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Abstract
Multi-view co-clustering, which clustering the two dimensions of samples and features of multi-view data at the same
time, has attracted much attention in recent years. It aims to exploit the duality of multi-view data to get better clustering
results. However, most of the existing multi-view co-clustering algorithms consider the sample-feature information of the
data while ignoring the sample-sample, feature-feature information, and thus cannot fully mine the potential information
contained in the data. Therefore, this paper proposes a multi-view co-clustering based on multi-similarity. In particular,
based on spectral clustering, we propose a method of constructing graph to improve the performance of clustering, which
is no longer limited to the relevance between samples and features. At the same time, inspired by the ensemble algorithm,
we use multiple co-clustering algorithms to calculate the similarity information of each view data, which makes the
algorithm more robust. Compared with the existing multi-view co-clustering methods, the proposed algorithm exploits the
more comprehensive similarity information in each view data, including sample-sample, feature-feature, and sample-feature
similarity information. We performed experiments on several benchmark datasets. Due to mining and using more similarity
information, our experimental results are better than the comparison method in the three evaluation indicators. In particular,
on some data with co-occurrence features such as (word-document), our algorithm achieves better results and can obtain
higher accuracy.

Keywords Multi-view clustering · Co-clustering · Similarity · Ensemble

1 Introduction

Co-clustering, also known as bi-clustering or two-way
clustering, is a proposed clustering method for data with
dual characteristics [1–4]. In contrast to conventional
clustering, co-clustering can simultaneously cluster samples
and features to investigate local patterns in a data matrix.
Because of the duality of data, co-clustering has been
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applied in many fields. In document clustering, for instance,
similar documents often correspond to similar topics. Co-
clustering aims to explore similar documents on similar
topics [1]. In movie recommendation, users with the same
interests often provide the same scores for the same type of
movies, and co-clustering aims to explore the user groups
who like or dislike similar movies [5]. In recent decades,
many co-clustering methods based on various theories
have been proposed, such as the graph theory-based co-
clustering method [1], a new clustering technique based on
information theory [4], method for co-clustering based on
matrix factorization [6], etc.

Nowadays, a growing number of datasets are collected
from various sources or represented from various perspec-
tives. For example, documents can be described in multiple
languages [7]. Images can be described by the feature sets
extracted by various feature extractors, including HOG,
LBP, SIFT, GIST, etc [8]. A web page can be represented
by the page’s content as well as by the content of a hyper-
link leading to the page [9]. Each description is referred to
as a ‘view’, and each view describes the same thing, but
from a different perspective, with the information between
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views tending to be complementary. Mult-view learning is a
significant area of research in machine learning, and it has
been widely implemented in applications such as recom-
mendation systems [10]. In recent years, researchers have
successfully applied multi-view learning to other fields,
including the discovery of the association between diseases
and miRNAs [11].

Multi-view clustering [12] aims to use the complemen-
tary information between views to produce more precise and
robust clustering results. In order to make full use of the
complementarity of multiple views, some researchers have
proposed methods such as co-regularization [13] and co-
training [14]. Several multi-view weighted fusion methods
have been proposed to account for the varying impor-
tance of the information in each view [15–17]. Compared
with single-view clustering, the multi-view clustering algo-
rithm achieves better clustering results. At the same time,
multi-view clustering has also achieved many applications,
such as image classification and text classification [7].
Recently, researchers have applied it to Alzheimer’s disease
diagnosis [18].

Most existing multi-view clustering is based on the
sample dimension, and ignores the duality of data,
such as the co-occurrence between samples and features.
Considering the benefits of co-clustering, researchers
have developed a multi-view co-clustering algorithm in
recent years [19–21]. Compared to conventional multi-view
clustering, multi-view co-clustering simultaneously clusters
the two dimensions (sample and feature) of multi-view data,
further mines the latent information in the data, and achieves
superior clustering results.

Although some multi-view co-clustering algorithms have
been proposed to take advantage of the duality of data, most
of them focus only on the co-occurrence characteristics
between samples and features, and they do not account for
sample-sample and feature-feature relationship information,
which may limit their performance. For instance, the
multi-view co-clustering algorithm based on a bipartite
graph [19] uses the original data of each view to build a
bipartite graph for each view, and then employs the spectral
clustering algorithm to obtain clustering results. Obviously,
it does not consider the similarity information between
sample-sample and feature-feature. In fact, all information
contributes to the clustering results [22, 23]. If only the
information between samples and features is considered,
the data’s potential information is not fully mined and
utilized, thereby limiting the clustering performance.
Therefore, all information between the data should be fully
considered.

