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Abstract
Social network analysis (SNA) has opened up different research areas to researchers, such as Community Detection and
Influence Maximization. By modeling social networks as graphs, one can detect one’s communities or find the most
Influential nodes for different applications. Despite extensive research in this area, existing methods have not yet fully met
analysts’ needs and are still being improved. Researchers have recently begun to apply certain concepts of a research area in
social network analysis to improve social network analysis methods in other areas. In this article, we claimed that applying
Two-phase Influence Maximization can improve some community detection methods. To prove the claim, we made some
changes in one of the current and efficient local community detection methods to improve the way of finding the initial
nodes with the new approach to finding the most influential nodes. The results showed a significant improvement. Another
problem was applying this method to dynamic networks, which could be time consuming. To solve this problem, proposed
a new technique that allows us to find the initial nodes in each snapshot in a new way without carrying time consuming
calculations. The experimental results showed that the novel approach and the new method outperformed the previous ones
in both static and dynamic social networks.

Keywords Community detection · Dynamic social network · Influence maximization

1 Introduction

The emergence of digital tools and their contribution to
the development of social networks have made social
networks more important than ever [1]. In other words,
Social networks are a set of individuals and organizations
interacting with each other [2] Many research areas have
been formed in the context of social networks in order
to extract useful information from this large source of
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data [3]. The development of graph theory provides a
strong basis for modeling social networks. In the graph
model, each node represents an entity, and each edge
represents a relationship between them [4]. Social network
analysis (SNA) widely uses graph theory and machine
learning methods [5]. Community Detection and Influence
Maximization are two of these popular research areas. In the
past, researchers have presented several methods to solve
the problems of each field. In this paper, we try to improve
a community detection method with a new hybrid approach
using influence maximization concepts. In the following, we
will briefly introduce each area.

Community detection One of the most popular research
areas in the SNA is to look for existing communities in a
social network [6]. Detecting communities in a network is
very helpful for its better understanding. A community is
said to be a group of nodes in a network that is densely
connected. In Newman’s definition of community, each
community is a set of nodes in which the number of
edges between the members is more than the number of
edges connecting that set to the rest of the graph [7]. In
other words, a community is a group of nodes that have
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similarities or have more connections compared to other
nodes, and this similarity can include their interest in a
specific topic or more interactions among them.

Influence maximization This is another popular area of
research in social network analysis. In social networks,
some nodes are more impactful than others. The purpose of
influence maximization problems is to detect these nodes
in a network. As an example, when the distribution of
information through a set of these nodes is maximized, more
nodes will receive information if these nodes are the initial
nodes in the information propagation process [8].

We mainly focus on community detection problems
in the following sections. Social networks are divided
into two categories in terms of time: Static networks and
Dynamic ones. Researchers e.g., Newman, Girvan [9],
and Pizzuti [10], initially worked on static networks and
provided algorithms to solve their problems. Since 2008,
they have focused on dynamic networks in the hope of
being able to figure out the structure of communities and
their changes over time [1]. Dynamic social networks are
defined by the snapshots that are intermittently taken from
the network structure over time. The snapshots are also
called timestamps. There are two approaches to identify
communities in dynamic social networks:

• Independent community mining [11].
• Incremental community mining [12].

From another point of view, researchers use two other
approaches to solve these problems; global and local. In the
former, they use all the available data at once to solve the
problem. On the other hand, they solve the problem locally
with the information around each node in the latter. In other
words, a set of primary nodes are selected based on which
communities can be recognized with local information in
local approach. Each of these approaches has advantages
and disadvantages, the details of which are given in [1].
In this article, we use the advantages of both local and
global approaches to solve community detection problems
by presenting a new hybrid approach. In other words,
by using the basic concepts of influence maximization,
we try to further develop a local-based approach we’ve
previously researched (HLCD) [13] to enable it to identify
communities in dynamic social networks. Our contributions
in the paper will be threefold:

• To employ an influence maximization concept to
determine better initial nodes.

• To develop a community detection algorithm using the
initial optimal nodes to improve accuracy.

• To modify the proposed algorithm to work on dynamic
social networks while increasing the accuracy and
reducing the running time.

We will continue to review the related works of
community detection algorithms in Section 2. In Section 3,
we will present a sufficient explanation of our method. The
results of the proposed method and the comparisons will
be presented in Section 4, and the last section presents the
conclusion.

2 Related works

Many methods have been proposed to solve the commu-
nity detection problem. Social networks are divided into two
categories in terms of time: static networks and dynamic
ones. Initially, researchers worked on static networks and
provided algorithms in [9] and [10] for them. Later, they
began to investigate dynamic networks in the hope of being
able to figure out patterns of graph changes in the com-
munity structures over time [1]. They tried to extend and
modify the existing algorithms to apply them to dynamic
networks. Research on graph communities began in 1970s.
Papadopoulos [14] attempted to identify communities in
social networks using the partial clustering method. He
considered a certain number of clusters and then classi-
fied the nodes in the network based on their distance from
the center of the clusters. The advantage of this partial
method was the simplicity of its implementation. How-
ever, it was necessary to determine the number of clus-
ters beforehand, which was not always known. Therefore,
the hierarchical clustering algorithm was presented [15].
Hierarchical clustering algorithms consist of two groups,
namely agglomerative algorithms and divisive algorithms
[16]. These algorithms cut the tree diagram to separate com-
munities. In these methods, it is not necessary to know
the number of communities. However, the tree cutting spot
affects the accuracy of the detected communities. The cur-
rent trend in research in community detection methods
falls into three categories [3]; methods in which a per-
son could only be in one community such as clustering or
Newman algorithm [7], methods of overlapping commu-
nity detection in which a person can be members of several
communities such as [17–19], and methods of local com-
munity detection, which we will discuss in the following
section. As networks grew and became widespread, explor-
ing the structure of the community by looking at the entire
graph and dividing it into several groups became expensive.
To date, the community detection algorithms have gener-
ally used global information, but with the growth of social
networks, it has become more difficult to access global
information. Thus, the algorithms which used local infor-
mation became more widespread. Clauset was the first to
introduce the idea of using local information. Although the
algorithm was simple and efficient, the size of the commu-
nities had to be determined first [20]. Most of the algorithms
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that locally search for communities start with some initial
nodes. There are various ways to find the primary nodes,
such as node degree, closeness, eigenvectors, and influence
maximization. There are various ways to extend the nodes.
Most of these methods have different criteria for expand-
ing the seed set. If adding a node to the community helps to
raise the criterion, that node will be added to that commu-
nity. First, a search is carried on for a series of initial nodes,
and then an attempt is made to expand those nodes into com-
munities [3]. Research in this field continues on both static
and dynamic networks.

Algorithms for static community detection Wang et al [21]
proposed using two strategies to find seed sets called
Graclus-conters [22] and Spread Hubs [21]. Their strategy
is based on a Kernel distance [22]. Graclus is a high-quality
graph partitioning scheme. Using this distance function,
they could find the top seed in an existing set of graph
vertices. The idea of finding nodes using the spreading of
the hubs is to choose a collection of independent nodes of
high degree [21].

