0.2246 0.1070 0.1473 0.1261 0.0791 0.0776

Biodegradation 0.1974 0.2540 0.2596 0.2695 0.2294 0.2800 0.2212 0.2414

Colic 0.2559 0.3203 0.2717 0.3044 0.3728 0.2997 0.2669 0.2872

Credit-a 0.2029 0.2285 0.2531 0.2207 0.2810 0.2478 0.2079 0.2019

Credit-g 0.3280 0.3660 0.3733 0.3760 0.4312 0.3062 0.3401 0.3368

Gesture1 0.2697 0.2514 0.2543 0.2643 0.2450 0.2460 0.2304 0.2008

Gesture2 0.3230 0.2886 0.2850 0.2969 0.2648 0.2734 0.2738 0.2318

Parkinson 0.4490 0.4424 0.4426 0.4494 0.4411 0.4409 0.4388 0.4324

Polish 0.0470 0.0718 0.0688 0.0662 0.0699 0.1100 0.0603 0.0571

Spambase 0.1765 0.1251 0.1340 0.1460 0.1340 0.1636 0.1276 0.1590

Turkiye 0.3789 0.4079 0.4096 0.4132 0.4310 0.3907 0.4141 0.3933

Wall 0.1310 0.1454 0.1448 0.1550 0.1861 0.1908 0.1546 0.1432

Avg 0.2324 0.2534 0.2601 0.2557 0.2680 0.2563 0.2346 0.2302

datasets; when using Naive Bayes, the tri-trade model
wins 8 out of 12 datasets, while other methods win
at most 2 datasets. When evaluated by the average
classification error rate, the tri-trade model has an average
classification error rate of 23.02% when using J48, which
outperforms the full supervised method (23.24%). In
contrast, all other methods perform worse than the tri-trade
model. Impressively, the average classification error rate
of the tri-trade model is 27.35% when using Naive Bayes,
which is even better than fully supervised method (29.66%).
In summary, the classification performance of the tri-
trade model outperforms other semi-supervised methods
and is even better than that of the fully supervised
method. These results indicate that the tri-trade model
can effectively exploit unlabeled data to enhance its
performance.

To further evaluate the potential of the proposed model,
the methods in Table 5 are performed at other label rates,
including 1%, 5%, 10%, 15%, and 20%. Figures 2 and 3
show the average error rates of all methods. Note that “Max”
refers to the performance of a single classifier with a label
rate of 100%.

As shown in the figures, both the Fisher score and
Laplace score perform poorly on most datasets, since
their reducts have a loss of discernibility and they do
not utilize unlabeled data to improve the classifier. For
instance, in Figs. 2(a), 3(b), (c), and (e), the performance
of both Fisher score and Laplace score is far inferior to
other methods. Self-training is a single view model and
unlabeled data are self-labeled. In general, self-training
yields fewer desirable outcomes, as illustrated in Figs. 2(g),
(h), 3(f), (g), (h) and (l). One reason may be that the

Table 7 Average performance of the selected methods using Naive Bayes classifier at 10% label rate

Datasets Max Laplace score Fisher score Self-training Co-training Co-trade Tri-training Tri-trade

Anneal 0.1581 0.3664 0.4843 0.3749 0.3318 0.3088 0.3421 0.4281

Biodegradation 0.3814 0.4254 0.4059 0.3010 0.3775 0.3943 0.3817 0.2861

Colic 0.3269 0.3250 0.2989 0.2686 0.3256 0.3047 0.3261 0.2768

Credit-a 0.1856 0.1925 0.2431 0.1818 0.1871 0.1906 0.1860 0.1743

Credit-g 0.5381 0.4755 0.5517 0.3588 0.5302 0.4560 0.5378 0.3104

Gesture1 0.1728 0.1782 0.1771 0.1914 0.1732 0.1739 0.1723 0.1744

Gesture2 0.2114 0.2135 0.2151 0.2259 0.2104 0.2109 0.2110 0.2104

Parkinson 0.4231 0.4219 0.4274 0.4862 0.4188 0.4188 0.4282 0.4135

Polish 0.3340 0.2697 0.2598 0.1987 0.2712 0.2731 0.3156 0.2038

Spambase 0.1735 0.2300 0.2269 0.2458 0.2228 0.2337 0.2243 0.1778

Turkiye 0.4172 0.4177 0.4179 0.4174 0.4132 0.4112 0.4179 0.4046

Wall 0.2370 0.2373 0.2374 0.3406 0.2378 0.2378 0.2379 0.2218

Avg 0.2966 0.3128 0.3288 0.2993 0.3088 0.3011 0.3152 0.2735
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Fig. 2 Average error rates of the selected methods under different label rates (J48)

