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Abstract
Visual Question Answering (VQA) is a multimodal task that requires models to understand both textual and visual
information. Various VQA models have applied the Transformer structure due to its excellent ability to model self-attention
global dependencies. However, balancing global and local dependency modeling in traditional Transformer structures is an
ongoing issue. A Transformer-based VQA model that only models global dependencies cannot effectively capture image
context information. Thus, this paper proposes a novel Local Self-Attention in Transformer (LSAT) for a visual question
answering model to address these issues. The LSAT model simultaneously models intra-window and inter-window attention
by setting local windows for visual features. Therefore, the LSAT model can effectively avoid redundant information in
global self-attention while capturing rich contextual information. This paper uses grid visual features to conduct extensive
experiments and ablation studies on the VQA benchmark datasets VQA 2.0 and CLEVR. The experimental results show
that the LSAT model outperforms the benchmark model in all indicators when the appropriate local window size is
selected. Specifically, the best test results of LSAT using grid visual features on the VQA 2.0 and CLEVR datasets were
71.94% and 98.72%, respectively. Experimental results and ablation studies demonstrate that the proposed method has good
performance. Source code is available at https://github.com/shenxiang-vqa/LSAT.
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1 Introduction

Transformer [1] has achieved state-of-the-art results on a
wide range of natural language processing (NLP) tasks.
Many researchers have also successfully applied it to vision
and language (V&L) tasks (e.g., visual question answer-
ing [2, 3], cross-modality information retrieval [4, 5]),
etc. Many researchers have proposed various multi-modal
networks based on Transformer, achieving state-of-the-art
performance on various benchmark datasets. Much of the
success is attributed to the global dependency modeling
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capability of the self-attention component, which enables
the network to capture contextual information from the
entire sequence of inputs while to a certain extent facilitat-
ing modal alignment in language and vision.

Inspired by the excellent performance of Transformer
in natural language processing tasks, Yu et al. [2] used
the pure Transformer architecture for VQA tasks, and
the experimental results showed that the Transformer
architecture also has good performance in visual tasks.
In multimodal learning tasks such as visual reasoning
(e.g., semantic sementation [6, 7], image understanding [8])
models need to process visual information from different
receptive fields. In the VQA task, to correctly answer the
questions input by the user, the model should pay attention
to the global visual information when understanding image
features. At the same time, it should pay attention to
the local visual information of the image according to
the semantic features of the question and use the local
information interaction to capture richer contextual image
feature information.

Some studies [3, 9, 32, 34] have demonstrated that
it is difficult to achieve satisfactory performance using
traditional Transformer models that only model global self-
attention in VQA tasks. In addition, the relatively expensive
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computational cost of modeling global attention makes it
challenging when being flexibly applied to various VQA
tasks, especially in high-resolution image scenarios. The
self-attention (SA) unit is one of the critical components
of Transformer, which is used to compute self-attention
scores for the input sequence. These attention scores
are collected in a global attention map containing the
correlation of each input element in the entire sequence and
are normalized. Therefore, these attention maps describe
strong global dependencies across the sequence. The
problem where global self-attention can’t adequately model
image context information is more prominent in end-to-
end visual, multimodal reasoning models. Related research
[10, 11] shows that well-pretraining grid visual features
have better expression ability. However, grid visual features
contain more fragmented semantic information than the
widely-used regional visual features [12]. As shown in
Fig. 1, the global attention of the traditional SA unit
while modeling the input image is more likely to introduce
noise information. The model pays attention to the image
regions that are not relevant while attempting to correctly
answer the question and this ultimately negatively affects
the model’s performance. However, utilizing the local self-
attention mechanism improves attention to critical areas
of the image according to question features. It can better
utilize the visual information around important image
areas to oblige the model’s reasoning and prediction.
Advanced VQA models are gradually replacing global self-
attention with local self-attention. A key and challenging
problem is enhancing the modeling ability of local self-
attention-based models. For example, Swin [13] and Shuffle
Transformer [14] proposed shift windows and shuffle
windows, respectively, and alternately used two different
window partitions in consecutive blocks (e.g., rule windows
and proposal windows) to build cross-window connections.
The MSG Transformer [15] manipulates messenger tokens
to exchange information between windows. Wang et al. [17]
proposed axial self-attention to treat local attention regions
as a single row or as a column of feature maps. CSWin [18]

proposed cross-shaped window self-attention, which can
be considered a multi-row and multi-column expansion of
axial self-attention. While these methods perform well and
even outperform their CNN counterparts, the underlying
self-attention and dependencies of Transformer are not rich
enough to capture rich contextual information and pass it to
the top layers for effective modeling.