In this paper, we propose a multi-view co-clustering
algorithm based on multi-similarity to maximize the use
of similarity information between data and features. The
main idea of our proposed algorithm is illustrated in
Fig. 1. Firstly, considering the strong robustness of the
ensemble algorithm, we use the ensemble method to
calculate the sample-sample, feature-feature, and sample-
feature three similarity matrices for each view data, and
use them to build a graph. The objective is to fully exploit
the data’s potential information for subsequent spectral
clustering. Then, in order to distinguish the significance of
each view, multi-view weighted fusion [17] and spectral
clustering are performed on the graphs corresponding to the

Fig. 1 The proposed MVCCMS
algorithm framework. First, the
multiple co-clustering methods
are applied to each view to
obtain multiple co-clustering
results, which include sample
clustering results and feature
clustering results. Then, based
on the results of multiple co-
clustering, multiple similarities
are calculated, a hybrid graph is
constructed according to it, and
the hybrid graphs of multiple
views are weighted and fused to
form a comprehensive graph.
Finally, the clustering results for
the comprehensive graph are
obtained via spectral clustering.
At the same time, the results are
used to update the weight of
each view, and then update the
clustering results. In this way, it
is updated iteratively until
convergence
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multiple views. The main contributions of this paper are as
follows:

• A multi-view co-clustering algorithm based on multi-
similarity is proposed, which can fully mines the latent
information contained in the data.

• Based on spectral clustering, a method is proposed for
constructing a data graph for multi-view co-clustering
that is not restricted to the relevance between samples
and features.

• Experiments on several benchmark datasets demon-
strate the superiority of the proposed method.

2 Related work

Co-clustering can simultaneously cluster data along two
dimensions. BGSP [3] employs spectral clustering [24] to
solve the clustering of word-documents. In this method,
both the document and the word are considered graph nodes,
and a bipartite graph is subsequently constructed. The word
frequency information is regarded as the weight of the edge
between the two corresponding nodes, and the document
and the corresponding word are then clustered together.

Multi-view clustering is an important problem in the field
of machine learning. The practice of weighted multi-view
clustering is to assign a weight to each view to represent
the importance of the view. The paper [25] proposes
a kernel-based weighted multi-view clustering method,
whereas [16] proposes a weighted strategy based on deep
matrix factorization. In spectral clustering-based methods,
[17] proposed a spectral clustering-based framework for
weighted multi-view learning. The weight of each view
depends on the objective function of its spectral clustering,
and its main advantage is that it does not require any
hyperparameter tuning.

To exploit the duality of data, [20] proposed a multi-
view co-clustering method based on information theory, and
it extended the information-theoretic based co-clustering
method [4] to multi-view. However, certain prior knowledge
is required. A weighted multi-view co-clustering algorithm
for sparse data is proposed in [26]. However, it only
calculates the similarity between samples-samples and
features-features, ignoring the similarity between samples-
features. Huang et al. [19] applied the multi-view weighted
fusion framework proposed by [17] to multi-view co-
clustering. Thus, a bipartite graph is constructed using the
original data of each view, and the weight of each view
is determined based on the spectral clustering objective
function of each view before weighted multi-view fusion
is performed. Finally, spectral clustering is performed on
the fused graph. However, because it builds a bipartite
graph, it only considers the relevant information between

samples and features, ignoring the information between
samples-samples and features-features.

Inspired by the above work, this paper proposes a
multi-view co-clustering algorithm with multi-similarity
(MVCCMS) that applies the ensemble method to multi-
view learning and fully exploits the multiple similarity
information of each view data.

3 Proposedmethod

This section starts by reviewing spectral co-clustering and
multi-view co-clustering using bipartite graphs. Then, we
describe how to use ensemble algorithms to compute
similarity and construct hybrid graphs. Finally, we present
the algorithm’s objective function.

3.1 Spectral co-clustering

Spectral clustering is a clustering method based on graph
theory that is commonly employed to solve the co-clustering
problem [2, 3, 27, 28]. It represents the data as nodes
in a graph, with the weight of the edges between them
representing their similarity. The higher the weight, the
greater the likelihood that the data represented by the two
nodes belong to the same category. Assume that the input
data is X ∈ Rn×d , which means that there are n samples
and each sample has d features. Graph G = (S, F, W)

represents the bipartite graph between the constructed
samples and features, S = {S1, S2, ..., Sn} is the node set
representing the sample, F = {F1, F2, ..., Fd} is the node
set representing the feature, and the value of W represents
the weight of the edges between the nodes. Consider X as
the weight matrix of the graph,Xij as the weight of the edge
between node i(i-th sample) and node j (j -th feature), and
consider X as the weight matrix of G and W as follows:

W =
[
0 X

XT 0

]
. (1)

The problem is then transformed into the graph G node
partition problem. The objective of partitioning is to
maximize the weight of edges within each subgraph while
minimizing the weight of edges between subgraphs. The
objective of spectral clustering is to identify the graph’s
minimum standard tangent, and its objective function can be
expressed as follows:

min
P

∑
i,j

Wij || Pi − −Pj ||2 (2)