This method is inspired by the observation of clusters
around nodes of high degree in real networks. Wang and his
colleagues employed the personalized page rank to expand
the seed set [21], while kloumann used the traditional page
rank to do so. The main idea of these two methods is to take
a random walk on the infomap. Infomap has information
such as the direction and weight of all the edges. Another
way is to use node centrality. This method puts more
emphasis on the hubs and edges connected to them and
requires that the most closely related nodes should be in
one community [23]. Yakoubi and Kanawati proposed the
LICOD algorithm [24]. This algorithm selects a set of leader
nodes by comparing them with its neighbors. Leader nodes
with a certain percentage of shared neighbors are grouped
in the same community. Fagnan proposed a method that
randomly chooses a node and then selects its neighbor with
the highest degree as the primary node. It then checks the
remaining nodes and selects the neighbor with the highest
degree as the next primary node [25]. Biswas proposed
the ENBC algorithm. This method selects the nodes with
the highest degree as the primary node. Checking all the
neighbors of each node, the method groups each node whose
number of edges with the initial node is greater than a
specified value into one community [26]. Jiang and his
colleagues used influence maximization to find the initial
nodes [27]. They defined a criterion for calculating the level
of influence the nodes have on each other. For each node v,
they calculated the influence that the initial nodes have over
them. Then node v becomes a member of the initial node
that has the highest impact on node v. LGIEM [28] uses
both local and global information. This algorithm calculates
the influence of nodes in the network and selects the top-k

nodes as seeds. Some node expansion methods select one
initial node and expand it, and then remove the community
obtained by extending the initial node from the network
and select and expand the remaining nodes that are not yet
in any community in the network. This process continues
until all nodes are at least in one community. Tabarzad
et al. proposed a three-phase method called heuristic local
community detection (HLCD) [13]. In this method, the
node degree is used to find the initial nodes. Generally,
in this algorithm, the highest degree node in the graph is
selected as the initial node, which is expanded by several
criteria to create a community. The community and the
nodes within it are removed afterwards from the network.
This process continues until no nodes remain unaccounted
for. As mentioned, this algorithm has three phases. The first
stage is early community detection; it selects the primary
nodes according to their degree and adds other nodes to
the initial nodes based on a node-community dependency.
By the end of this stage, many early communities are
formed. Although these communities are very dense, they
are not a real community yet. In the second stage, these
communities are merged based on a community autonomy
measure to create real communities. After merging early
communities to form real communities, there are many
overlaps among them. The third stage removes the overlap
among the communities
Gue proposed a local community detection algorithm based
on internal force between nodes called InfoNode [29]. He
uses local degree central nodes and Jaccard coefficient
to detect core members of communities as seeds in the
network. Then using a fitness function, he expanded the
node with the highest degree among the seeds. Afterwards,
with a new expansion strategy using similarity and
distance among the unassigned nodes, he expanded initial
seed set to create communities. Connecting the created
communities could be a problem in community detection
algorithms. Thus, Leiden [30] algorithm was proposed by
Traag to guarantee that the communities are connected.
A fast and strong community detection was proposed
by Bouyer and Roughani which starts from low degree
nodes called LDMS [31]. In LDMS, local community
detection begins from low degree nodes by using a
modern label assigning in a multilevel diffusion. They
also presented. another community detection algorithm
based on local balanced label diffusion (LBLD) [32]. This
algorithm starts with assigning a score to each node, which
presents the importance of that node by using a new local
similarity measure. Similarity-Guided Community Merge
and Refinement (SimCMR) [33] was proposed by Tunali
for large scale community detection based on two novel
similarities. In the first stage, by using a mechanism similar
to information propagation, the candidates will be generated
at a rapid speed. In second stage, small candidates will
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merge with larger ones if they have fewer nodes than a
calculated threshold. This merge will be done by using
similarity between nodes and communities.

Algorithms for dynamic community detection To date most
of the proposed algorithms have been developed for static
networks, and only a few for dynamic ones. Dynamic
networks are networks in which the membership of nodes
in communities changes over time. Researchers have paid
less attention to dynamic network community detection than
to static networks, but research in this area has gained
momentum in recent years.

Bansal has classified the community detection methods
in dynamic networks into two categories, namely online
community discovery and offline community discovery.
The former has to do with real-time data changes, and the
latter has to do with data in which all changes in network
evolution have been defined [34]. Wolf suggested using
mathematical and computational rules to analyze dynamic
communities based on social interactions occurring on the
network [35]. Lin presented the Facet Net algorithm. Facet
Net is a unified framework to examine the evolution of
dynamic communities. The network structure at any given
time includes current snapshot data as well as information
from previous snapshots [36]. To find the time dependency
in dynamic networks, Pala conducted experiments on two
different datasets of the telephone call network and the
collaboration network [37]. After constructing a graph
containing two snapshots, he used the CPM algorithm. Pala
and his colleagues used an automatic correlation function
to find the overlap between two snapshots of a community
and a static parameter representing the average correlation
of different snapshots.

Green et al. showed the dynamic graph as a set of
snapshot graphs [38]. The communities of each graph
represent the dynamic communities at a particular time.
This algorithm starts with a static community detection
algorithm. Then dynamic communities are created for
each time, and Jaccard similarity [39] is calculated
for each snapshot. DiTursi designed a new method for
dynamic networks and used Filter-and-verify Framework
for community detection in dynamic networks [40].

From another point of view, there are various meth-
ods to detect communities in dynamic networks, which
can be divided into two approaches [41]: Independent and
Incremental. In the independent approach like [11], each
snapshot is considered a single one, and the previous infor-
mation snapshot is not considered. This approach is suitable
for unstable social networks that have experienced abrupt
changes at intervals. In the incremental approaches such as
[12], each community at a snapshot is identified by con-
sidering the information about the previous snapshot(s).
For example, Rossetti considers all the previous time steps