We propose a novel local self-attention scheme to
address the above-mentioned problems. The scheme, Local
Self-Attention in Transformer (LSAT), models local self-
attention at the bottom layer while still modeling global
attention at the upper layer to integrate the findings of the
previous layers. LSAT provides a solid baseline for image
self-attention modeling by setting local windows for visual
features to simultaneously model intra-window attention
and inter-window attention to capture rich contextual visual
information features. In order to verify the effectiveness and
practicability of the LSAT model, this paper utilizes regional
and grid visual features extracted from region proposals to
conduct experiments on the VQA benchmark datasets. The
experimental results show that the LSAT model has good
performance. The main contributions of this paper are as
follows:

(1) Proposal of a novel local self-attention mechanism,
which can more effectively capture rich image
context-dependent features. The LSAT model can also
represent the interaction between windows and can
model image self-attention learning by establishing
an adjustable window size. Moreover, the LSAT
model overcomes the shortcomings of global self-
attention (such as high computational overhead and
lack of interaction between regions), which is critical
for designing end-to-end vision tasks based on
Transformer.

(2) This paper also employs regional and grid visual fea-
tures to conduct experiments to verify the effective-
ness of the local self-attention mechanism. We find
that using a local attention mechanism on-grid visual

Fig. 1 Transformer attention
results on the same image using
global self-attention and local
self-attention mechanism
respectively
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features can more effectively reduce the introduc-
tion of irrelevant information and effectively capture
contextual information compared with regional visual
features.

(3) Experimental results on benchmark VQA 2.0 and
CLEVR datasets show that the LSTA model achieves
better results than current state-of-the-art models. We
analyzed the effect of parameter settings on the LSAT
model through ablation experiments and further reveal
the interpretability of the model employing visual
examples.

The rest of the paper is organized as follows: Section 2
introduces the visual question answering model and local
self-attention mechanism related to the research in this
paper, and Section 3 details the overall structure and
specific design details of the LSAT model. Section 4
introduces the experimental results and ablation studies
using regional and grid visual features, respectively, based
on the VQA 2.0 and CLEVR benchmark datasets under
different parameter settings and visualizes the model
through attention. Section 5 summarizes our work and
points out future research directions.

2 Related work

2.1 Visual question answering

The Visual Question Answering (VQA) task has been
gained increased attention in the past few years. VQA
takes images and natural language questions about images
as input and generates natural language answers as output
is usually considered a classification task with fixed cate-
gories [19]. Traditional VQA models represent input images
and questions as global features. However, global features
introduce considerable noise that affects the model’s abil-
ity to predict the correct answer. Therefore, most advanced
VQA models utilize an attention mechanism to reduce
irrelevant information. For example, many studies [20, 22,
25] employ CNN-based network structures to model vari-
ous visual attention mechanisms to localize image regions
relevant to the input question. Other related work [22,
26] propose methods that combine both question-guided
visual attention and image-guided question attention. This
is also vital in the multimodal fusion method in the
VQA model. The traditional multimodal fusion method
maps the image and question features into a common
space and uses concatenation, addition, and other methods
for simple fusion. Recent works [27–29] has explored a
more complex and advanced (effective) multimodal fusion
methods.

With the development of the Transformer network [1]
and ViT [30, 31] network structure, Yu et al. applied
the Transformer structure to the VQA task for the first
time and proposed the deep modular co-attention network
(MCAN) [2]. Later, researchers proposed various variant
structures based on the MCAN network [3, 32–34]. Recent
advanced VQA methods concentrate on stacked multi-layer
attention and improvements in fusion mechanisms. Yang
et al. [35] proposed a stacking attention mechanism (SAN)
that employs the semantic representation of the question as
a query to search for regions in the image relevant to the
question’s answer. Lu et al. [21] proposed a hierarchical
question-image co-attention mechanism (HieCoAtt), which
alternately learns visual and question attention. Okatani
et al. [36] proposed a dense symmetric co-attention (DSCA)
model, which exploits the co-attention mechanism of
densely stacked layers. Kim et al. [28] proposed a bilinear
attention network (BAN) to improve model performance
by establishing associations between regions and images.
Gao et al. [37] proposed dynamic fusion with an intra- and
inter-modality attention flow (DFAF) model that explores
information interactions within and between modalities.
Although these methods to a certain extent improve the
performance of VQA models, they are not effective in
exploring the intrinsic dependencies between questions
and images, resulting in suboptimal model performance.
With the success of unsupervised pre-training in NLP, the
development of Transformer and its variants in VQA tasks
has been further promoted, making pre-training a new
trend [38, 39]. Researchers realize that effectively utilizing
question and image features in VQA tasks is crucial
to predicting the correct answer. Hence, the latest VQA
methods concentrate on improving attention mechanisms
and fusion methods. For example, Zhao et al. [10] proposed
the TRAnsformer Routing (TRAR) model, which uses
grid image features that contain more visual semantic
information. The fragmentation of grid visual features will
lead to more noise in the visual information modeling.
Avoiding this fragmented information in the model during
the modeling process is very important for the reasoning
and prediction of the model. Employing the local window
mechanism in the LSAT model can effectively avoid
introduction of fragmented information in the image
modeling process. Using the local information interaction
between windows in the end-to-end training process can
improve the prediction probability of visual reasoning tasks.