P is the indicator matrix:

P =
[
Pr

Pc

]
(3)
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where Pr ∈ Rn×k and Pc ∈ Rd×k represent the partitioning
results of samples and features vertex set (k is the number
of clusters), respectively. If the i-th node belongs to the j -
th cluster, Pij = 1, otherwise, Pij = 0. Since solving the
above problem is an NP-Hard problem, the constraint of P

is generally relaxed to P T P = I . Then, the above problem
will be converted to the optimal solution of the following
formula:

min
P

T r(P T LP ) s.t .P T P = I, (4)

whereL represents the Laplace matrix of the graph,L = D−
W, D is the degree matrix, and Dii = ∑

j Wij . According
to [22] and [28], P can be obtained by calculating eigen-
values. Finally, traditional clustering methods, such as k-
means, were applied to P to obtain clustering labels.

3.2 Multi-view co-clustering with bipartite graph

Given a multi-view data {X(1), X(2), ..., X(v)}, where v

represents the number of views. The multi-view co-
clustering algorithm based on spectral clustering [19]
constructs a bipartite graph for each view, and then, multiple
graphs are fused into one graph, and the final result is
obtained by spectral clustering. Its objective function can be
expressed as follows:

min
P

v∑
q=1

α(q)T r(P T L(q)P ) s.t .P T P = I, (5)

where

α(q) = 1

2
√

T r(P T L(q)P )
, (6)

The indicator matrix P is enforced to be a unified one across
all the views. The Laplace matrix of the bipartite graph
corresponding to the q-th view is: L(q) = D(q) − W(q),
where W(q) is the adjacency matrix of the bipartite graph
corresponding to the q-th view, same as (1), W(q) can be
expressed as:

W(q) =
[

0 X(q)

X(q)T 0

]
. (7)

and D
(q)
ii = ∑

j W
(q)
ij is its corresponding degree matrix.

Since P is public, the solution translates to:

min
P

T r

⎛
⎝P T

v∑
q=1

α(q)L(q)P

⎞
⎠ s.t .P T P = I . (8)

According to (6), we use the obtained P to update α, and
update P according to (8). Then, iteratively update until
convergence. To sum up, the process of the algorithm is: 1)
initialize the weight α of each view and obtain the bipartite
graph adjacency matrix of each view according to (7), 2)
obtain P according to (8), 3) update α according to (6) , 4)

repeat steps 2) and 3) until convergence. Concurrently, the
author provides a convergence analysis.

Obviously, the weight matrix for the preceding method
is the original data. At the same time, the weights between
samples (sample-sample) and between features (feature-
feature) are 0, that is, the similarity information between
them is not considered. On the basis of this, we propose
a multi-view co-clustering algorithm based on multi-
similarity that takes into account all graph connections and
converts a bipartite graph into a hybrid graph.

3.3 Similarity calculation

Co-clustering ensemble aims to produce more robust
results by combining multiple base co-clustering methods.
Let R

(q)

1 , R
(q)

2 , ..., R(q)
l (C

(q)

1 , C
(q)

2 , ..., C(q)
l ) represent the

sample (feature) clustering indicator matrix of the q-th view
produced by l base co-clustering methods. The purpose
of the co-clustering ensemble is to combine l results to
obtain a more robust result R(q)∗(C(q)∗). In this paper,
we use the ensemble method to obtain the similarity
information between the two dimensions of the data matrix,
including the feature-feature, sample-sample, and sample-
feature similarity matrices, and use this information as the
weight matrix.

In order to better represent the samples-features similar-
ity, we proposed a clustering ensemble method based on
[29]. This method indicate that the clustering results of the
sample depend on the local feature set (a subspace). Accord-
ing to the multiple clustering results, a basic probability
matrix is constructed to represent the probability of each
feature providing information for each sample. Finally, the
final result is computed based on the matrix. The probability
matrix of the q-th view data is calculated as follows:

(
S

(q)
sf

)
m′,n′ = 1

l

l∑
l′=1

d∑
d ′=1

(
R

(q)

l′
)T

d ′,m′

(
C

(q)

l′
)T

d ′,n′ (9)

Since this matrix contains the relevant information between
samples and features, we use it as the weight of the
edge between samples and feature nodes in the spectral
clustering, i.e., the degree of similarity between samples and
features. At the same time, we introduceMean Sum-squared
Residue (MSR) [30] in the process of ensemble to evaluate
the results obtained by the co-clustering method. Given a
co-clustering block X, the MSR of X can be calculated as
follows:

MSR(XIJ ) = 1

| I |
1

| J |
∑

i∈I,j∈J

(xij − xiJ − xIj + xIJ )2

(10)
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where xiJ represents the average value of row I , xIj

represents the average value of column J , and xIJ

represents the average value of the whole population. The
smaller the MSR, the higher the relevance for the result
obtained by the base co-clustering method. Conversely, the
larger the MSR, the lower the relevance. Thus, a sample-
feature correlation matrix � ∈ Rk×d is defined, where
�k′,d ′ = exp(−MSRk′,d ′), in this case, a larger value�k′,d ′
indicates a higher feature-sample relevance. By combining
the information from all base co-cluster solutions, we can
define the following sample-feature association matrix:

(S
(q)
sf )m′,n′ = 1

l

l∑
l′=1

k∑
k′=1

d∑
d ′=1

(
R

(q)

l′
)T

d ′,m′

(
�

(q)

l′
)

k′,d ′

(
C

(q)

l′
)T

d ′,n′

(11)

As the (�
(q)

l′ )k′,d ′ represent the l′-th co-clustering method
(k′, d ′) co-clustering block samples–feature relevance.

Most co-clustering algorithms only consider the similar-
ity information between samples and features. According to
[22], the mutual information between samples and between
features also contributes to the results of co-clustering.
Traditional clustering algorithms, such as k-means, only
consider the similarity between samples, i.e., the similar-
ity along the feature dimension. In contrast to conventional
clustering, we take into account the similarity between fea-
tures in addition to the similarity between samples. Inspir-
ing by the calculation method of sample-feature similarity
described in PCE [29] and the CSPA algorithm in [31],
the similarity is defined as the clustering proportion of two
objects in the same cluster, and the similarity calculation
formula is obtained:

S
(q)
ss = 1

l

l∑
l′=1

R
(q)

l′ ∗
(
R

(q)

l′
)T

(12)

S
(q)
ff = 1

l

l∑
l′=1

C
(q)

l′ ∗
(
C

(q)

l′
)T

(13)

where Sss represents the similarity between samples, and
Sff represents the similarity between features.

3.4 Objective function

After calculating the similarity matrix, the three matrices are
combined to form the adjacency matrix of the mixed graph,
and the data graph of the data matrix is constructed. That is:

M(q) =
[

S
(q)
ss S

(q)
sf

S
(q)
sf

T
S

(q)
ff

]
(14)

In [19], S
(q)
ss = S

(q)
ff = 0, which indicates that it directly

ignores this part of information. In contrast, we fully

Algorithm 1 MVCCMS.

consider all relevant information between samples and
features, resulting in an ideal clustering result. After
constructing the data graph for each view, the spectral
clustering objective function for each view can be obtained
as follows:

F (q) = T r(P T L(q)P ) s.t .P T P = I, (15)

where L(q) = D(q) −M(q). The objective function of multi-
view clustering is as follows:

v∑
q=1

F (q) =
v∑

q=1

T r(P T L(q)P ) (16)

where L(q) = D(q) − M(q).
According to (6), the weight of each view is obtained,

and the final problem is converted into solving the optimal
solution of the following objective function:

min
P

T r(P T L̃P ) (17)

where,

L̃ =
v∑

q=1

α(q)L(q) (18)

The optimal solution is the eigenvector corresponding to the
minimum k eigenvalues of L̃ . According to [17], use the
result to update the weights, which will eventually converge.

Figure 1 illustrates the overall MVCCMS framework and
the flow of the whole algorithm is as Algorithm 1.
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Table 1 Time and space
complexity comparison
of multi-view clustering
algorithms based on spectral
clustering

Methods Time complexity Space complexity

BiMVCC [19] O(t(n + d)3) O(v(n + d)2 + k(n + d) + v)

GBS [32] O(t(vn2 + n3)) O(vn2 + kn + v)

GFSC [33] O(t · n3) O(vn2 + kn + v)

GMC [34] O(((mc + mn + k + kn)n)t + mncd) O(vn2 + kn + v)

MCLES [35] O((
∑v

q=1 d(v))2d + n3 + d3 + kn2) O(n2 + ∑v
i did + dn + kn)

MVCCMS (our) O(v · ∑
i O(fi) + O(t · (n + d)3)) O(v(n + d)2 + k(n + d) + v)

Where, k is the number of clusters (MCLES), d is the minimum value of feature dimension in all views, c is
the number of neighbors, t is the number of iterations

3.5 Time and space complexity analysis

The time complexity of the MVCCMS algorithm is mainly
divided into two parts. The first component is the time
complexity of similarity calculation. For each view, the time
complexity of this part is

∑
i O(fi). The second component

is the spectral clustering, and its time complexity is O((n +
d)3). Assuming t is the number of iterations, the total time
complexity is O(v · ∑

i O(fi) + O(t · (n + d)3)).
Similarity calculation is related to the selected inte-

gration algorithm. However, spectral clustering usually
requires O(n3) time complexity to solve the eigenvec-
tor, which is a disadvantage of spectral clustering. The
time and space complexity of some related algorithms
based on spectral clustering is compared in Table 1. More
specifically:

• BiMVCC [19]: Compared with our algorithm, this
algorithm does not use similarity calculation. But it
directly uses the original data as the similarity, so the
time complexity is O((n + d)3).

