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Abstract
We propose the representation of data from finite element car crash simulations in a graph database to empower analysis
approaches. The industrial perspective of this work is to narrow the gap between the uptake of modern machine learning
methods and the current computer-aided engineering-based vehicle development workflow. The main goals for the graph
representation are to achieve searchability and to enable pattern and trend investigations in the product development history.
In this context, we introduce features for car crash simulations to enrich the graph and to provide a summary overview of
the development stages. These features are based on the energy output of the finite element solver and, for example, enable
filtering of the input data by identifying essential components of the vehicle. Additionally, based on these features, we
propose fingerprints for simulation studies that assist in summarizing the exploration of the design space and facilitate cross-
platform as well as load-case comparisons. Furthermore, we combine the graph representation with energy features and use
a weighted heterogeneous graph visualization to identify outliers and cluster simulations according to their similarities. We
present results on data from the real-life development stages of an automotive company.

Keywords FE analysis · Automotive · Semantic data · Outlier detection · CAE knowledge · Knowledge graphs ·
Graph database · Heterogeneous graph

1 Introduction

In the past 30 years, the reliability of the finite element
(FE) method for predicting the crash behavior of vehicles
has steadily improved. FE modeling improvements resulted
in more and more detailed simulations with continuously
intensifying complexity of the data. Moreover, the growth of
computing power has increased the number of simulations.
Due to this data and complexity growth on the one hand and
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limited availability of engineering time on the other hand,
simulation result data is often unexplored.

Furthermore, the complexity and size of the simulation
data also prevent the direct application of most machine
learning (ML) methods on the simulation data, e.g., to
capture and detect patterns and trends. We also observe
that determining a simulation data representation based on
engineering principles, which in particular helps to quantify
crash behavior, is a largely unexplored research area.

Therefore, we propose a data representation approach
called vehicle knowledge graph (KG), car-graph in short,
which allows the discovery of patterns and trends in simula-
tion results. The visionary goal of the car-graph ansatz is to
extract a crash identity of the vehicle. A short-term outcome
is an assistance tool for engineers to efficiently explore
and evaluate data, e.g., from previous simulation studies in
different projects. The assistance functionality shall encom-
pass searchability and the capturing of patterns and trends,
while the aim is to support the prediction of outcomes or the
recommendation of solutions. To achieve this, we represent
crash simulation data in a graph database, including suit-
able physical properties, to generate a KG and to empower
graph-based ML algorithms.
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There are various options available for the selection
of physical properties from the different computer-aided
engineering (CAE) outputs. Most of these depend on
the simulation setups and are too costly for comparing
many simulations. Hence, we propose the usage of a
few scalar features stemming from the internal energy
(IE) of components, both in our graph representation of
simulation data and for the analysis of simulation results.
The fundamental physics of a crash accident is to absorb
the energy of the impact through structural deformations,
causing an increase in the IE. The close physical
connection of the IE properties to the crash problem and
their ease of use, with no need for further simulation pre-
processing, makes them a compelling candidate for further
investigations. First, we demonstrate the capability of the
IE features to capture the differences between simulations
with minor changes. Later we show that the chosen IE

features are characteristic enough for any given simulation
(with 10-12 million elements) to enable graph algorithms
to perform well with the comparatively small number of
simulation data (200-300).

Combined, we build the car-graph, focusing on the
internal energy in the CAE outputs. We introduce features
based on the IE, which allow visualizations that enable
the engineer to extract additional knowledge from and gain
insight into simulations. For example, one can study part
similarity, summarize development stages, or analyze crash
behavior. Finally, we integrate the proposed energy features
into a heterogeneous weighted graph, which allows the
identification of outliers and absorption trends, as well as a
visual clustering with force-directed graph algorithms [19].

Figure 1 summarizes our approach, where we introduce
new visualizations for knowledge discovery with the
support of graph databases. Next, we recapture related work

in Section 2, followed by a description of the investigated
industrial data in Section 3. Then, we introduce features
for energy curves in Section 4. Afterwards, we present a
graph database structure and investigate the ranking of the
design components during development stages in Section 5.
Later, we explore energy features for identifying similarities
and introduce design of experience (DOE) fingerprints
in Section 6. Further, we use graph visualizations in
Section 7. A conclusion and outlook are presented in
Section 8. Figure 1 summarizes the approach in this study in
introducing new visualization for knowledge discovery with
the support of graph databases.

2 Related work

The proposed car-graph is inspired by information retrieval
and mining trends that have transferred from document-
centric to entity-centric. Since IBM Watson won Jeopardy
in 2011, knowledge graphs have gained increasing research
interest due to their capability of storing knowledge, struc-
tured or unstructured, elicited from heterogeneous domains,
and their further querying to realize question answering
[26]. A survey in domain-specific knowledge graphs [1]
summarizes available knowledge graphs in engineering.

The most relevant engineering domain for our research is
manufacturing. However, ongoing research focuses more on
production and manufacturing than product development.
Moreover, there are mostly text-based knowledge graphs,
and only limited work exists on 3D shapes as the
center of the product description [3]. Example applications
of knowledge graphs include digital twin models for
industrial production, industry 4.0, and computer-aided
manufacturing (CAM). In [5], an overview of available
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Fig. 1 The graph-based analysis and visualization workflow involves loading crash simulations to a graph database, including the computation of
engineering features and a data visualization for knowledge discovery. The node coloring in the heterogeneous graph reflects different node types
and follows the schema in Fig. 6, fingerprints, degree distributions, or force-directed graph layouts are examples of visualization approaches
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research in manufacturing is provided. Currently, there is
no knowledge graph available for the CAE/FE domain nor
specifically crash, which is the focus of this paper.

However, there are investigations on ontologies for CAD
and CAE integration [4], FE simulation [23], and crash
analysis [12, 13]. In the context of computing, an ontology is
a concrete, formal representation of what terms mean within
the scope in which they are used (e.g., a given domain).
Similar to other conventions, the usefulness of an ontology
depends on the level of agreement on what that ontology
defines, how detailed it is, and how broadly and consistently
it is adopted. Adopting an ontology by the parties involved
in one knowledge graph may lead to consistent use of terms
and modeling in that knowledge graph [16].

According to [23], several studies have already applied
a knowledge-based ontology system to provide simulation
knowledge to FE users. These studies disregard extracting
new relationships among the data or answering analytical
questions of an engineer. In some, the focus was on automat-
ing the generation of the FE simulation [23] or retrieving
simulation solutions from existing simulation [24]. How-
ever, the case studies are simpler [23, 24] than a full crash
simulation. [31] characterized the CAE domain and iden-
tified unsolved challenges for tailored data and metadata
management as a graph. [12, 13] looked explicitly at a crash
simulation ontology and investigated the reasoning struc-
ture of engineers, particularly regarding report generation.
Overall, [12, 13, 31] have a knowledge management system
orientation to understand data structure and procedures in
the company, while the simulation data itself has not been
studied.