to detect communities at every snapshot [42]. If there is
accurate information about the number of changes between
snapshots, it is highly logical to use this approach. For
example, Rabbani and Takaffoli presented a new approach
based on an incremental approach in which the current
snapshot communities have been derived from the previ-
ous snapshot [43]. This method assumes there is always a
slight change between two consecutive snap- shots, which
is not always true. Later, another method was proposed
by Samie [41], which first identifies the type of change
between two sequential snapshots, and then decides to use
either incremental or independent approaches to detect the
communities. If the changes between the two consecutive
snapshots were gradual, the algorithm adopts an incremental
approach, which uses both the current snapshot informa-
tion and the information from the previous snapshots to
detect the communities. If there was an abrupt change,
the algorithm adopts the independent approach with only
the current. snapshot information to detect communities.
Liu et al. proposed an incremental bottom-up method to
detect communities from dynamic graphs. This method
uses Link Prediction and Information theory to know when
the influence of a node has changed to identify the por-
tion of the graph that needs to be recalculated [44]. Local
seed expansion methods have often been very success-
ful in finding communities in dynamic networks. In 2016,
Laarhoven [45] presented a method that used continuity of
transmission and showed that despite the continuity of the
optimization, the method resulted in separate communities.
Takaffoli employed the evolutionary clustering to follow the
changes in any snapshot in the global network. Her algo-
rithm tracks local communities from one snapshot to the
next [46]. Wang and Li proposed a novel Dynamic Over-
lapping Community Evolution Tracking (DOCET) method.
This method identifies the overlapping community struc-
ture to update the dynamic community structure based on
the influence through the network. Then, it tracks commu-
nity structure evolution based on the variation of core nodes
[47] Samie et al. introduced a local evolutionary method
called GL-metric [1]. This method is a two-phase algorithm
that uses both local and global information. This algorithm
first searches for global information and then uses local
information to make the organizations more accurate. This
algorithm is a continuation of Pizutti’s work [12]. In the
first phase, it detects communities using global information.
Then, using local information, it modifies the communities
obtained in the previous phase to identify communities more
accurately. Lou proposed the Local Community Detection
with the Dynamic Membership Function algorithm. This
algorithm has three stages. At the initial stage, a dynam-
ical membership function is designed to detect a local
community and add the nodes with the greatest neighbor-
hood intersect rate to the local community. At the middle
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stage, another dynamical membership function is designed
to make the connection of the node in the local community
as closely as possible. At the closing stage, the third dynam-
ical membership function is provided, further improving
the local community by collecting some nodes that should
not be omitted [48]. Another algorithm that uses a multi-
objective approach is MDOA [49]. This algorithm uses three
optimization objectives: partition density [50], extended
modularity [51], and improved mutual information. One of
the most recent algorithms in this area is Local Commu-
nity Detection by the Nearest Nodes with greater centrality.
This algorithm starts with an initial node of v; the remain-
ing nodes are added to the local community one by one. For
adding u to a local community, u should be the nearest node
with greater centrality (NGC) of a node in the local com-
munity, or u’s NGC is already in the local community; in
addition, the fuzzy relation between u and its NGC node is
the largest, which is not less than half of the average fuzzy
relation of the current local network [52]. The difference
between these methods is in their local measures. In general,
algorithms of local approach have to answer one or more of
the following four questions:

1. What nodes are selected as the initials to achieve a more
accurate result in a shorter time?

2. What optimization algorithm should be used to expand
the initial nodes and detect communities?

3. Which similarity measure should be employed to recruit
nodes for communities?

4. Is the proposed method for static networks applicable to
dynamic networks, and if so, how?

As mentioned before, we mainly focus on improving the
accuracy of local community detection algorithms, which
are applied to static networks, by developing them. Our
objective is to make more applicable to dynamic networks.
To this end, we use an incremental approach. In the next
section, we propose a new approach and the new methods
in detail.

3 Proposedmethods

Despite extensive studies of community detection in social
networks, the proposed methods have not been desirable yet
on real social networks, and improvements are still ongoing.
Due to the increasing size of social networks, the meth-
ods that only use global information are less efficient. In
this paper, we will use both global and local information
to gain better results. We try to develop one of the newest
methods of local approach that we previously worked on
(HLCD) and extend it to be applicable to dynamic networks.
As mentioned before, the scenario for the methods of the
local approach is generally to start from a few nodes that

appear to be more closely related to other ones and then to
examine their neighbors until all nodes are a member of at
least one community. One of the fascinating research areas
is proposing methods that select better and more effective
initial candidate nodes. In other words, optimal selection of
initial nodes must lead to increased accuracy at the priority
and then reduced runtime, if possible. As mentioned in the
last section, the HLCD algorithm is one of the newest meth-
ods of local approach. We present our method in two stages:
First stage: We start by improving HLCD [13] algorithm
using a new method of finding initial nodes by using the
influence maximization concept. At this stage, we achieve
our first goal which is increasing the accuracy in detecting
communities. Second stage: Developing the method pro-
posed at the first stage to be applicable to dynamic networks

3.1 First stage: local community detection based
on influencemaximization in static networks

The HLCD algorithm uses the most straightforward
centrality measure, degree centrality, to find initial central
nodes. Central nodes in HLCD are the nodes with the
highest number of edges with their neighbors. Since
this measure is not a reliable concept for influence
maximization, we will find the most influential 40 nodes in
social networks. In other words, we claim that influential
nodes are better candidates for initial central nodes because
they are more effective than nodes with only a high
number of edges. This change will significantly improve the
performance of the HLCD [13] algorithm.

3.1.1 Finding more optimal central nodes

As mentioned above, we need to find more optimal
primary nodes for early communities to lead to more
precise communities. Here we use the two-phase influence
maximization [8] algorithm to find the most influential
nodes in social networks. In the proposed algorithm, we use
Reversely Reachable sets to find the most influential nodes
with a reliable guarantee. In order to find influential nodes,
one must follow influence throughout the network. Many
diffusion algorithms can be used to trace network influence,
including the Linear Threshold Model and the Independent
Cascade Model [53]. Although these are some of the best
propagation algorithms that can be used to estimate network
influence, finding a solution for influence maximization
under these two models is NP-hard. Thus, we can use
a combined method such as TIM (Two-phase Influence
Maximization) [8] to estimate the extent of influence in
influence maximization problems. Here, we use a Fusion
Method to build Reversely Reachable (RR) sets [53]. As
shown in Algorithm 1, to build a RR set, let’s start with a
random node u and add it to the RR set. Then the neighbors
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of v that have outgoing edges to v are found. In other words,
the v’s parents are found and put in a set called P. For
each node u, the weight of the edge coming from u to v
is compared to the probability of being activated to see if
node u can activate node e. If the edge weight is higher
than the probability of being activated, the node, u, will
be added to the RR set, otherwise it will not. This process
will continue until there is no other parent. Here, the RR
set indicates if propagation starts from node v, what other
nodes would be informed. By examining RR sets, we can
find out what nodes are in most of the propagation paths.
First there is a need to build a large number of RR sets. The
set R, contains a large number of RR sets in the algorithm.
To find the most influential node, we need to check how
many times each node has been repeated in the set R. The
node with highest frequency is the most influential node. So
far, we have found the first most influential node and want
to find more. To do this, we must remove those RR sets in
which the first most influential node is a member of the R
set and find the next influential node among the remaining
RR sets in R. The pseudo-code number 1 and 2 describes the
process of building RR sets and finding influential nodes.
It is worth mentioning that in the second pseudo-code, we

Algorithm 1 Creating RR sets for a network.

do not specify the number of communities in any way, and
the parameter k is the number of influential nodes found in
each step of the algorithm which here is equal to 1, rather
than the number of communities in a social network. In the
proposed method, we find the influential nodes one by one
at the first stage, and we continue the process as long as all
the nodes belong to at least one community.

Algorithm 2 Finding top-k most influential nodes.

3.1.2 Detecting communities by expanding influential
nodes

This Part of the algorithm is related to the HLCD algorithm
[13], but we will briefly review the whole algorithm in these
three steps for a better understanding.

• First step: The algorithm uses a simple central measure
to find the initial nodes and expands them to form the
early communities.

• Second step: The algorithm merges neighboring com-
munities.

• Third step: It removes the overlaps between the
communities.