initially labeled data are not representative, and thus the
generalization ability of the base classifier is unstable.
Furthermore, the utilization of unlabeled objects affects
performance. Self-training inevitably mislabeled objects,

which further degrades performance. Co-training and co-
trade are disagreement-based learning methods that employ
two classifiers. However, their overall performance is
not satisfactory. The main reason is that the co-training
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Fig. 2 (continued)

paradigm requires the original attribute set to be naturally
partitioned, while in the experiments the subspaces for
these two classifiers are formed by randomly dividing

the whole attribute set by half. Obviously, this does
not guarantee the quality of these two base classifiers.
Therefore, the label information exchanged by these two
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Fig. 3 Average error rates of the selected methods under different label rates (Naive Bayes)

classifiers may contain noise, even though the co-trade
imposes a restriction on the exchange of unlabeled objects,
resulting in poor performance. Figure 2(c), (d) and (l)

demonstrate this trend. Tri-training employs three classifiers
to determine how to select unlabeled objects for labeling.
The performance of the method remains deficient. The
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Fig. 3 (continued)
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reason may be twofold. The quality of resampling data
is not guaranteed, leading to the lack of diversity in
the generated classifiers. Additionally, the pseudo-labels
produced by majority voting are insufficiently accurate.
These lead to unstable performance of tri-training, which
can be observed in Fig. 3(e), (i) and (k). Compared to
the resampling operation in tri-training, tri-trade model
trains its base classifiers on distinct reduced subspaces,
each of which is a sufficient attribute subset that maintains
the same discriminating power as the whole attribute set.
By exploiting unlabeled data, tri-trade model achieves
impressive performance. Tri-trade model estimates the
labeling confidence explicitly and generates the pseudo-
labeled objects by two enhanced classifiers. The tri-trade
model carefully selects unlabeled objects for learning, and
base classifiers are updated only when the pseudo-labeled
labeled objects have a positive influence. Therefore, the
tri-trade model can enhance performance by utilizing truly
useful unlabeled objects.

Overall, the proposed tri-trade model outperforms all
other methods under different label rates. Note that on some
large datasets, such as “polish”, “turkiye” and “wall”, the
number of labeled objects is sufficient to train a powerful
classifier when the label rate is below 20%. However, even
in these cases, tri-trade model is still effective. In addition,
the performance on some datasets is especially excellent,
as seen in Figs. 2(f), (g) and 3(j), where the average error
rate of tri-trade model is much lower than that of the
other methods. These experimental results demonstrate the
superiority of semi-supervised attribute reduction as well as
the data editing technique, showing that the tri-trade model
has great potential to learn from partially labeled data.

5 Conclusion

In many real-world scenarios, unlabeled data are massive
while labeled data are scarce. The strategy of selecting
and utilizing unlabeled data is essential for the learning
model of partially labeled data. In this study, a novel
tri-trade model is proposed for partially labeled data. To
obtain multiple distinct views from partially labeled data,
a semi-supervised attribute reduction algorithm based on
discernibility matrix is developed. Moreover, a new data
editing technique is introduced to explicitly estimate the
labeling confidence and to cautiously select unlabeled
objects to improve the base classifiers. Theoretical analysis
and comparative experiments on UCI datasets reveal that
the proposed tri-trade model has prominent performance
when compared to other methods. Admittedly, the proposed
model is only applicable to partially labeled data with
categorical attributes, which means that the numerical
attributes must be discretized. Extending the model to

deal with partially labeled data with both categorical
and numerical attributes is worth investigating in the
future. Additionally, it is worthwhile to explore other
effective strategies for evaluating the labeling confidence of
unlabeled data.
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