To summarize, previous articles have a product management
perspective representing the crash development process
structure. CAM, computer-aided design (CAD), and CAE are
different product data in the development phases of vehicles.
There are more research studies on knowledge graphs in CAD
and CAM compared to CAE. Additionally, automated CAD-
CAE model integration generated ontology models and
geometrical feature extractions. These studies are of interest
to connect CAD knowledge to CAE. Kirkwood et al. [25]
uses design change vectors to enable sustained integration
of FE mesh and CAD models. Feng et al. [14] represents
an automatic approach to generate simplified and idealized
geometry models for CAE simulation.

Parametrized CAD models, knowledge management,
and knowledge-based engineering (KBE) systems have
for decades strived to capture, digitize, and automate the
application of this kind of knowledge within product and
production development [21]. Using the product design
knowledge graph, [3] demonstrated the effectiveness of
3D shape retrieval using an approximate nearest neighbor
search. They illustrate using the KG for design reuse of
co-occurring components, rule-based inference for assembly

similarity, and collaborative filtering for a multi-modal
search of manufacturing process conditions. However, KG
should still expand to include downstream data within prod-
uct manufacturing and towards improved reasoning and
methods to provide actionable suggestions for design bot
assistants and manufacturing automation. Additionally, [17]
showed that in a design context, a cognitive assistant enables
the participants to select applicable design rules more pre-
cisely, allowing them to spend more time on the CADmodel-
ing activity. However, there is still a need for a test protocol
to confirm the preliminary results presented in this paper.

In view of the general application of ML for crash data
and knowledge graphs, it is not broadly used in current CAE
workflows compared to typical machine learning domains.
There are two main applications of ML in crash analysis.
First, it predicts the crash behavior to replace/support
the FE simulation; see [2]. Second, using dimensionality
reduction on the vehicle components’ data during crash
deformation to explore FE simulations, e.g., by identifying
clusters [18]. Here, an engineer must usually specify the
critical components in advance. While considering all parts
together is time-consuming and inefficient, it may also
fail to highlight the bifurcation behavior. This limitation
emphasizes the importance of auto-detecting and filtering
the essential components.

Regarding energy absorption characteristics for crash
simulation, studies show that energy absorption character-
istics enable quantifying component performance for the
design of experiments (DOE) feedback in optimization stud-
ies [9, 10]. However, to our knowledge, there is no research
on using energy curve features to calculate the similarity of
simulations or summarize development stage results.

3 OEM data from CAE development stages

We evaluate the proposed data representation and the
resulting data exploration approaches on industrial data
stemming from a vehicle development project undertaken
at CEVT. In particular, we consider four development
stages and three load-cases for front impact analysis. The
development stages are so-called primary, early, middle,
and late development stages, where the names reflect
the sequence of the stages. The considered development
window covers roughly one-third to two-thirds of the
complete R&D development phase (before the first real
crash test). Table 1 summarizes the three load-cases and the
number of included simulations.

In particular, we aim to assess the scalability and
feasibility of the introduced energy features and graph
algorithms. The focus is on data visualization to summarize
the behavior and trends. Note that data confidentiality
hinders illustrating the developed vehicle platform or giving
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Table 1 Properties of the investigated CEVT data. The total number of all simulations from four development stages in each load-case. The
deviation of the KE is due to the changes in vehicle mass during development

Load-case Name No. Sim KEi* [kNmm] range Velocity [km/h]

ffo** full front overload 215 328.6 − 389.4 64.0

foU front oblique overlap, new US-NCAP 121 346.4 − 436.2 90.0

foI front small overlap, IIHS 275 778.0 − 890.4 66.9 †

*Initial kinetic energy
**Internal load-case

†Over loaded speed, requirement is 40 [mph]

details about the FE model. However, we can discuss
the crash behavior using the component name. So the
general knowledge of crashworthiness helps to interpret
and evaluate the results. Tables 3 and 4 summarize the
components referred to in this paper.

Generally, the positions relative to the direction of the
barrier are essential in the analysis of crash behavior with
regard to geometry. Therefore, one can divide the components
into the early, middle, and late energy absorbent com-
ponents, i.e., bumper beam, crash-box, and side-member,
respectively. Additionally, the vehicle’s vertical axis posi-
tioning includes middle and lower load paths in the
absorption, i.e., crash-box and lower load path component,
respectively.

The crash-box and the side-member are thin-walled
structures with well-designed cross-section shapes and
crumple points, e.g., ditches and crash beads. They may
collapse in a particular pattern to absorb energy efficiently.
A side-member is longer and stiffer in comparison to
crash boxes. Further, the deformation modes of longitu-
dinal beams include folding, tearing, and bending. Here,
reinforcing components strengthen the beams and opti-
mize the absorption of energy. However, the lower load
path component is a thin-walled structure positioned ver-
tically lower than the crash-box. It distributes the load
in the subframe. Finally, the subframe is a structural
component with a discrete structure that supports the
axle, suspension, and powertrain. This component has
minor absorption crashworthiness design aspects among
the mentioned components due to the required durable
performance.

So far, we have introduced the components of the ffo
load-case that are studied in-depth in Section 6.3. Additional
essential components for the foU and foI load-cases are the
A-pillar, cowl, front fascia, wheel arch, and wheel rim. A-
pillar is the most forward vertical support of the vehicle
(among A, B, C, and D pillars). The cowl separates the
front compartment from the passenger cabin between two

A-pillars. The rest of the components are none structural.
For further background on crashworthiness, see e.g. [11].

4 Energy features

The deformation structures of the vehicle shall absorb the
kinetic energy so that the occupants and pedestrians have
the least possible injuries. In the case of shell structures,
this is done by means of suitable deformation patterns.
The main underlying physics of the crash analysis problem
is the energy dissipation performance. CAE engineers
often determine the crash behavior only by analyzing the
intrusion, the acceleration, the force, the deformation, and
the failure. These parameters are assessed and correlated
with reality visually and quantitatively. They do not take
into account the energy dissipation performance. However,
the energy is a solver output available for all parts in
a simulation, whereas section forces require specific FE
model preparation.

The FE solver outputs energy per part over time, a so-
called energy curve. Parts in the CAE model preferably
refer to each vehicle component. Despite this, CAE
modeling techniques require arranging vehicle components
into several properties, for example, due to changes in the
thickness and material. Consequently, CAE models have
many parts (1500-4000). The number of parts confronts
CAE engineers with a practical assessment of energy
curves. Therefore, it limits the use of energy curves in
the workflow to, e.g., stability investigations (checks the
simulation’s total energy) and outlier entity identifications
(e.g., parts with negative energy).