As it can be observed in Algorithm 3, to identify the early
communities, we first have to find the most influential node
from the R set, which contains a large number of RR sets.
This node v is considered as the first influential node, and
it expands to form an early community. After that, we find
the next influential node. The process continues as long
as all nodes are assigned to at least one community. It is
not necessary to know the exact number of communities
to know how many influential nodes we need to find. In
this step, we keep finding influential nodes until all social
network nodes belong to at least one early community. Then
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Algorithm 3 Early community detection.

by using some measurements, these early communities will
merge to form actual communities. Since this step is in the
HLCD algorithm, we do not include it in this paper. The
rest of this paper refers to community detection. As shown
in the next section, even though the expanding and merging
scenarios in our proposed method are the same as HLCD,
the performance on static social networks is significantly
improved by changing the initial nodes finding method.

3.2 Second stage: local community detection based
on influencemaximization in dynamic networks

The first part of our contribution focused on improving the
performance of existing methods for community detection
in static networks. The second part is to extend the proposed
method so that it also applies to dynamic networks. As
mentioned earlier, dynamic networks change over time,
which may change the initial RR sets for subsequent
snapshots. The first way that comes to mind for dynamic
networks is to create new RR sets for each snapshot,
which is very time-consuming. According to our research,
the graph structure does not change much due to gradual
changes in snapshots. It is best to use a criterion that
determines when the last RR sets can be used and when it
cannot be used. Similarity is one of the best criteria. We can
decide whether to use the previous RR sets or update it for
a new snapshot by calculating the similarity between two
snapshots.

3.2.1 Using deep neural network to predict the similarity
of two snapshots

A Deep Neural Network (DNN) is a complex type of Deep
Learning which is an Artificial Neural Network (ANN)
with multiple layers between the input and output layers.
each neural network unit can be represented as a graph
node, whereby DNN offers an accurate analysis in problems
which involves working with graphs. In this study, we
observed that the gradual changes in the two successive
snapshots did not always lead to the change of the influential
nodes in many cases. Thus, despite the progressive change
in two snapshots structures, the RR sets change a little or do
not change at all. Thus, the influential nodes do not change
in many cases. As a result, the RR sets of the previous
snapshot can be used to predict the influential nodes of the
current snapshot. Our goal is to find a common criterion
between the two snapshots, through which we can identify
the amount of similarity between the two networks. We
realized that as the network changes over time, so do the
RR sets, which sometimes leads to the change of influential
nodes. In other words, It can be claimed that the more the
network changes; the more the influential nodes change.
Therefore, investigating changes in the influential nodes
can guide us to the level of differences between the two
snapshots and thus give us a measure. The use of influential
nodes to compare snapshots has some benefits. In essence,
by using influential nodes to compare similarities between
snapshot, one is comparing their RR sets without needing
to create them for each snapshot. Based on deep neural
networks superiorities, we decided to use it to compare
the similarity between snapshots. We built a deep neural
network that gets two snapshots as inputs and returns their
similarity. To do this, we had to provide lots of training
samples to train a deep neural network. Briefly, the scenario
for this stage is:

1. Training a deep neural network to compare the
similarity between two snapshots

2. Compare their similarity with a threshold to decide if
the previous snapshots RR sets can be used or the RR
sets must be updated.

We will explain how to train a deep neural network,
calculate the similarity, and determine the threshold value.

3.2.2 Creating new graphs for training samples

We needed a large number of samples to train the deep
neural network at this point. To do so, we used the
Launchicinti-Fortunato-Radicchi LFR method, which is
very similar to real-life datasets [54]. It is a benchmark for
creating artificial networks. In the following section, we will
thoroughly explain this database. In the LFR benchmark,
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Table 1 Different LFR networks for training deep neural network

Number of nodes in network number of created graphs

100 50

200 50

400 50

700 50

1000 50

one can define the number of nodes, the maximum number
of communities, the lowest and the highest degree of a
graph, and many other parameters. The LFR constructs
the network according to those parameters. We built 250
artificial neural networks using LFR, and then we created
12500 samples for training. The process of creating training
samples for the neural network will be explained afterwards.

As seen in Table 1, by changing the LFR generators
parameters, we made sure each network is different from the
others, and we built various network models with a different
number of nodes. Our goal was to compare networks with
the same number of nodes to build a training sample. We had
to find the influential nodes for each snapshot and compare
them to another snapshot with an equal number of nodes. In
other words, we wanted to find the relationship between the
similarity of two snapshots and their influential nodes.

3.2.3 Mapping graph into vector

So far we have represented the networks with graphs and
its adjacency matrix for the calculations, but we have to
change the graphs representation and display the adjacency
matrix as a one-dimensional vector. To do so, we used a
Convolutional auto-encoder to convert the graph to a vector.
These vectors are the training samples for the deep neural
network (Algorithm 4).

3.2.4 Creating training samples

To construct training samples, we compared the networks
with the same number of nodes. First, for each LFR
network, we calculated the RR sets and then used them

to obtain the influential nodes of each network. We then
compared the networks influential nodes one by one and
assigned their similarity as the label of each two networks.
If we did this for each pair of networks with the equal
node number in all of the created LFR networks, we would
eventually have 12500 training samples, a fair number
of training samples for a deep neural network. Check
Algorithm 5 and Fig. 1 for more details.

3.2.5 Training neural network to compare similarities
between snapshots

At this point, we used the created training samples to
train feed-forward perceptron network.Using a deep neural
network helped us to have a tool that can quickly estimate
any two given snapshots similarity without having to
calculate the RR sets. Training this neural network is
time-consuming, but neural networks have an outstanding
benefit. We can train neural networks just once and then
save the weights of the model and then, we can use it to
predict the similarity of any two snapshots. It is worth noting
that we have used Dense and Dropout lavers in this network.
The dropout layer reduces part of the input data and thus
prevents overfitting.

3.2.6 Updating reversely reachable sets

As mentioned earlier, we trained a deep neural network to
compare the similarity of each two snapshots. This allows
us to easily determine whether to use the previous RR set
for the current snapshot, or to update it. In case the latter is
true, it is advisable to update the RR sets purposefully, based
on the type of change, to consume less time. we should
consider four modes:

1. A new edge is added,

2. A new node is added,

3. An edge is removed,

4. A node is removed.

Algorithm 4 Vectorizing a network.
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Algorithm 5 Creating training samples.

Since adding a new node adds a new edge, and removing the
node removes the edge, we could only consider adding and
removing edges.

* New edge
If there is a new edge (u - v) in the snapshot, weights of

incoming edges of v will change. As a result, all the RR sets
in which the node is, are no longer trustworthy and need to
be updated.

In this case, we have to remove all nodes after v and
recreate the RR set from there.

* Removed edge
If an edge (u - c) no longer exists in the snapshot, weights

of all incoming edges of e will change. Now we should
change all the RR sets in which both u and e exists. The
critical key is to change RR sets that have c after the node
u. After finding all the RR sets that have the necessary
condition, we have to remove all the nodes after u and
recreate the RR set from that point.

3.2.7 The final proposedmethod

In local community detection algorithms, initial nodes are
selected, and then the nodes expand to form communities.
We used an influence maximization concept to find the seed
set. We then developed this algorithm to apply to dynamic
networks as well. To prevent the calculation of the RR
set in each snapshot, which is very time-consuming, we
trained a deep neural network to predict the similarity of
two consecutive snapshots. If the similarity is higher than a
threshold value, we use the RR sets of the previous snapshot
for the new one, and if it is less than the threshold value,
we update the RR sets of the previous snapshot for the
new snapshot and use it. Although training neural networks
may be time-consuming, we can train the neural network
only once and save the neural network model weights and
use it repeatedly for every new dataset easily. Algorithm
6 provides all the details of our final method. Before we

Fig. 1 Creating training sample for deep neural network

18302

1 3



Local community detection based...