• GBS [32]: The algorithm is divided into three parts:
graph construction, graph fusion, and data clustering.
The time complexity of graph construction and graph
fusion is O(n2), and the time complexity of data
clustering is O(t(vn2 + n3)). It makes the time
complexity is O(t(vn2 + n3)).

• GFSC [33], GMC [34], and MCLES [35]: The time
complexity analysis of these algorithms can be found in
their papers.

For space complexity:

• GBS, GMC, and GFSC are all composed of three
section: 1) The similarity matrix of each view is
O(vn2). 2) The indicator matrix of spectral clustering
is O(kn). 3) The weight of each view is O(v). So, the
space complexity is O(vn2 + kn + v).

• MCLES consists of four section: 1) Global similarity
matrix, which is O(n2). 2) Mapping matrix of
each view, which is O(

∑v
i did). 3) Potential space

representation, which is O(dn). 4) Indicator matrix

of spectral clustering, which is O(kn). So, the space
complexity is O(n2 + ∑v

i did + dn + kn).
• BIMVCC and our method (MVCCMS) are composed

of three section: 1) The similarity matrix or Laplace
matrix of each view, which is O((n + d)2). 2) The
spectral clustering indicator matrix, which is O(k(n +
d)). 3) The weight of each view, which is O(v). So, the
space complexity is O(v(n + d)2 + k(n + d) + v).

It can be seen that all algorithms using spectral clustering
have at least O(n3) time complexity and O(n2) space
complexity. In our algorithm, we found through experiments
(Section 4.5) that our algorithm has fewer iterations, which
can reduce the number of using spectral clustering to reduce
the computational complexity. Therefore, the scalability
of this kind of algorithm, that is, the problem of high
computational complexity, needs to be solved.

4 Experiment

In this section, extensive multi-view data experiments are
conducted to demonstrate the effectiveness of our proposed
MVCCMS.

4.1 Dataset

To evaluate the effectiveness of this method, we conducted
experiments on three text datasets and one image dataset
containing common multi-view data. The dataset is
described below, and its size is displayed in Table 2.

• Caltech101 20:1 A dataset of images for object
recognition is divided into 101 categories [36], with
each image represented by six sets of features: Gabor,
Wavelet Moments, Centrist, HOG, GIST, and LBP. In
this experiment, a subset of 2386 images, including
20 classes, Face, Motorbike, DollaBill, Garfield,
Snoopy, Leopards, Binocular, Brain, Camera, CarSide,
Ferry, Hedgehog, Pagoda, Rhino, Stapler, Stop-Sign,

1http://www.vision.caltech.edu/Image Datasets/Caltech101/.
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Table 2 The dimension of each view

Datasets n k v Dimension

Caltech101 20 2386 20 6 [48,40,254,1984,512,928]

Cornell 195 5 2 [195,1703]

Reuters 1200 6 4 [2000,2000,2000,20000]

Source3 30000 3 2 [3560,3631,3068]

n represents the number of samples, k represents the number of
clusters, and v represents the number of views

WaterLilly, Windsor-Chair, Wrench and Yinyang is
chosen. This subset is also known as Caltech101 20.

• Cornell:2 A subset of the WebKB dataset [37], widely
used for multi-view learning. It contains 195 web pages
collected from Cornell University. In the content view,
each page is represented by 1703 words, and in the
referenced links view, each page is represented by 195
referenced links. The 195 pages were divided into 5
categories: student, project, course, staff and faculty.

• Reuters:3 A text multi-view dataset consists of six
categories, with each document translated into five
languages and each language considered a view. In this
experiment, text data in four languages and four views
are selected.

• Source3:4 A multi-view text corpus contains 169 news
reports, each with descriptions from three websites;
thus, there are 169 samples and three views, of which
two are chosen for this experiment.

Inspired by the weighted clustering strategy, we prepro-
cessed the datasets and selected the data’s features using the
classical unsupervised feature selection method [38]. The
main purposes are as follows:

• The most effective features are selected to improve the
clustering effect and reduce the calculation time.

• Unify the number of features of all view data, that is,
select the same number of features for each view, so as
to facilitate the smooth fusion of multiple views.

For convenience, we select the number of features d as
the smallest number of features in all views, that is, d =
min{d(1), d(2), ..., d(v)}. At the same time, the processed
datasets are also used as input to the comparison method for
a fair comparison.