We claim that energy curves hold information to
characterize the simulation crash behavior. Data analysis
on energy curves will simplify data processing to represent
the crash behavior based on a few features. Figure 2a
shows the energy curve for the most energetic part of a
complete vehicle simulation in a front overload load-case,
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Fig. 2 (a) The internal energy output of the solver over time for a single property with the three features ti , �t, tn that characterize the energyabsorp
tion. The dashed blue lines that intersect with the energy curve visualize the standard deviation approach. (b) Diversity of internal energy output over
time for the five most energetic parts, Table 3, in three load-cases, Table 1, with calculated initial and end of the absorption time and standard
deviations. x and y axes are normalized

ffo, with a total initial kinetic energy of 453 [kNmm]
(initial velocity of 64 [km/h]). The shape of internal energy
over time is approximately a sigmoid curve, except for
parts with negative energy due to numerical error. From
the crash analysis perspective, measures with the potential
to analyze the crash behavior from this curve are initial
absorption time, absorption end-time/period, and absorbed
energy, Table 2. These features indicate three abstract
characteristics of the energy curve. We define absorption
time with �t and tn as relative (to initial time) and absolute
measuring, respectively. For now, we keep both features and
study the functionality of each in different applications.

Figure 2b shows representative examples of internal
energy curves and the features extraction over several
simulations and parts. These curves belong to three

Table 2 Introduced scalar features representing an energy curve

Energy Features

ti initial absorption time The initial time that the
energy absorption starts.

IEmax absorbed energy The max. internal energy
absorbed by the part.

tn absorption time The time in which IEmax
is reached.

�t tn − ti

simulations from three different front impact load-cases
(Table 1) that we selected randomly. For each simulation,
the five most energetic parts are plotted (part names
in Table 3 and part definition in Section 3). In these
examples, the shape of the curve during the absorption
time (�t) is nonlinear for some parts (first and fifth part
in foI load-case). This nonlinearity indicates the probable
necessity of additional features or more complex methods
for characterizing the absorption interval.

We define IEmax as the max of the internal energy
curve, and in the following, we describe the time extraction
features ti , tn, and �t . Here, the preciseness of the
timings depends on the solver’s time interval output. We
investigate three approaches to estimate the features based
on the IE behavior: thresholding, derivative change, and
standard deviation spread. With thresholding, one considers
the time when the IE crosses a pre-defined threshold
value. The derivative-based method calculates the internal
energy derivative ( ˙IE) and determines a significant change.
However, using the spread μ ± σ , we consider upper and
lower thresholds depending on the mean μ and standard
deviation σ of the IE for the part over time.

Figure 2 shows the methods for ti and tn versus the
time standard deviation. To summarize our observations, the
derivative method is more suitable for ti due to its sensitivity
in capturing trigger time. However, thresholding performs
more desirable for tn since IE growth is saturating at the
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Table 3 Part name for Fig. 2b, load-case information Table 1

load-case 1st 2nd 3rd 4th 5th

ffo side-member RHS-I crash-box LHS-V side-member LHS-I subframe LHS-U subframe RHS-U

foU side-member RHS-I crash-box LHS-V side-member LHS-I subframe LHS-U subframe RHS-U

foI A-pillar LHS-I-L front fascia wheel Arch -F cowl -L wheel rim LHS-F

RHS: right-hand side, LHS: left-hand side

-U: upper, -V: vertical, -L: lower, -I: inner, -F: front

end. Furthermore, the standard deviation approach fails for
the parts with a long absorption time or negative IE in the
initialization. In the following sections, we will compare
thresholding and derivative-based methods for ti and tn in
more detail. For this, we use visual engineering judgment.
We consider both methods on random samples from three
complete vehicle front load-cases in four development
stages, Table 1. For each simulation, we consider the 20
most energetic parts.

As mentioned, the features are not continuous values.
Their resolution depends on the solver settings for the
timestep output, which can vary from 1 [ms] to 0.001 [ms].
Consequently, the features binning is according to the
timestep definition. We consider a further and detailed
investigation into binning and resolution as out of the
scope of our initial study into energy features. Further,
we focus on these three features, although considering
other features during the absorption may contain more
component characteristics during a crash simulation.
However, extracting more features is out of the scope of
this work, where our focus is to investigate the potential
of features from energy curves, but not to find the best
approach to achieve this. The described features were
selected because of their simplicity to use and interpret.

4.1 Initial time

The initial time ti for each part reflects when a part begins
to absorb the impact energy. In crash simulations, there
is a gap between the start time and the time when a sp
ecific structural part gets affected by the crash, which makes
finding the exact time imprecise. Here, the extracted ti from
the thresholding and derivative-based methods are close for
most of the studied parts. Further, we investigated parts
with significant differences in the two calculated ti for
visual comparison. Figure 3 presents an example of such a
part with significant differences, together with a part where
both approaches give similar ti . From visual engineering
judgment, part two starts to absorb energy earlier than part
one, whereas the thresholding method extracts the same
time (ti ≈ 65) for both parts. However, the derivative-based
method computes for part two an earlier time (ti ≈ 40)

than the thresholding method, which is preferred from an
engineering perspective. Consequently, we perform further
investigations with the derivative-based method.

The derivative-based method requires curve filtering due
to the non-smoothness of the curve. We investigate filtering
methods from SciPy.signal. From lfilt1, filtfilt2 and sosfilt3

we select the FIR filter (lfilt, sample number n=75, b=1/n
a=1), which smoothens the curve without any time shift,
Fig. 4a. With this filter and a min-max normalization of the
IE derivative, ti is extracted as the time when the derivative
is above 0.005. Both methods’ lower limits are selected
based on visual engineering judgment and visual tuning of
the explored data. Figure 4b shows the result for a selected
part.

4.2 Absorption time

We define the absorption time interval �t as the time
interval from when the part’s internal energy increases until
it stabilizes to its maximum. The start time is ti from the
last subsection, and the time at the end of absorption is
tn. To extract tn, we compare the outcome of thresholding
of IEmax and consider the derivative. For thresholding, we
introduce a factor y for IEmax to exclude the gradual energy
increase at the end of the simulation:

tn = max
t

{t | IE(t) ≤ y × IEmax}, (1)

�t = tn − ti . (2)

The factor y is set to 0.95 based on a visual judgment
from an engineering perspective on randomly selected
simulations. For the method using derivatives, we consider
the second derivative of the IE equal to zero as the time
for tn. This calculation requires filtering, where we evaluate
the same filters as for ti . However, here a time shift of the
filtering is inevitable; see Fig. 4b. Consequently, the second
derivative does not allow the reasonable extraction of the
absorption time. Therefore, the maximum percentage time
provides the best result for tn.