2.2 Local self-attentionmechanism

In recent years, local self-attention mechanisms have been
widely used in computer vision. Unlike CNN, traditional
Transformers do not involve inductive biases on local
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connections, which may lead to insufficient extraction
of local features, such as connections of lines, edges,
and colors of images. The self-attention mechanism was
initially proposed in machine translation methods for NLP
tasks. It belongs to a branch of attention mechanism,
which reduces the dependence on external information
and better captures the internal correlation of data or
features. Therefore, the self-attention mechanism plays
an increasingly significant role in computer vision and
is widely used in many visual tasks, including object
detection [40, 41] and image classification [42, 43]. The
earliest approach was to replace the single-scale structure
of ViT with a hierarchical architecture to obtain multi-scale
features [44]. For example, Parmar et al. [45] applied a local
attention mechanism to the visual part of the Transformer
to focus on the domain information of the local window.
Watzel et al. [46] proposed a dynamic fusion method
between global and local attention scores based on Gaussian
masks. The small networks for learning the fusion process
and the Gaussian masks require only a few additional
parameters and are simple to add to current transformer
architectures. Swin [13] and Shuffle Transformer [14]
propose shifted and shuffled windows, respectively, and
alternately employ two different window partitions (the
regular window and the regional window) to build
cross-window connections in consecutive blocks. MSG
Transformer [15] can flexibly exchange visual information
across regions and reduce computational complexity by
manipulating messenger tokens to exchange information
intra-windows. Wu et al. [47] proposed Pale-Shaped
Attention (PS-Attention) to parallelize row attention and
column attention of attention map, which captures richer
information while keeping the computational complexity
similar to previous local attention mechanisms utilizing
context information. Zhou et al. [16] proposed a multi-
scale deep contextual convolutional network, which can
fully utilize the local and global contextual information

of the entire scene to each pixel, thereby enriching the
semantic information of the image. Wang et al. [17]
proposed axial self-attention to treat local regions as a single
row or column of feature maps. CSWin Transformer [18]
proposed cross-window self-attention, considered a multi-
row and multi-column expansion of axial self-attention.
Guo et al. [3] proposed multi-modal explicit sparse
attention networks (MESAN) to efficiently filter features
on feature maps using a ranking and selection method.
Although these methods perform well, the dependencies
of the modeled self-attention layers and the information
interaction between windows are still insufficient.The LSAT
model utilizes a novel image local modeling approach,
significantly different from previously studied local self-
attention mechanisms. We design local windows to model
image self-attention to help locate critical regions of the
image while designing local windows to interactively
capture rich image feature information (relational properties
of different locations and objects).

3Method

The LSAT model first introduces the extraction and encod-
ing of image and question features, secondly introduces the
mechanism of local self-attention in the decoder in detail,
and finally describes modality fusion and answer prediction.
The overall architecture of LSAT is shown in Fig. 2.

3.1 Feature extraction of question and image

Grid/Region image feature We use grid and regional visual
features in image feature extraction. In the VQA task, most
existing methods use regional visual features. However,
compared with regional visual features, grid visual features
contain more image information, so this paper uses grid
or regional image features to verify the effectiveness of

Fig. 2 Overall flowchart of the Local Self-Attention in Transformer (LSAT). Image feature extraction uses regional image features or grid image
features
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the LSAT model. The grid visual features are extracted
employing the visual backbone network ResNext152 [11]
pre-trained on the Visual Genome dataset [48]. When
extracting grid features, the input image is first padded to
16×16. Then the input image features are pooled using
a method with a convolution kernel size of 2×2 and a
stride of 2, and the final resolution of grid visual features
is 8×8. Extraction of visual region features is a bottom-up
approach [12]. We use Faster R-CNN (with ResNet-101 as
its backbone) pre-training from the Visual Genome dataset
to extract regional image features. A confidence threshold
is set for the anchor box of the detected object selection
probability, and a dynamic number of visual objects mR ∈
[10, 100] can be obtained. The i-th regional visual feature
of the input image is xr

i ∈ R
2048, and the available feature

matrix after convolution pooling all regional visual features
is XR ∈ R

m×2048.

Question feature For each input question, we first tokenize
and crop each question to a maximum of 14 words and
pad with 0 if there are less than 14 words when the model
calculates. Then using the 300-D GloVe word embedding
algorithm pre-trained on a large-scale corpus, each word in
the question is further converted into a vector to obtain a
word sequence of size n×300, where n×300 is the number
of words in the question. Finally, the word vector is input
into the GRU network to obtain the final question feature
matrix Y ∈ R

n×512.