4.2 Methods and evaluationmetrics

In order to evaluate the efficacy of the proposed method, it
was compared to seven multi-view and single-view spectral

2http://lig-membres.imag.fr/grimal/data.html.
3http://archive.ics.uci.edu/ml/datasets.html.
4http://mlg.ucd.ie/datasets/3sources.html.

clustering algorithms, including two older algorithms
[13, 14] and five more recent algorithms. As the base co-
clustering methods, we choose NetBC [39], LAC [40] and,
SCC (Spectral Co-Clustering).

• BiMVCC: BiMVCC is a multi-view co-clustering
algorithm based on spectral clustering [19]. It applies
the multi-view learning framework in [17] to multi-
view co-clustering without setting parameters.

• GMC: A multi-view clustering algorithm based on
graph theory [34]. A parameter must be set, which can
be automatically learned by the algorithm.

• Co-reg: A multi-view clustering method based on
spectral clustering [13]. It assumes that there are the
same cluster members among views, and accomplishes
this goal through co-regularized clustering.

• Co-Training: A semi-supervised multi-view clustering
method [14]. It assumes that regardless of the view, a
point will be assigned to the same cluster by the actual
underlying cluster.

• GBS: A multi-view clustering method based on graph
theory [32]. It extracts the data feature matrices of each
view, constructs the graph matrices of all views, and
combines the constructed graph matrices to produce
a unified graph matrix, in order to achieve the final
clustering. Parameters are set to the best parameters
given in the original paper.

• GFSC: A model for multi-view spectral clustering
[33], that performs multi-view fusion and spectral
clustering concurrently. The fusion graph approximates
the original graph for each individual view, but
maintains an explicit clustering structure. Its parameters
are modified in accordance with the method described
in the paper.

• MCLES: A multi-view clustering method for learning
global structure from a multi-view data that can
effectively exploit potential embedded representations
of complementary information from different views
[35]. The parameters are set to the optimal values
specified in the paper.

Each algorithm was executed ten times on each dataset with
the best parameters, and the mean and standard deviation of
its Accuracy (Acc), Normalized Mutual Information (NMI)
and Adjusted Rand Index (ARI) values were recorded. The
higher the value of each of the four evaluation indices, the
better the clustering effect.

The formula for calculating Acc is as (19):

ACC = 1

n

n∑
i=1

yi = map(ŷi) (19)

where yi represents the predicted class label, ŷi is the
true label, and map(·) represents the Hungarian matching
algorithm [41].
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The formula for calculating NMI is as (20):

NMI =
2 · ∑

y∈Y,ŷ∈Ŷ
p(y, ŷ) log

(
p(y,ŷ)

p(y)p(ŷ)

)

H(Y) + H(Ŷ )
(20)

where y and ŷ denote two clusters labels, Y and Ŷ are their
clusters sets, p(·) represents a marginal probability mass
function, p(y, ŷ) denotes a joint probability mass function
of Y and Ŷ , and H(·) represents an entropy.

The formula for calculating ARI is as (21):

ARI =
∑

ij

(
nij

2

)
−

[∑
i

(
ai

2

)∑
j

(
bj

2

)]
/

(
n
2

)

1
2

[∑
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(
ai

2

)
+ ∑
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(
bj

2

)]
−

[∑
i

(
ai

2

) ∑
j

(
bj

2

)]
/

(
n
2

)

(21)

where n represents the total number of samples, nij denotes
the number of samples which belongs to i-th cluster and j -
th class in the true label, ai is the number of samples in i-th
cluster, and bj is the number of samples in j -th class in true
label. A larger ARI indicates a more satisfactory clustering
solution.

4.3 Results

The experiment results of all methods on the four data
sets are shown in Tables 3, 4, 5, and 6. The values in
the table represent the mean and standard deviation of
Acc,NMI and ARI derived from many simulations (the
best results are boldface). The mean value and standard
deviation reflect the algorithm’s precision and consistency,
respectively. Note that the result of the MCLES algorithm in

Table 3 Clustering result in terms of Acc, NMI, and ARI on the
Caltech 20 dataset

Acc(%) NMI(%) ARI(%)

SCC(1) 31.02(1.04) 32.83(0.28) 15.60(0.11)

SCC(2) 32.91(1.59) 36.40(0.75) 22.40(1.25)

SCC(3) 36.40(0.75) 34.55(0.54) 16.22(0.79)

SCC(4) 38.65(0.70) 51.38(0.27) 33.26(0.63)

SCC(5) 32.54(1.35) 42.71(0.94) 27.29(1.45)

SCC(6) 33.85(0.68) 43.19(0.82) 26.14(0.88)

BiMVCC 47.74(1.70) 50.49(0.80) 33.10(1.48)

GMC 52.98(0.00) 50.43(0.00) 18.32(0.00)

coreg 36.04(3.40) 53.53(9.01) 25.90(0.60)

Cotrain 33.07(0.86) 52.18(0.21) 25.35(1.09)

MCLES null null null

GBS 52.98(0.00) 50.43(0.00) 18.32(0.00)