Fig. 2 First snapshot’s
community detection

carry on, the question arises about the optimal value of the
numerical threshold that can determine the similarity for
us. In other words, how similar two snapshots need to be
in order not to update RR sets. It is worth mentioning that
we came up with the best threshold by experiments. In our
study, we worked with many networks. We created the RR
sets for each network and got their influential nodes and
then we compared them two by two which led to over 15000
comparisons. We were looking for the highest possible
amount. At first, we started by choosing θ = 10%. We only
updated RR sets for the social networks the similarities of
which to other ones were less than 10%. This means we did
not update social networks with more than 10% similarities.
After this, we continued with community detection. Many
snapshot RR sets that were not updated gave poor results.
Thus, we changed θ to 15. We did so until θ = 80%. In θ =
80% or θ = 85% or θ = 90%, we did not see any difference
in the results. This meant that not updating social networks
with more than 80% similarity was a good choice. We chose
θ = 80% as the optimal threshold value and used this for all
the experimental datasets and got the acceptable results.

The following is an example of the proposed algorithm.
Suppose we have a network with five snapshots.

1. At first, The neural network model and the neural
network weights must be loaded.

2. The first snapshot is treated as a static network. For
this snapshot, we compute the RR sets and detect
communities (Fig. 2).

3. Then it is time to detect communities in the second
snapshot. At first, we map the first and second
snapshots to a one-dimensional network using a feed-
forward perceptron network, and then we should find
the similarity of the first and second snapshots using the
deep neural network we loaded earlier (Fig. 3).

Here we see that the similarity of these two snapshots
is 100%, so we can use the first snapshots RR sets
to identify communities in the second snapshot. Even
though the similarity between snapshot 1 and snapshot
2 is more than theta, it does not necessarily mean
the graph structures are the same. There may be a
difference in the number of edges or nodes. It would be
best if you remembered that the trained neural network
predicts this similarity. Therefor, we still need to do
community detection.

4. It is time for the third snapshots community detection
(Fig. 4). Since we have the RR sets of the first snapshot,
we compare the third snapshots RR set with the first
one.

Now, we see that the similarity of the first snapshot
and the third one is less than the defined threshold,
so we should update the RR sets to attain the third
snapshots RR sets. We then detect the communities
using the updated RR sets.

5. For the fourth snapshot (Fig. 5), we have the RR sets of
the first and third snapshots. So we have to compare the
fourth snapshot with both of them.

We can see that the fourth snapshot is more similar
to the third snapshot than the first one. As a result,
we use the RR sets of the third snapshot to detect the
communities.

In this example, by using the deep neural network
to compare the similarity of two snapshots, the RR sets
were created just once and needed to be updated once,
instead of creating them four times. As can be seen, the
use of deep neural networks significantly reduced the
computational cost. This method will be handy for real
and large social networks.

4 Experimental results

In this section, we compare the performance of the
proposed method with some other well-known algorithms.
It is recommended to use synthetic benchmark datasets or
real-life networks with the ground-truth label to evaluate
community detection algorithms. We ran our codes 30
different times on MATLAB environment. The PC in use
had a core i7 processor and 8GB RAM.

4.1 Evaluationmeasure

There are several measures for comparing the results of
community detection algorithms with the ground-truth.
One of these efficiency measures is Normalized Mutual
Information (NMI) [55]. This measure uses the ground-
truth to determine the accuracy of the community detection
algorithms. NMI is one of the best-known tests for
comparing the similarity of two networks. For the two

Fig. 3 Second snapshots community detection
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Algorithm 6 Final community detection.

partitions: A = A1,. . . , Aa) and B = B1,. . . , Bb) of a
social network partitioned in communities and C is the
confusion matrix with element Cij , the number of nodes of
the community Ai , ∈ A which are in the community Bi ∈ B
too. The normalized mutual information NMI (A, B) is:

NMI(A, B) =
−2

∑cA

i=1

∑cb

j=1Cij log
(

Cij N

CiCj

)

∑cA

i=1Ci log
(

Ci

N

)
+ ∑cB

j=1Cj log
(

Cj

N

)

(1)

In the above equation, CA and CB are the community
numbers in the partition A and B. Ci and Cj are the sum
of the elements of C in row i and column i, and N is the
number of nodes. If A and B are the same, NMI (A, B) =
1. If they are entirely different, NMI (A, B) = 0. Another
measure to compare community detection algorithms is Q
modularity [51]. Modularity is widely used as a measure
for how functional a clustering is. Higher modularity means
nodes within the cluster have dense connections between
themselves but sparse connections with other nodes. In the
equation below, m is the number of edges in a network.
Ki shows the degree of node i, and Aij is the network’s

adjacency matrix. s represents the membership of each
node.

Q = 1

2m

∑

ij

[

Aij − KiKj

2m

]
SiSj + 1

2
(2)

4.2 Datasets

To evaluate our method, we have used a variety of datasets,
including synthetic and real-life datasets, as following.

4.2.1 Static datasets

• LFR benchmark This artificial dataset is provided by
Launchicinti-Fortunato-Radicchi (LFR) [54].
This dataset has various parameters that we can control
network structure by changing their values.
N: Number of nodes in the network
Average degree : the mean degree of each node
Mox degree : Maximum node degree in the entire net-
work

Fig. 4 Third snapshot’s community detection
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Fig. 5 Last snapshot’s community detection

Min community : The minimum number of communi-
ties in the network
Max community : The maximum number of communi-
ties in the network
Mu: Specifies the amount of network complexity. The
value of this parameter is in the range of (0, 1). The
more complex a network becomes, the harder it is to
detect communities(Tables 2, 3 and 4).

LFR 1

These parameters led to the creation of a network
with 128 nodes, 341 edges, and 15 communities

LFR 2

With these parameters, a network of 1000 nodes,
7680 edges, and 30 communities was made

LFR 3
This network has 10,000 nodes, 150,740 edges, and

152 communities.
Considering that modern networks have large num-

ber of nodes, we tried to assess the performance of
the proposed method by creating three LFR synthetic
dataset with 50,000, 75,000 and 100,000 nodes. The
parameters of these datasets are in Table 5.

• Zachary karate dataset

This dataset has 34 nodes representing individuals
who were members of a karate club in the United States
[56]. The edges also indicate the friendship between
these people. After the conflict between the coach and
the manager of the club, the club was divided into two
groups. The first group built a new club with the coach,
and the other group stayed with the club manager. This
dataset is used as a benchmark in the field of clustering
and community detection.

Table 2 Parameters of first LFR benchmark

I N 128

II Average degree 150

III Max degree 15

IV Min community 4

V Max community 16

VI mu 0.1

Overall, the network consists of 34 nodes, 78 edges,
and 2 communities

• Static football dataset

This network includes the college football tourna-
ment schedule [7]. The nodes represent the teams that
participated in the tournament. We considered the foot-
ball network for the year 2000.
It has 115 nodes, 616 edges, and 12 communities.