1Filter data along one-dimension with an IIR or FIR filter
2A digital filter forward and backward to a signal.
3Filter data along one dimension using cascaded second-order sections
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Fig. 3 (a) IE curves for two different parts. (b) zoomed view of (a),
the derivative-based method for part two (left marker) gives an earlier,
and preferred, ti than thresholding (right marker)

4.3 Discussion

Lastly, the standard deviation of IE is calculated for the
parts, Fig. 4b. The crossing of IE with μ±σ refers to ti and
tn. However, there is a deviation in the result for different
parts compared to the other method. Two extreme examples,
not shown in the figure, show undesired results are curves
with long absorption time and the components with spring-
back FE modeling, i.e., negative IE in the initialization.
In both situations, the standard deviation is relatively tiny
and causes a higher value for ti and a smaller value for tn,
respectively.

Note that parts with common ti and tn in one simulation
are simultaneously involved during the crash. Identifying
such simultaneous parts can be used to identify parts for
grouping as one absorption block. But, such a grouping
is out of the scope of this paper and part of future work.
Furthermore, we can filter out the parts that behave similarly
from the energy absorption perspective by considering parts
that share all three features for several simulations.

Fig. 4 (a) Several filters are applied to the derivative of the IE over
time, where filtfilt2 and sosflit3 miss the ramp-up time. (b) Normalized
IE and normalized ˙IE that is filtered with lfilter1, ti extracted based
on ˙IE

5 Graph database

Knowledge graphs are typically created using a top-down
approach, which involves the creation of an ontology that
is then populated with data to create the KG. However,
an ontology-based approach is time-consuming to initialize
and update. Automating the acquisition, processing, and
use of knowledge has high value when dealing with large
amounts of diverse domain data [3]. Moreover, it is essential
to consider the questions one wants to address with the
data. We aim to introduce a data representation that allows
us to answer CAE questions and works for complete crash
FE models. These observations guided us to work with an
evolving schema developed in a feedback loop.

In Fig. 5, we summarize the workflow for loading
data into the graph database and exploring graph mining
methods. When evaluating the workflow components, we
aim to consider the reliability of the methods, particularly
for a full-scale CAE crash FE model, as well as their
computational efficiency. A primary concern is that the
workflow components can detect slight and significant
crash behavior deviations in view of the different changes
engineers perform during the development stages.

In this work, we build a first graph schema for car
crash simulations to gain insight into their usage in the
CAE-based development process. We consider a knowledge
graph, as defined in [16], as a way to accumulate and convey
knowledge of the real world. Its purpose is searchability and
analysis of the data, which shall provide additional insight
for the user obtained from the data. The current graph
modeling addresses mainly two outputs, an intuitive graph
analysis of CAE data, reflecting semantics or behavior, and
a graph representation of the data that enables ML methods.
Our workflow has two stages: first, we process the data
and store it in a graph database, and second, we extract the
computational graph from the database for visualization and
ML studies. In this section, we describe the data schema.

5.1 Database schema

We now introduce our database schema, with building
blocks illustrated in Fig. 6, where we aim to build a graph
representation that allows the application of graph analytics
and ML methods.

A node represents a FE simulation outcome, where
its properties stem from global features of the simulation,
e.g., total mass or kinetic energy. The vehicle development
and crash test protocols separate each simulation into
a vehicle and a barrier/impactor. Observing that, we
introduce nodes for the FE model , barrier ,
and impactor and consequently the relationships

and , Fig. 6a.
With this setup, different crash scenarios (load-cases) share
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Fig. 5 Feedback process during
car-graph development with a
focus on the identification of
trends in the simulations. Green
zone: Stages of the construction
and population of the graph
representation. Orange zone:
Usage of the graph
representation and feedback
loops to earlier stages
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the same FE model from the vehicle design. Further, the
focus is on the vehicle input independent of the load-
case, i.e., barrier or impactor. Besides addressing different
load-cases this choice also enables multidisciplinary design.

In addition, each part in a FE model and simulation is
modeled as a node individually and connected to
a node with relations, Fig. 6b.
A node contains information from its simulation

states or the FE modeling level. Here, simulation states can
consist of the energy absorption features that we defined in
Section 4, while the FE modeling info consists of properties
ID (PID), box center, material (name and ID), the center
of gravity, or, when it applies, thickness (average and
distribution). Geometrical features are a part’s length, width,
and height, along with the coordinate system of the FE
model (L-x, W-y, H-z).

Fig. 6 Illustration of the building blocks of our graph modeling. (a) A high-level simulation consists of one model and one impactor/barrier depending
on the crash scenario (b). More detailed components of a simulation are the parts that are filtered as energetic parts (c), while design and (d) behavior
nodes connect parts of simulations based on the similarity of the design or the crash behavior, respectively
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The basic schema so far is independent of any data
analysis. Design and behavior nodes contain
outcomes from specific analysis steps, such as feature
extraction or dimensionality reduction. Moreover,
and nodes are connected to nodes with

, Fig. 6c, and ,

Fig. 6d, edges, respectively. Here, a node collects
parts that are similar at the FE modeling level, where in
this work, the input for a connection
is the similarity of PIDs in one development stage. In
contrast, a node collects parts that show similar
behavior during the simulation, where energy features,
introduced in the next section, are used in this work for

connections.
Moreover, we add two types of edges between simu-

lations to the FE data model. Firstly, one usually knows
the predecessor of a simulation configuration model based
on the so-called development tree used in the CAE devel-
opment process; we connect these two simulations with a

edge. Secondly, as a weighted edge,
we introduce , where the weight refers to
a similarity prediction between the simulations and is the
outcome of a graph analytics algorithm, for example, Sim-
Rank [20]. Note, we study such similarity predictions and
their usage as edge weights in a companion paper [29].
What we presented here is part of a more extensive graph
modeling for automotive CAE data. We give further details
of our graph modeling for CAE data, with a passive safety
focus, in [28].

5.2 Query database

Graph analysis methods allow simple data explorations,
discover non-trivial patterns in the data, and reveal
behaviors. One of the used properties is the node’s degree,
and one can rank the nodes accordingly. A ranking of
nodes extracts common parts in a development stage and
reflects fundamental parts. Further, low degree nodes
reflect components that are outliers or are in an essentially
unexplored design space. A degree ordering of
nodes can, for example, extract common timings of behavior
in a development stage, e.g., using the introduced energy
features, which reflects essential times during the energy
absorption. Such selection procedures allow automated
post-processing scripts to support the CAE-ML workflow
instead of requiring interactive user selections. High-ranked
parts in a development stage for a load-case identify
required parts in energy absorption. High-ranked parts are
more reliable than just filtering the most energetic part in a
simulation since there are outlier parts with high energy due
to FE modeling errors.