GFSC 44.51(1.07) 56.14(0.59) 37.03(0. 22)

MVCCMS 51.65(0.55) 46.10(0.31) 39.59(0.72)

Table 4 Clustering result in terms of Acc, NMI, and ARI on the
Cornell dataset

Acc(%) NMI(%) ARI(%)

SCC(1) 44.62(0.00) 6.47(0.00) 1.92(0.00)

SCC(2) 42.56(0.00) 10.00(0.00) 2.17(0.00)

BiMVCC 44.62(0.00) 3.75(0. 21) 2.63(0.21)

GMC 43.59(0.00) 23.10(0.00) 6.44(0.00)

Coreg 39.49(0.12) 11.07(0.17) 3.98(0.23)

Cotrain 42.56(0.10) 26.76(0.15) 16.52(0.25)

MCLES 37.44(0.00) 11.67(0.00) 3.75(0.00)

GBS 40.51(0.00) 3.18(0.00) 2.38(0.00)

GFSC 42.56(0.47) 6.87(0.36) 5.79(0.26)

MVCCMS 50.87(2.09) 35.77(1.20) 26.73(1.46)

the Caltech101 20 dataset is null, because the running time
is too long (more than 24 hours).

The above table shows the clustering effect of the method
in this paper is superior to most datasets. The proposed
frameworks exceed other algorithms significantly on all
datasets in terms of Acc and NMI. Our algorithm performs
better than the BiMVCC [19] algorithm, which only
considers the similarity of sample-feature, demonstrating
that multiple similarity information is superior to single
similarity information. Additionally, we can make the
following observations. First, clustering with multiple views
is better than clustering with a single view. This can be
determined by comparing the results of spectral clustering
for each view to the results of multi-view clustering. This
is due to the fact that the information between multiple
views is complementary, thereby enhancing the clustering
performance. Then, we can observe that this method
performs significantly better than other advanced methods

Table 5 Clustering result in terms of Acc, NMI, and ARI on Reuters
dataset

Acc(%) NMI(%) ARI(%)

SCC(1) 42.98(3.82) 23.48(2.74) 5.24(0.36)

SCC(2) 42.67(2.22) 25.06(2.07) 1.76(0.00)

SCC(3) 40.76(3.84) 21.53(2.60) 5.40(0.00)

SCC(4) 40.98(3.45) 21.95(2.51) 1.40(0.00)

BiMVCC 19.81(0.25) 6.64(0.27) 1.10(0.00)

GMC 19.91(0.00) 13.33(0. 00) 1.33(0.00)

Coreg 47.00(0.00) 27.30(0.00) 19.47(0.00)

Cotrain 35.25(0.90) 16.52(2.40) 12.08(1.20)

MCLES 37.17(0.00) 22.04(0.00) 14.16(0.00)

GBS 19.92(0.00) 13.33(0.00) 1.33(0.00)

GFSC 36.08(0.34) 19.81(0.37) 12.75(0.96)

MVCCMS 48.08(0.94) 30.05(0.77) 24.78(1.04)
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Table 6 Clustering result in terms of Acc, NMI, and ARI on Source3
dataset

Acc(%) NMI(%) ARI(%)

SCC(1) 60.95(1.68) 55.85(2.49) 48.86(1.80)

SCC(2) 60.36(5.86) 54.92(2.09) 49.13(2.45)

BiMVCC 73.37(0.00) 62.60(0.91) 59.91(3.03)

GMC 68.34(0.00) 61.26(0.00) 42.99(0.00)

Coreg 52.66(0.33) 42.12(0.87) 22.57(0.35)

Cotrain 59.17(0.16) 48.80(0.39) 31.33(0.28)

MCLES 62.13(0. 78) 58.96(3.40) 52.88(0.47)

GBS 67.46(0.00) 60.36(0.00) 41.66(0.00)

GFSC 36.39(0. 42) 5.97(0. 69) −1.20(0.20)

MVCCMS 73.76(0.68) 62.75(0.46) 59.54(1.68)

on three text data sets: Cornell, Source3 and Reuters. In
the Cornell dataset, for instance, the NMI value is 9%
greater than the second. Finally, we can observe that the
performance improvement on the image dataset is not so
obvious, and the improvement is limited compared with
other methods. One possible reason why the algorithm
works better on text datasets than on image datasets is that
text data has obvious co-occurrence characteristics, that is,
matrix elements represent the frequency of each word in
each document.

Consequently, the following experimental results can
be drawn: 1) Clustering with multiple views is more
effective than clustering with one view. 2) The algorithm’s
performance depends on the dataset to some degree, but
it is superior to other algorithms; 3) Integrating multiple

similarity information is superior to using the original data
directly as the graph’s adjacency matrix. To verify this
further, we conducted ablation experiments in Section 4.4.