4.2.2 Dynamic datasets

• SYNFIX

The Synfix dataset is an artificial dataset designed by
Girvan-Newman [7]. This software generates dynamic
networks that are divided into a number of communities
in the T snapshots. In order to investigate the proposed
method, we used two dynamic Synfix networks. The
networks have 128 nodes, 4 communities, and 10
snapshots, and each node has an average of 16 edges.
The mixing parameter is 3 and 5 in the first and second
networks.

In each snapshot, 3 nodes randomly exit each
community to join one of the other three communi-
ties(Table 6).

• SYNVAR

The Synvar synthetic dataset is created by making
changes to the Synfix dataset [7]. In the dataset, the
parameters are set such that the number of communities
in each snapshot changes.

Table 3 Parameters of second LFR

I N 1000

II Average degree 15

III Max degree 50

IV Min community 20

V Max community 50

VI mu 0.1
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Table 4 Parameters of third LFR benchmark

I N 10000

II Average degree 30

III Max degree 100

IV Min community 40

V Max community 100

VI mu 0.1

The first snapshot contains 393 nodes and 5 communi-
ties; 4 communities have 64 nodes, and one community
has 137 nodes.

• Dynamic football dataset

In order to evaluate the dynamic approach, we used
the football games of 2005-2007, which were used in
[1]. These networks have 120 nodes and 12 communi-
ties.

• Dynamic facebook dataset

This dataset consists of friends lists from Facebook
as circles [57]. The dataset includes profiles as node
features, ego networks, and circles. The ids of each user
have been replaced with a new value to stay anony-
mous. The dataset consists of 4039 nodes and 88234
edges in 10 snapshots.

4.3 Evaluation algorithms

In this section, we review the algorithms that are to be
compared with our proposed method. The first method
presented in this article is a community detection algorithm
for static networks, and the second method is the algorithm
for community detection in dynamic social networks.
We first compare the result of the first with some
community detection algorithms in static networks and
then compare the second method with some community
detection algorithms in dynamic networks. It is worth
mentioning that the comparison was made with methods
whose results were in their reference or the source code was
available to the authors. It is possible that in some cases the

Table 5 Specifications of produced data

Name N maxK K mu minC maxC

N50 50,000 100 30 0.1 40 1000

N75 75,000 100 30 0.1 40 1000

N100 100,000 100 30 0.1 40 1000

Table 6 Parameters of Synfix datasets

Mixing parameter Average degree Snapshot(T)

Synfix 1 3 16 10

Synfix 2 5 16 10

results of a few methods is shown with “-” which means that
the results was not in the references or the source code was
not available.

4.3.1 Community detection algorithms in static networks

• The first algorithm to compare is the [13]. This
algorithm uses top nodes with the highest degrees as the
initial nodes and expands communities around them

• The second is the one proposed by Yakoubi and
Kanawati called LICOD [24]. This algorithm selects
a set of leader nodes by comparing them with its
neighbors. Leader nodes with a certain percentage of
shared neighbors are grouped in the same community.

• Fagnan proposes the third selected algorithm [25]. This
method randomly selects a node and then selects its
neighbor with the highest degree as the primary node.
It checks the remaining nodes, and the next-highest
neighbor becomes the next primary node.

• ENBC algorithm was presented by Biswas [26]. This
method selects the nodes with the highest degree as
the primary node. It checks all its neighbors for each
node, and each node whose number of edges with the
initial node is higher than a specified value falls into
one community.

• Another method that we are going to compare
with our method is the DOCET algorithm [47].
This algorithm first detects the initial overlapping
community structure. Then, it incrementally updates the
dynamic community structure.

• We also considered the method Tinghuai Ma proposed.
He proposed LGIEM method which first finds influ-
ential nodes and then expands them to form final
communities [28].

• InfoNode is another algorithm which is used in this
field. This algorithm uses internal force between nodes.
This algorithm first detects core nodes by using node
degree and Jaccard coefficient. Then by using a fitness
function top k nodes are extended with internal force
between nodes create communities [29].

• A fast and robust local community detection starting
from low degree nodes in social networks (LSMD) [31].
This algorithm starts with assigning a score for each
node which presents importance of that node by using a
new local similarity measure.
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• A fast community detection algorithm based on local
balanced label diffusion (LBLD) [32]. This algorithm
starts with assigning a score for each node which
presents importance of that node by using a new local
similarity measure.

• Traag proposed Leiden algorithm, guaranteeing well-
connected communities [30]. In this algorithm, commu-
nities are guaranteed to be connected by using a fast
local approach. In Leiden, all subsets of all communi-
ties are locally assigned with an optimal partitioning.

• Similarity-Guided Community Merge and Refinement
(SimCMR) [33] was proposed by Tunali for large scale
community detection based on two novel similarities. In
SimCMR, candidates will be generated at high pace by
using a mechanism similar to information propagation.
Then these candidates will be merged with larger ones
if they have fewer nodes than a certain threshold.

4.3.2 Community detection algorithms in dynamic
networks

The algorithm proposed for dynamic networks will be
compared to four algorithms.

• The first algorithm is the DOCET method [47], which
was explained in the previous section.

• Lin proposes an algorithm called FacetNet [36]. Facet-
Net is a unified framework for examining the evolution
of dynamic communities. The structure of a network at
any given time includes current snapshot information
and the information of the previous snapshot.

• The third algorithm is proposed by Pizzuti called
DYNMOGA [12]. This algorithm uses the genetic
algorithm approach to detect communities in dynamic
networks.

• GL-metric [1] proposed by Samie et al. This method
is a two-phase algorithm. The GL-metric detects
community in a global approach and then tune them in a
local approach. In other words, they proposed a global-
local method for community detection in dynamic
social networks.

• The last method is the (MDOA) [49], which was
proposed by Wan et al. This method is based on
MOEA/D. This algorithm decomposes the multi-
objective Community detection problem into a number
of single objective optimization sub-problems.

4.4 Compared results

This section will compare the results of our static
and dynamic community detection algorithm with other
community detection methods.

4.4.1 Comparing community detection algorithms in static
networks

All of these methods detect the communities in static
networks using the local approach. In other words, they first
select the seed set by a specific criterion and then extend it
to form the communities.

As can be seen in Table 7 and Fig. 6, our proposed
method has increased the accuracy of the algorithm HLCD
and has achieved better results. In cases where the NMI
value is equal to one, it means that according to the formula
used, the algorithm displays a perfect performance and the
detection has been done correctly.

Considering that modern networks have a large number
of nodes, we compared our proposed method with three
large scale social networks with 50,000, 75,000, and
100,000 nodes. Since some of the methods mentioned above
couldn’t show any results on large networks, we compared
results of our proposed method with new methods which are
compatible with large networks (Tables 8 and 9).

4.4.2 Comparing community detection algorithms in
dynamic networks

The metrics used in this paper are NMI [50] and modularity
Q [51]. Modularity shows how good the detected com-
munities are, and NMI evaluates the community detection
performance [47]. As mentioned before, in the proposed
method, we first estimate the similarity of each two con-
secutive snapshots using the deep neural network and then
decide whether we can use the RR sets obtained in the previ-
ous snapshot or we should update them. We compared NMI
and modularity Q of the proposed method to FACETNET
[36], DYNMOGA [12], GLmetric [1], DOCET [47], and
MDOA [49] algorithms on different dynamic datasets.