We conjecture that a ranking of nodes, i.e.,
according to PID, can summarize information relevant to the

Fig. 7 Degree distribution for the nodes for the CEVT data from
the early stages

engineering process for problem-solving. While the node
degrees in real-world, large-scale networks often follow a
power-law distribution, i.e., a fast decline in the degrees
[27], we do not observe this for the nodes that reflect
PIDs, Fig. 7. Here, the distributions for each load-case
show some parts with high degrees, some in the middle,
and the remainder with small degrees. Generally, high
and low-ranked parts correspond to essential and outlier
parts, respectively. Additionally, a significant degree drop
can help identify the number of essential parts in a load-
case. Additionally, the middle-degree parts are the ones
that are not dominant in all the simulations and are neither
outliers. Consequently, these parts are interesting structural
components that potentially change the crash behavior and
summarize the simulation design scenarios. Such middle-
degree parts can be valuable input for inexperienced CAE
engineers to identify parts that affect the crash behavior.
For example, the fast transition of the degree in the foI
load-case, Fig. 7c, compared to the rest, indicates that the
number of parts affecting the load-case is limited, or that the
engineer has performed a limited exploration of the design
space.

6 Scatter visualization

Data visualization is a key component in a typical data
analytics project. The main aim of data visualization is
to identify patterns and trends that are hidden behind
the data. An explorative visualization of the data rather
than descriptive analytics, which describes the data in a
summarized way, provides a way for generating insights
from the data [30].

Here, we propose several data visualization techniques
for better data exploration of crash simulation data. In
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particular, we consider energy features from Section 4
as a data representation for each part, where we use a
scatter plot for visualization. Each point in the scatter
plot refers to one part (PID) of the simulation, and its
coordinates are the part’s energy features. This visualization
allows for assessing the similarity of the underlying energy
curves, identifying outlier parts, finding the similarity in
component-wise crash behavior, and generating a visual
DOE fingerprint for numerous simulations.

6.1 Curve similarity

The energy features were selected to extract the main
properties of the energy curves. Therefore, they enable
the assessment of the similarities of energy curves. For
example, Fig. 8 shows a scatter plot for three pairs of
parts from two different simulations and the corresponding
energy curves. This figure indicates that the similarities of
energy features of parts are related to the similarity of the
corresponding curves. Consequently, the scatter plot of the
parts’ energy features facilitates visualizing clusters with
similar behavior from an absorption perspective.

Note that for a three-dimensional visualization, it is more
illustrative to have independent variables, which facilitates
the separate investigation of each feature. Therefore, in the
three-dimensional scatter plot, we employ �t as the energy
absorption time because tn includes the effect of ti , whereas
�t is independent of ti . However, if one wants to include ti
information, using tn in two-dimensional visualizations can
be advantageous.

Generally, the weighted sum of the energy features can
be used to measure the curve similarity. Here an open

Fig. 8 IE curves similarity with scatter visualization (a) IE curves
from three identical components in two simulations with the same
load-case and (b) the scatter plot for their energy features

Fig. 9 Energy features for symmetric components, side-member, and
crash-box plates. The coloring of the points is based on the semantics
of the parts

question is the normalization and weighting of the energy
features, which likely also depends on the analysis goal in
the application. For simplicity, we concentrate on visual
exploration and individual energy features.

6.2 Part similarity

Here we investigate the detection of geometrically corre-
sponding components with energy features. We say that
components are geometrically correspondent if they are
located symmetrically in the vehicle, their undeformed
geometries mainly overlap symmetrically, and their defor-
mations are symmetrical. One straightforward use case is
capturing similar energy absorption by symmetric parts of
the vehicle structure in a full-frontal impact. The similarity
is due to the almost symmetrical design of the vehicle on
the left-hand side (LHS) and right-hand side (RHS). More-
over, the full-frontal load-case affects the LHS and RHS of
the vehicle structure symmetrically.

Figure 9 illustrates this use case. It contains the four most
energetic parts of 50 simulations of a full-front load-case
in one development stage. A similar PID of the thereby
selected parts implies that their geometries are more relevant
than the remaining parts in the vehicles4. This data overview
shows that the four most energetic parts generate two
distinct point clusters. Each cluster holds two parts, and
each pair consists of the RHS and LHS of the corresponding
geometrical part.

As a final result, we observe that energy features detect
symmetrical behavior in crash simulations. While here we
imposed constraints on the data set, i.e., considered only one
load-case and development stage, this holds more generally.

4Assuming the PID remains fixed during one development stage.
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An example, which we further discuss in Section 6.3.1, is
for distinct point clusters, where if the PID changes for
a component, one can now connect components between
different development stages.

6.3 DOE fingerprint

Summarizing the behavior of a DOE with many simula-
tions is an additional application of energy features. We
introduce a DOE fingerprint as a data visualization, which is
the scatter distribution of the energy features. The scatter plot
contains energy features from energetic parts of many simu-
lations in one or several development stages. A DOE finger-
print of a group of simulations assists in assessing the vehi-
cle’s development process. We study four color schemes
that visually group the data points differently during the
exploration. The color schemes are according to PID, IEmax

order, development stage, and load-case, respectively.
The color schemes reflect different use cases for the

data exploration. The PID color scheme visualizes the
design space for each part. Nonetheless, due to possible
PID variations between load-case or development stages,
the PID color scheme is limited to simulations in one
development stage and one load-case. The second color
scheme uses the IEmax order in a simulation, which
visualizes the parts order in the energy absorption for each
simulation. This visualization is informative if coupled with
the PID color scheme to highlight the permutation of parts
in absorption behavior. Additionally, the fingerprint with
the development stage color scheme emphasizes load-cases
in one/several development stages. Finally, the load-case
color scheme demonstrates the evolvement of the platform
in several/single development stages independent of PID
change between several load-cases.

We now show examples of data visualization by DOE
fingerprints for the real-life development stages from
CEVT. These examples show the types of engineering
information that a DOE fingerprint can visualize. To better
demonstrate a three-dimensional plot in a two-dimensional
figure, we present the DOE fingerprint as a matrix scatter
plot; see Fig. 10. In matrix scatter plots, we use two
features for absorption time (�t and tn) since the coupling
between ti and�t is lost in a two-dimensional visualization.
Additionally, the range of end-time or absorption period
difference remains identifiable, i.e., when comparing the
spread shape between different platform structures, by just
considering tn or �t .

Note that an interactive application is the most helpful
visualization for exploring the data using DOE fingerprints.
For example, the application can enrich the data by
connecting each point in the scatter plot to additional
information such as pictures, deformation videos, or
metadata of the part and simulation.