4.4 Component analysis

To further validate the effectiveness of the algorithm,
we conducted ablation experiments, with sample-feature
similarity for clustering, sample-sample and feature-feature
similarity for clustering, and three similarities for clustering.
The results are presented in Table 7.

Through ablation experiments, we can observe that the
clustering performance is not significantly improved when
considering only one or two of these similarities (i.e.,
sample-feature, sample-sample, and feature-feature). When
all components are considered, clustering performance
on all datasets is enhanced. This demonstrates that
using multiple similarities to clustering is superior to
using a single similarity, which verifies the algorithm’s
effectiveness and explains that one of the reasons our
algorithm works so well is because it considers more
similarity data than previous algorithms.

4.5Weight change analysis

To verify that the algorithm can converge, we analyzed the
changes in the weight of each view throughout the iteration
process. The analysis results are shown in Fig. 2. Where the
horizontal axis represents the number of iterations, and the
vertical axis represents each weight’s value (The value of
each view weight is normalized, that is, the weight of the
i-th view is: wi∑v

j wj
).

Table 7 Ablation experiment
for MvCCMS dataset component Acc(%) NMI(%) ARI(%)

Caltech101 20 Ssf 44.20(0.76) 46.71(1.10) 31.12(2.18)

Sss + Sff 44.29(1.89) 46.29(0.98) 34.20(2.86)

Ssf + Sss + Sff 51.65(0.55) 46.10(0.31) 39.59(0.72)

Cornell Ssf 48.31(3.60) 32.81(2.76) 25.00(3.49)

Sss + Sff 49.53(2.91) 36.00(0.88) 25.24(3.00)

Ssf + Sss + Sff 50.87(2.09) 35.77(1.20) 26.73(1.46)

Reuters Ssf 48.42(1.05) 28.46(0.30) 23.46(0.57)

Sss + Sff 49.11(1.59) 28.89(1.04) 23.24(1.)

Ssf + Sss + Sff 48.08(0.94) 30.05(0.77) 24.78(1.04)

Source3 Ssf 71.15(0.70) 61.72(0.65) 58.30(0.76)

Sss + Sff 67.65(4.02) 59.06(1.86) 52.39(3.72)

Ssf + Sss + Sff 73.76(0.68) 62.75(0.46) 59.54(1.68)

The first column displays the dataset, the second column shows the components used for the ablation study,
and the columns that follow display the results of ablation experiments, with the best results highlighted in
boldface
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Fig. 2 The weight change curve of each view, the horizontal axis represents the number of iterations, and the vertical axis represents the weight
value

It can be seen that our algorithm can converge and the
speed is relatively fast. On the Caltech101 20, Cornell,
and Source3 datasets, convergence can be achieved in five
iterations, whereas on the Reuters dataset, convergence can
be achieved in only two iterations. The time required is
correspondingly reduced due to fewer iterations. At the
same time, during the iteration process, the weights of the
more important views will gradually increase. One possible
explanation is that we employ a the feature selection
algorithm to select the most essential features of each view.
Each view’s feature space is small, so convergence occurs
relatively quickly. Therefore, the weight change analysis
reveals that our algorithm possesses the characteristics of
rapid convergence, proving the algorithm’s effectiveness.

5 Conclusion

This paper proposes an automatic weighted multi-view co-
clustering method based on multi-similarity. The key idea is
to use ensemble algorithms to mine the multi-similarity of
data. Compared with the existing multi-view co-clustering
algorithms, our method has the following advantages: 1)
It considers multiple similarities in information between
the two dimensions of samples and features. Previous
multi-view clustering algorithms only considered the
similarity between samples, which limits the performance
of clustering. By contrast, we maximize the potential
information in multi-view data. These similarities contribute
to the computation of the co-clustering, which improves
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the clustering performance. 2) Our method calculates
similarity using an ensemble algorithm, which improves the
robustness of clustering. Meanwhile, MSR is introduced
to reduce the impact of poor base co-clusterings and get
a better similarity matrix. Experimental results on several
benchmark datasets indicate that the proposed MVCCMS
method is superior. At the same time, we also give
ablation experiments to verify the effectiveness of multiple
similarities. By analyzing the weight changes of each
view, we have determined that the algorithm has a faster
convergence speed, which reduces the amount of time spent
to some degree.

However, our algorithm has several shortcomings,
including: 1) While the ensemble method improves the
robustness, it also increases time complexity. Moreover,
the time complexity of spectral clustering is extremely
high. 2) The algorithm’s performance on image datasets
is subpar. In future work, we will attempt to resolve the
aforementioned issues. In addition to the above plans, we
still have the following ideas to try: 1) The neural network
is adept at feature extraction and nonlinear fitting. Learning
similarities between data based on neural networks might be
an idea to try. 2) In addition to co-occurring data, different
clustering techniques can be incorporated into multi-view
clustering of other data types.
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