In the SYNFIX dataset with mixing parameter =3 (Figs. 7,
8 and Tables 10 and 11), Reversely Reachable sets were crea-
ted for the first snapshot and were updated in the third and
the seventh snapshots. In other words, by only building the
RR sets once and updating it twice, we were able to detect
communities of the 10 snapshots of the SYNFIX dataset.

In the SYNFIX dataset with mixing parameter = 5
(Figs. 9, 10 and Tables 12 and 13), Reversely Reachable
sets were made for the first snapshot and updated for the 6th
and 8th snapshots. As a result, by only building the RR sets
once and updating them twice, we managed to detect the
communities of 10 snapshots.

In the SYNVAR dataset with mixing parameter = 3
(Figs. 11, 12 and Tables 14 and 15), we created the
Reversely Reachable sets for the first snapshot and updated
them in the 4th, 5th, and 9th snapshots. As a result, by only
building the RR sets once and updating them three times,
we were able to detect the communities of 10 snapshots.
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Table 7 The NMI results of community detection methods on static networks

Proposed method Docet LGIEM InfoNode HLCD Local T LICOD ENBC

Karate 1 0.90 1 0.99 0.83 0.83 0.67 0.83

Football 0.95 0.89 0.66 0.65 0.90 0.86 0.90 0.85

LFR 1 1 1 – – 1 0.99 0.99 0.99

LFR 2 1 0.99 0.68 – 1 0.77 0.99 0.99

LFR 3 1 1 – – 1 0.82 – 0.99

Fig. 6 Plot of NMI results of community detection methods in static networks

Table 8 NMI values of methods

NMI

Proposed method simCMR Leiden LBLD LDMD

N50 0.614752391 0.164057393 0.461887358 0.001173144 0.203948

N75 0.608532753 0.193076005 0.496224825 0.00027362 0.2424775

N100 0.627348912 0.203729461 0.51240647 0.000487791 0.2581904

Table 9 Modularity values of methods

Q

Proposed method simCMR Leiden LBLD LDMD

N50 0.695238 0.0 0.20151 0.0017651 0.616377

N75 0.713624 0.0 0.214752 0.0 0.625672

N100 0.708257 0.0 0.207781 0.0 0.600935

18308

1 3



Local community detection based...

Fig. 7 Plot of NMI results on dynamic SYNFIX with the mixing parameter = 3 dataset

In the SYNVAR dataset with mixing parameter = 5
(Figs. 13, 14 and Tables 16 and 17), Reversely Reachable
sets were made for the first snapshot and updated in
the 4th, 5th and 8th snapshots. As a result, by only
building the RR sets once and updating them three
times, we were able to detect the communities of 10
snapshots.

Fig. 8 Plot of Q at different time
steps of the SYNFIX network
with the mixing parameter = 3

We also applied the proposed method to some famous
synthetic dynamic datasets named: Birth/Death, Expand,
Hide and Merge/Split. These include 1000 nodes in which
specific changes of communities over time are modeled in
5 snapshots (Tables 18 and 19). The name of these datasets
is based on the events that are modeled in them. The NMI –
Q– values of results are in the following tables.
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Table 10 NMI at different time steps of the SYNFIX network with the mixing parameter = 3

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Proposed Method 0.94 0.97 0.97 0.96 0.96 0.97 0.98 0.97 0.98 1

GLmetric 0.92 0.93 0.94 0.95 0.97 0.96 0.97 0.96 0.95 0.96

MDOA 0.94 0.97 0.97 0.96 0.96 0.96 0.97 0.97 0.98 1

DYNMOGA 0.89 0.90 0.90 0.91 0.93 0.93 0.93 0.93 0.92 0.93

DOCET 0.83 0.94 0.94 0.96 0.97 0.96 0.97 0.96 0.97 0.96

FacetNet 0.72 0.86 0.89 0.86 0.91 0.90 0.92 0.91 0.92 0.90

Table 11 Q at different time steps of the SYNFIX network with the mixing parameter = 3

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Proposed Method 0.72 0.73 0.75 0.73 0.75 0.70 0.79 0.78 0.74 0.69

GLmetric 0.29 0.45 0.39 0.33 0.35 0.43 0.23 0.36 0.24 0.32

DYNMOGA 0.56 0.57 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.57

DOCET 0.66 0.67 0.67 0.71 0.74 0.68 0.67 0.66 0.63 0.62

FacetNet 0.30 0.30 0.30 0.29 0.28 0.34 0.27 0.33 0.31 0.30

Fig. 9 Plot of NMI results on dynamic SYNFIX with the mixing parameter = 5 dataset
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Fig. 10 Plot of Q at different
time steps of the SYNFIX
network with the mixing
parameter = 5

Table 12 NMI at different time steps of the SYNFIX network with the mixing parameter = 5

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Proposed Method 0.79 0.83 0.78 0.81 0.83 0.83 0.84 0.84 0.82 0.84

GLmetric 0.75 0.80 0.77 0.81 0.82 0.80 0.81 0.80 0.80 0.81

MDOA 0.79 0.80 0.78 0.80 0.82 0.83 0.84 0.84 0.82 0.83

DYNMOGA 0.68 0.75 0.74 0.78 0.75 0.77 0.78 0.75 0.76 0.77

DOCET 0.77 0.80 0.77 0.76 0.80 0.80 0.81 0.79 0.81 0.83

FacetNet 0.18 0.19 0.19 0.20 0.20 0.21 0.21 0.22 0.23 0.25

Table 13 Q at different time steps of the SYNFIX network with the mixing parameter = 5

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Proposed Method 0.67 0.66 0.65 0.68 0.81 0.74 0.76 0.66 0.65 0.64

GLmetric 0.51 0.43 0.44 0.43 0.33 0.38 0.37 0.36 0.51 0.59

DYNMOGA 0.29 0.29 0.38 0.39 0.40 0.41 0.40 0.41 0.38 0.41

DOCET 0.58 0.59 0.63 0.65 0.74 0.65 0.58 0.60 0.58 0.58

FacetNet 0.24 0.23 0.22 0.23 0.21 0.21 0.27 0.21 0.24 0.22
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Fig. 11 Plot of NMI at different
time steps of the SYNVAR
network with the mixing
parameter = 3

Fig. 12 Plot of Q at different
time steps of the SYNVAR
network with the mixing
parameter= 3

Table 14 NMI at different time steps of the SYNVAR network with the mixing parameter = 3

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Proposed Method 0.93 0.93 0.93 0.93 0.90 0.89 0.92 0.92 0.93 0.94

GLmetric 0.90 0.91 0.91 0.91 0.87 0.88 0.91 0.92 0.93 0.93

DYNMOGA 0.88 0.90 0.91 0.90 0.96 0.87 0.90 0.92 0.92 0.92

DOCET 0.90 0.92 0.92 0.89 0.88 0.89 0.91 0.92 0.91 0.93

FacetNet 0.63 0.61 0.67 0.68 0.65 0.61 0.62 0.63 0.69 0.68
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Table 15 Q at different time steps of the SYNVAR network with the mixing parameter = 3