Fig. 10 DOE fingerprint load-case scheme, five most energetic
components in simulations from four development stages. Simulation
specification in Table 1 (ti [ms], �t [ms], IEmax [kNmm])

6.3.1 PID scheme

The DOE fingerprint in each plot is an imprint of the
distribution of the energy features independent of the PID.
Consequently, the pattern shown by the PID color scheme
conveys the parts between development stages even though
the PID has changed. Figure 11 uses the PID scheme for an
early and a middle development stage in a two-dimensional
IEmax − tn fingerprint. This visualization shows that even
though the part numbering differs in these two development
stages, the shape of the scatter plot and absorption order
identify the pairwise components that correspond in energy
absorption, see the point clouds (a) and (b) in Fig. 11 and
Table 4. Here, cloud (a) consists of the inner plate of the
side-member. For both stages, the cloud includes only 2 PIDs
referring to the LHS and RHS parts. However, an offset
along the y-axis shows a decrease in the mean of IEmax.

Likewise, cloud (b) contains two components. The upper
points belong to the subframe, and the lower ones to the
outer wall of the side-member. However, this cloud holds
many different PIDs. The variation of the PID for the
subframe highlights the critical components studied in the
CAE-based analyses.

Additionally, the cloud distribution shapes a pattern
where it addresses the difference between development
stages, e.g., a change in the FE modeling technique or a
change in the vehicle concept. In this example, the vertical
and horizontal plates of the crash-box have separate PIDs
for RHS and LHS. However, these are modeled as one in the

19227Knowledge discovery assistants for crash simulations with graph algorithms...



Fig. 11 DOE fingerprint with
PID color scheme, CEVT data
ffo load-case, Part name in
Table 4
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mid-stage. Consequently, the absorption has doubled; see
clouds (c) and (e) in Fig. 11.

Finally, point cloud (d) belongs to the lower load path
components RHS and LHS. It keeps its dual behavior, but
this visualization summarizes that the absorption interval is
more stable in the later stage.

6.3.2 Order scheme

The ordering scheme visualizes the IEmax order for each
part in a simulation. The ordering scheme visualizes the
point cloud for the energy absorption order combined
with the PID scheme. Figure 12 compares the ffo

Table 4 PID part name in two development stages for Fig. 11

Early stage Middle stage Part Name (Cloud Label)

10020420 10021870 LHS-I (a)

10021520 10021320 RHS-I side-member

10022010 10021830 LHS-O

10021350 10021220 RHS-O (b)

18620080 18620090 LHS-V (c)

18620120 RHS-V crash-box

18620070 18620070 LHS-H

18620110 RHS-H (e)

55021040 LHS lower load path (d)

55021060 RHS

55131390, 55132410 55132390, 55131220 LHS subframe (b)

55131400 55131440, 55132820, 55131010 RHS

RHS: right-hand side, LHS: left-hand side

-U: upper, -V: vertical, -H: horizontal, I: inner, O: outer
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Fig. 12 DOE fingerprint with
order scheme, ffo load-case
considering eight most energetic
parts for each simulation.
Primary and early development
stages 50 and 53 simulations,
respectively. (tn [ms],
�t [ms], IEmax [kNmm])
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load-case in two development stages using the IEmax order
scheme for each simulation’s eight most energetic parts.
The number of point clouds for each placement captures the
number of scenarios for evaluating the permutation of the
energy absorption (e.g., for third-order, it is one and two,
respectively, in the primary and early-stage). In the primary
stage, bifurcation exists for the sixth, seventh, and eighth-
ordered components; however, in the early stage, bifurcation
starts right after the second part. Besides the number of

scenarios, the density of the point clouds can reflect outlier
simulations or an unexplored design space. For example, a
few simulations in the early stage have the fifth and sixth
parts in the left point cloud.

So far we looked at IEmax, tn, and �t features. Addi-
tionally, the ti fingerprint achieves a different knowledge
summarization. Figure 13 shows the initial time for the
same development stages as Fig. 12. Here we see that the
two most energetic parts, the side-members, have noticeable

Fig. 13 Initial time distribution
for Fig. 12,
(ti [ms], IEmax [kNmm])
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differences in the ti spread. The deviation is also captured
in the tn − �t plot, Fig. 12. The early development stage
is more stable in trigger time than the primary develop-
ment stage and limits the DOE. Consequently, the tn and
�t relation becomes more linear. Therefore, IEmax − �t

and IEmax − tn provide similar DOE fingerprints in the
early stage. However, in the primary stage, the relation of tn
and �t is non-linear for the side-member. Consequently, the
point cloud shape of IEmax − �t and IEmax − tn differs in
the primary development stage.

6.3.3 Development stage scheme

This coloring scheme is beneficial for summarizing the trends of
the development stages. In this visualization, tn is prefer-
able to �t since an absolute value is better for comparing
development stages. Figure 14 shows the pair-wise compar-
ison of four development stages with the development stage
scheme coloring. In summary, remarkable detections are:

a) The initial time absorption span has been the smallest
for the early development stage, and absorption
initialization varies a lot for the rest.

b) The inner side-member part with the highest IEmax has
been declining in the maximum absorbed energy during
the development.

c) The 2d visualization overlays point clouds in initial
absorption time.

d) The inner side-member stays almost steady in absorp-
tion time spread.

e) The spread of absorption time declines as the develop-
ment stages evolve for the rest of the parts.

6.3.4 Load-case scheme

This visualization enables the comparison of DOEs between
load-cases, which supports detecting multi-disciplinary
development challenges with different crash requirements.
Figure 10 is a matrix scatter plot for three load-cases
of the front crash in four development stages of the
CEVT data with a load-case scheme, Table 1. It includes
611 simulations with five parts with high-ranked IEmax.
The visualization indicates that the ffo load-case has
discontinuous absorption compared to the other two. This
gap exists for tn values that make two clusters: early (≈
10 ms) and late absorption (≈ 60 ms).

7 Graph visualization

We now investigate graph visualization techniques for
knowledge discovery in simulation studies, where we use
energy features as weights in these graphs. Visual explo-
ration in an interactive way allows one to apprehend the
underlying graph and thereby gain insight. Visual repre-
sentations of graphs can be classified into three major
categories: node-link diagrams, matrix representations, and
hybrid methods. Here we focus on the application of node-
link diagrams. Among node-link diagrammethods, the most
widely used are force-directed layout algorithms [6]. They

Fig. 14 DOE fingerprint, development stage scheme, ffo load-case CEVT data. Pair-wise comparison for four different development stages. Primary,
early stage respectively 50, 53 simulations, Midd-stage, 82 simulations, Late stage, 28 simulations, for 7th most energetic parts(ti [ms],
�t [ms], IEmax [kNmm])
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Fig. 15 Information extraction with graph visualization, foI load-case in the primary stage, 115 simulation nodes with eight nodes
for each simulation and weighted with Pe. Design nodes’ edge colors are based on the nodes’ degree

have often been preferred over other algorithms since the
1980s. Force-directed algorithms can be divided into classi-
cal and hybrid algorithms according to their characteristics
and computational modeling. Classical force-directed algo-
rithms are usually based on physical laws, specifically in
ways that simulate a spring system. For large and complex
networks, hybrid force-directed algorithms are designed,
which use heuristics to improve the performance of classi-
cal force-directed algorithms [8]. Classical algorithms are
still suitable in our case due to the relatively small size of
the graph.