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Proposed Method 0.78 0.76 0.76 0.74 0.77 0.78 0.79 0.70 0.80 0.80
GLmetric 0.48 0.44 0.40 0.50 0.49 0.43 0.46 0.44 0.53 0.46
DYNMOGA 0.68 0.69 0.70 0.70 0.69 0.70 0.70 0.70 0.69 0.68
DOCET 0.75 0.73 0.73 0.77 0.77 0.75 0.78 0.78 0.80 0.79
FacetNet 0.39 0.39 0.38 0.37 0.40 0.40 0.36 0.36 0.39 0.38

Fig. 13 Plot of NMI at different time steps of the SYNVAR network with the mixing parameter = 5

Fig. 14 Plot of Q at different
time steps of the SYNVAR
network with the mixing
parameter = 5
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Table 16 NMI at different time steps of the SYNVAR network with the mixing parameter = 5

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Proposed Method 0.90 0.89 0.89 0.90 0.82 0.83 0.86 0.87 0.92 0.92
GLmetric 0.83 0.87 0.87 0.86 0.79 0.79 0.85 0.86 0.90 0.91
DYNMOGA 0.80 0.85 0.85 0.84 0.78 0.78 0.84 0.85 0.87 0.90
DOCET 0.83 0.88 0.88 0.86 0.82 0.84 0.85 0.85 0.89 0.91
FacetNet 0.19 0.18 0.18 0.19 0.17 0.19 0.18 0.17 0.37 0.18

Table 17 Q at different time steps of the SYNVAR network with the mixing parameter = 5

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Proposed Method 0.78 0.78 0.74 0.72 0.74 0.74 0.75 0.75 0.75 0.74
GLmetric 0.41 0.48 0.41 0.40 0.32 0.33 0.36 0.42 0.56 0.51
DYNMOGA 0.59 0.59 0.58 0.56 0.42 0.37 0.40 0.50 0.59 0.61
DOCET 0.73 0.72 0.72 0.71 0.69 0.68 0.69 0.70 0.68 0.67
FacetNet 0.32 0.35 0.1831 0.30 0.25 0.24 0.27 0.35 0.36 0.37

Table 18 the NMI values of the proposed method on some synthetic dynamic datasets

#1 #2 #3 #4 #5

Birth/Death 0.55388 0.60942 0.644059 0.665857 0.678459
Expand 0.648238 0.682482 0.685829 0.684937 0.881563
Hide 0.666853 0.601622 0.598658 0.603874 0.615580
Merge/Split 0.595148 0.582653 0.569135 0.524036 0.603720

Table 19 the Q values of the proposed method on some synthetic dynamic datasets

#1 #2 #3 #4 #5

Birth/Death 0.814393 0.821583 0.826620 0.816604 0.810907
Expand 0.921583 0.913534 0.919675 0.878913 0.920352
Hide 0.967412 0.962886 0.954216 0.955331 0.950586
Merge/Split 0.9191543 0.951727 0.951823 0.936478 0.919791

Fig. 15 Plot of NMI results on dynamic football dataset
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Fig. 16 Plot of Q at different
time steps of the dynamic
football data set

In the dynamic football dataset (Figs. 15, 16 and
Tables 20 and 21), instead of creating the Reversely
Reachable sets three times for each of the three snapshots,
we only created it once for the first snapshot. We then
compared the similarity of the first snapshot with the other
two snapshots using the deep neural network. Since their
similarity was higher than the threshold, we did not need
to update new RR sets for other snapshots, and the first
snapshot’s RR sets were used to detect the communities in
second and third snapshots.

In the Facebook dataset (Figs. 17, 18 and Tables 22
and 23), Reversely Reachable sets were made for the
first snapshot and updated for the 4h snapshot. As a
result, by only building the RR sets once and updating
them one time, we were able to detect communities of 6
snapshots.

Table 20 NMI at different time steps of the dynamic football dataset

Snapshot 1 Snapshot 2 Snapshot 3

2005 2006 2007

Proposed method 0.92 0.90 0.91
GLmetric 0.60 0.59 0.60
DYNMOGA 0.57 0.57 0.58
DOCET 0.72 0.73 0.75
FacetNet 0.79 0.90 0.99

4.4.3 Computational complexity analysis

In this section, we analyze the computational complexity
of the proposed method. In the first phase of the proposed
method, we used the technique proposed in reference [8] to
solve the concern of Computational complexity. The HLCD
algorithm is also implemented in three stages, according
to the author’s analysis; the complexity of the first stage,
O(Kn2) where k is the maximum degree of the graph and
n is the number of nodes. In the second step, the maximum
complexity is O(c2), where c is the number of detected
communities. In the third step of the HLCD, the maximum
complexity is O(nc), where n is the number of nodes and
c is the number of communities. In the development of the
algorithm to the dynamic network, only the training phase
of the Convolutional Auto Encoder network takes a little
time, and after the first training, the network compares the

Table 21 Q at different time steps of the dynamic football dataset

Snapshot 1 Snapshot 2 Snapshot 3

2005 2006 2007

Proposed method 0.9 0.95 0.96
GLmetric 0.91 0.84 0.90
DYNMOGA 0.59 0.59 0.59
DOCET 0.93 0.95 0.92
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Fig. 17 Plot of NMI at different time steps of the dynamic facebook network

Fig. 18 Plot of Q at different time steps of the dynamic facebook data set

Table 22 The NMI results on
dynamic facebook network #1 #2 #3 #4 #5 #6

Proposed Method 0.90 0.89 0.89 0.87 0.92 0.92

GLmetric 0.83 0.87 0.87 0.86 0.90 0.91

DYNMOGA 0.80 0.85 0.85 0.85 0.87 0.90

FacetNet 0.19 0.18 0.18 0.17 0.17 0.18
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Table 23 Q at different time
steps of the facebook dynamic
network

#1 #2 #3 #4 #5 #6

Proposed Method 0.70 0.60 0.56 0.57 0.63 0.70

GLmetric 0.56 0.58 0.52 0.46 0.50 0.54

DOCET 0.70 0.60 0.50 0.53 0.60 0.66

two snapshots in a fraction of a second, which is not a time-
consuming process. It can be seen that there is no concern
in the computational complexity with the techniques used in
this method.

5 Conclusion

The main purpose of this article was to provide a
new method to more accurately solve the problems
of community detection in social networks. We used
the concept of influential nodes from the influence
maximization area to find the optimal initial nodes, which
are a critical phase in the algorithms of the local approach
in the community detection area. We tried to prove that
the proposed approach was efficient in algorithms of the
local approach to detect communities, and the experimental
results confirmed this in both static and dynamic networks.
From another perspective, most community detection
algorithms only use either global or local information to
detect communities, but in the proposed method, we used
both local and global information, taking advantage of both.
Yet, extending this approach to dynamic networks was
time-consuming. We tackled this problem by introducing a
new method, a deep neural network that was designed to
calculate the similarity of two snapshots, which enabled us
to decide on the RR sets and Initial nodes of each snapshot.

We can define a new cost function for the neural
network for future works. We can also use other influence
maximization algorithms or even other concepts of other
areas in social network analysis and compare them with our
method. We can use this method as an extension for other
community detection algorithms that use seed set to detect
communities more accurately.
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