Following the survey [8] the three methods of
Fruchterman–Reingold [15], Kamada–Kawai [22], and
ForceAtlas2 [19] are suitable for our purposes. We inves-
tigated the three methods on our data, where ForceAtlas2
showed the best results5. In general, more successful force-
directed techniques are those that have avoided certain
principles to show off other structural properties of the
graph, such as ForceAtlas2 [19]. The method is still fol-
lowing the idea of a physical system, but the principle the
authors have tried to optimize is one of clustering rather than
being concerned with edge lengths or uniform node distri-
butions, for example. In the following, we summarize the
use of such graph visualization methods.

Here, we extract a sub-graph by using nodes with
edges. The result is a bipartite

graph consisting of two types of objects, namely
and nodes. The edges of the
bipartite graph are weighted by the energy power absorption

5We use the ForceAtlace2 implementation available at https://github.
com/bhargavchippada/forceatlas2.

(Pe = IE/�t), which can be seen as an aggregation of
energy features.

Due to the widespread energy power absorption,
specifically in the networks that include outlier simulations,
it is challenging to get an interpretable view of the network.
Consequently, from the available options to improve the
graph visualizations, we deactivate the gravity option to
simplify the equibalance of the forces. Instead, we study
two options of this method, scaling ratio and edge weight
influence. The scaling ratio R refers to the repulsion
required and is claimed to result in a more sparse graph.
Furthermore, the edge weight influence einf scales from
zero, for no weight influence, to one as normal.

Note that our graph is relatively small compared to
graphs in many other domains, with less than 26000
nodes considering all the types. Consequently, the primary
computational time is loading the data to the graph
database, which is done offline in a pre-processing step.
The ForceAtlace2 calculation depends on the number of
included nodes and the needed iterations. For our data, both
only take a couple of seconds. The timings for the rest are
less than a second, which overall makes it easy to explore
the data interactively.

The visualizations presented in the following are for three
scenarios:

• one load-case in one development stage,
• different load-cases in one development stage,
• one load-case in several development stages.

All approaches mentioned in the following are practical
options for an interactive user interface to assist engineers
in data cleaning and knowledge discovery.
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Fig. 16 Improving visualization by varying edge weight influence,
einf , from 2 to 0.02. Case one, foI load-case in the primary
development stage

In the first case study, we consider the eight most ener-
getic parts for 115 simulations in a primary development
stage and foI load-case. We visualize the bipartite graph in
Fig. 15a. The graph has 115 and 33 nodes. The
number of design nodes is more than eight due to differ-
ences in the most energetic parts of the simulations. This
basic visualization can only distinguish the density of the
degree of nodes.

However, the ForceAtlas2 method reveals more informa-
tion about this network, Fig. 15b. By positioning them off-

centered, this visualization emphasizes the outlier and
nodes. Most of the outliers are related to the

connection modeling, which is very sensitive to the modeling.
Therefore, the solver tries to rectify it, which causes high
internal energy in the corresponding connection part. How-
ever, connections are not the study object of these FE simula-
tions. As a result, these are unreliable simulations and designs.

Additionally, the nodes are distributed based
on their similar structural connection to nodes,
which shapes clusters of simulations, zones (b), (c),
and (d) in Fig. 15b. From a simulations clustering
perspective, ForceAtlas2 has an outstanding result. The
other two methods, Fruchterman–Reingold and Kamada–
Kawai, separate only the outlier nodes. The
nodes located in the center of simulations are the
nodes with the highest degree. These nodes are essential

parts of most of the simulations. This visualization
highlights that nodes cause the split of the simulations
point cloud. In this example, each cluster has several design
nodes positioned outwards and with high degrees, Fig. 15b
green nodes. Additionally, there are simulations further
away from the central simulation clouds. This can indicate
less explored design space, Fig. 15b orange nodes.

The initial visualization of ForceAtlas2 has the edge
influence set to zero, which means we see mostly the
structural effect of the network, Fig. 17. There are several
ways to get a good visualization, including the weights.
One is to take advantage of the ForceAtlas2 method
options. The other approach is deactivating the distant
nodes, which are outliers. For initial visualization, we look
at only eight designs. Next, we increased the designs to
20 for each simulation, ending with 62 designs. First, we
consider two options of einf and R from ForceAtlas2 to
improve the visualization. Figure 16 summarizes the effect
of edge weight influence for the network above. This figure
visualizes that by decreasing the edge weight influence, we
can keep the whole DOE graph and have the resolution in
the graph’s structure. Consequently, we still see outliers and
DOE clusters, similar to Fig. 17. Note changing the scale
factor does not seem to have a noticeable influence on the
resulting visualization of our data.

The next option is to remove outliers, where we
take an iterative approach to identify and remove distant
nodes using the ForceAtlas2 algorithm. In each iteration,
we calculate all edge lengths based on the ForceAtlas2
positioning of the nodes. Afterwards, we remove the edges
with a length higher than a specified threshold. We remove
the disconnected nodes before we recalculate the positions
for the reduced network in the next iteration. Figure 17
visualize several iteration steps in which we removed the
distant nodes with a thresholding factor of 0.8. Here, the red
nodes are the identified outliers, and we remove them before
the next iteration. Thus, we can quickly identify the outliers
and clean the data. In this method, there is no consideration

Fig. 17 Odd stages when iteratively removing distant nodes from the foI load-case in a primary stage, 115 simulation nodes with 20
nodes for each simulation and weighted with Pe, The red nodes are the outliers identified to be removed. Case one, foI load-case in the primary
development stage, the threshold of 0.8, einf = 1, R = 1
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Fig. 18 Improving visualization for network without outlier simula-
tions with varying edge weight influence, einf , from 1 to 0.5. Case one,
foI load-case in the primary development stage

of the labeling of the nodes, so the identified nodes are either
or .

As the final investigation for this case, we consider
the visualization with ForceAtlas2, where we exclude the
outliers simulations from the graph, Fig. 18. The difference
between this visualization to Fig. 17 is that in removing the
nodes, we consider the node labeling, and we remove the

and its corresponding edges and, consequently, the
disconnected nodes. In this visualization, keeping the edge
influence smaller than 0.5 allows us to detect the clusters.
This factor may differ depending on the intensity of the
graph and its node numbers. Next, we look into two other
study cases of graph visualization.

The example for different load-cases in one development
stage includes the primary development stage of three load-
case of foI, foU, and ffo, Fig. 19a. This graph contains
20 nodes for each node, resulting in 204
simulations and 94 designs. We exclude outlier simulations
and corresponding design nodes from this network.
Figure 19 compares the ForceAtlas2 visualization with
the DOE fingerprint. Similar to Fig. 10, this visualization
indicates that the ffo load-case contains a limited design of
experiments. An additional discovery based on comparing

Fig. 19 Case two, several load-cases in the primary development
stage. (a) nodes are colored in gray and nodes are
following the scatter plot coloring (b). R = 1 and einf = 0.5

Fig. 20 Case three, ffo load-case in several development stages. (a)
nodes are colored in gray and nodes are following the

scatter plot coloring (b). R = 1 and einf = 0.5

to the DOE fingerprint is the relation of these three load-
cases with each other: foI and foU have more in common
than the ffo load-case. This can be visualized with several
design nodes between blue and red point clouds vs. green

and red. Furthermore, the nodes between each load-
case cluster identify the essential parts in common.

The last case study is one load-case (ffo) in several
development stages, Fig. 20a. This graph also considers
20 for each , including 196 simulations and
123 designs. Besides the scarcity of each DOE compared
to others, it is possible to discover the essential parts in
common between different development stages. The ones
in the center are in common for several stages. Moreover,
the late development stage, green cloud, differs more
from the other three. The DOE fingerprint in Fig. 20b
visualizes this difference with the lowest absorption feature
of that development stage. An important note is that the
commonality of nodes between different development
stages is uncertain. However, the DOE fingerprint is
independent of this assumption for comparing parts. We
present this network as a potential for knowledge discovery
and note that better semantics for nodes are required
than the used PID.

In the last two use cases, we set einf = 0.5 to visualize
the clustering of the parts. However, due to the increase in
the graph constraint by having several DOEs included, this
value needs to be higher to highlight the additional outlier.
A good example is the parts in the scatter plot in Fig. 20b
whose absorption time is more than 100[ms]. These parts
are not as noticeable as in Fig. 20a. However, increasing einf

makes these parts more outstanding.

8 Conclusion and outlook

The complexity of the raw data from simulations and
the lack of semantics in the current vehicle development

19233Knowledge discovery assistants for crash simulations with graph algorithms...



DOE Fingerprint

Group of 
Simula�ons and 

Parts

Single 
Inves�ga�on

DOE Fingerprint

Deforma�on Anima�on

Data Cleaning

DOE Graph visualiza�onDesign Ranking

Curve Overlay

Detail 
Inves�ga�on Comparison

Seman�c of 
Coloring Visualiza�on 

Op�ons 
,

Fig. 21 The workflow of the knowledge discovery assistant for dynamic reporting

workflow causes design engineers and attribute leaders to
rely on the reporting from the CAE engineers working
with them. However, such static reporting restricts an
independent exploration of the data. The lack of semantics
in CAE data makes the data disconnected and hinders
multi-disciplinary collaboration, which degrades efficient
problem-solving. Disconnected data in an OEM, and even
more between OEMs, is one of the obstacles we aim to
address with the car-graph vision for an efficient data
exploration that exploits semantics.

Our research aim for this work was to introduce
semantics for crash simulations, which enables searchability
or filtering of FE crash simulations. Based on graph
representations of the data, we proposed energy features
and used them for data visualization while leveraging
them as weights in the data graph to empower knowledge
discovery. We showed the sensitivity of energy features
for differentiating FE crash simulations during development
stages. Moreover, it introduces a simple way of filtering
the necessary parts to be studied in ML deformation-based
workflows. Besides, applying ForceAtlas2 visualization
further empowered outlier detection, data cleaning, and the
clustering of the parts and simulations. This visualization
allows vehicle DOE knowledge discovery, e.g., by assessing
a single load-case in one development stage and comparing
different load-cases and development stages.

Overall, DOE fingerprint, design ranking, and graph
visualization are three new visualization concepts for CAE

data and allow further knowledge discovery6. In a broader
view, we envision a web-based platform to enable semantic
reporting for CAE7 as a practical tool, which targets
CAE attribute leaders, CAE engineers, design engineers,
and data analysts in automotive R&D. It should enable
project members from different teams to access the CAE
results, understand the design performance limitations,
compare simulations, and use algorithms on the car-graph.
For example, we can support a data exploration with
two- and three-dimensional views of DOE fingerprints
(Section 6.3). Interpreting a DOE fingerprint involves
further investigation, where a dynamic interaction and
filtering facilitate the data exploration. For example,
each scatter point can link to the corresponding energy
curve, metadata, pictures, and deformation videos of the
simulations/parts.

Figure 21 summarizes the interactions of such a work-
flow. Here design ranking and DOE graph visualization was
the use case of trend and outlier detection at a high level.
In comparison, the DOE fingerprint can find some extreme
outliers and is best used for summarizing the exploration
and more detailed investigations.

However, it is still an early stage for research on a
vehicle knowledge graph, and additional data should be

6The databases example and a user tutorial are at https://github.com/
Fraunhofer-SCAI/GAE-vehicle-safety
7Accessible at https://CAEWebVis.scai.fraunhofer.de/.
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loaded into the graph database to enrich it. For example,
in the model level as the input, it will be material,
geometrical semantics, grouping the parts as functional
components. Moreover, examples of extra data in the
simulation output are accelerometers, cross-section forces,
deformations, and safety requirements. Moreover, there is
a necessity for grouping parts and features, where, for
example, a higher level of grouping may enable load-
path detection. Furthermore, link prediction and similarity
assessment will support engineers in exploring a simulation
database to search the data. We give examples for similarity
assessment or part grouping in a companion paper [29].

For graph visualization, additional improvements can
still be made. One additional study can be on extend-
ing the types of nodes and relations included in the net-
work. For example, including development tree connec-
tions, impactor/barrier nodes, and simulation similarity pre-
dictions. The edge bundling method can also reduce the
visual clutter caused by edge overlaps. It can provide a
global overview of complex connection graphs while pro-
viding information on the primary connection relationships
in the graph by the thickness and color of the edges [7].

A mid-term goal is to predict simulations for unexplored
design spaces and recommend solutions to the engineer.
Likewise, predicting cause-effect relations between the
model and simulations will further enrich the data. Finally,
a long-term target is to enable the evaluation of performance
robustness. Correspondingly, the car-graph shall allow an
extension of the safety evaluation from regulated tests,
which are just examples of real crash scenarios, to more
diverse crash scenarios. Finally, the handling of unlabeled
data still remains a big challenge in this domain. In our
case, we needed to verify the overall discoveries with an
inefficient process of manual engineering feedback that
limited ML applications. Consequently, empowering the
semantics using web technology to increase data labeling
will further support the uptake of analysis approaches in this
application domain.
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