3.2 Enocder and decoder

The LSAT model uses the encoder and decoder structure to
model the question and image features. This section mainly
introduces the decoder’s principle of using the local self-
attention mechanism. As shown in Fig. 3, considering the
small number of input question words, it is the same as
related research [2, 10]. We model the question with a global
self-attention mechanism in the encoder and model the
image with a local self-attention mechanism in the decoder
to capture richer visual information.

3.2.1 Encoder

As shown on the left of Fig. 3, LSAT uses proportional dot-
product attention in the encoder for self-attention learning
to learn fine-grained question features. The encoder consists
of N stacked self-attention (SA) units, each with two sub-
layers. The first sublayer is a multi-head attention layer,
and the second sublayer is a fully connected feedforward
layer. The first SA unit takes the question feature Y =
{y1, y2, · · · yn} ∈ R

n×dv as input, and its multi-head
attention layer learns the correlation between each word pair
< yi, yj >. The feedforward layer of the SA unit further

transforms the output of the previous sub-layer through two
fully connected layers ReLU and Dropout. The output of the
previous SA unit is used as the input of the next SA unit,
and the output of the encoder is concerned with the question
feature is represented by F1, and the specific equation is as
follows:

QE = YWQ, KE = YWK, VE = YWV , (1)

F1 = MHA(QE, KE, VE)

= concat (head1, head2, · · · , headh)WO, (2)

headi = Att
(
QEW

Qe

i , KEW
Ke

i , VEW
Ve

i

)
, (3)

Si = sof t max

⎛
⎜⎝

(
QEW

Qe

i

)
·
(
KEW

Ke

i

)T

√
dh

⎞
⎟⎠ , (4)

headi = Si

(
VEW

Ve

i

)
, (5)

where W
Qe

i , W
Ke

i and W
Ve

i are learnable parameter
matrices, and concat (·) represents connecting all heads. In
order to facilitate the calculation, dh = dv/h is usually
set, and the softmax function is used for normalization. The
question features obtained by the absolute encoder can be
defined as:

FFN (F1) = max (0, F1W1 + b1)W2 + b2, (6)

where Wi and bi represent weight coefficients and biased
variable respectively.

3.2.2 Decoder

This section details the principle of the local self-
attention mechanism in the decoder. The decoder in
Fig. 3 is composed of LSA and LSGA units, respectively.
The LSA unit is the critical component of the LSAT
model. The LSA unit first employs a local window
to realize effective modeling of image self-attention
learning for the input image. The LSA unit can obtain
the image feature information with rich semantics. The
LSGA unit achieves proper attention to key regions of
the image according to the semantic features of the
question input by the encoder. Figure 4 compares the
global self-attention and local self-attention mechanisms,
respectively. The standard decoder uses the global attention
mechanism to model the input image features. The decoder
mainly models image features rich in input semantic
information. The disadvantage of global attention is that
it is challenging to realize the attention of the local
domain information of the image, and the local domain
information is often the key to answering the input question
correctly. Furthermore, modeling image features with global
self-attention introduces much-fragmented information.
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Fig. 3 Schematic diagram of
implementation of encoder and
decoder architecture. XG, XR

and Y represent visual features
and question features,
respectively. SA represents a
Self-Attention unit in the
encoder. LSA and LSGA
represent Local Self-Attention
and Local Self-Attention Guided
unit respectively in the decoder.
Add & Norm represent addition
and layer normalization,
respectively, and FFN is a
feedforward network

Fig. 4 (a) Global self-attention
mechanism in decoder. (b) Local
self-attention mechanism in
decoder
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Therefore, the decoder in the LSAT model utilizes local self-
attention to achieve interactive modeling learning within
and between windows. Specifically, the local self-attention
mechanism divides a global window of image feature size
t into m local windows, where each image feature block
contains t/m local image features. We propose two forms to
model local self-attention mechanisms. As shown in Fig. 5
(b), the image is modeled employing local pixel feature
blocks instead of global image attention features. The
local self-attention mechanism computes the interactions
between all image features within each feature block
when modeling visual attention within each local image
feature. The local self-attention mechanism calculates the
interaction between each feature block and all image
features within adjacent feature blocks when modeling
visual attention between feature blocks. The information of
local pixels can be used to focus on the domain information,
thereby capturing richer visual context information.

The decoder part of the Transformer model is shown
on the right side of Fig. 3. The decoder consists of
N stacked identical LSGA (local self-guided attention)
units. The decoder consists of N stacked identical Local
Self-Attention (LSA) and Local Self & Guided-Attention
(LSGA) units. The input region or grid visual features
are denoted as XR = {

xr
1, xr

2, · · · , xr
mR

} ∈ R
mR×dv

or XG =
{
x

g

1 , x
g

2 , · · · , xr
mg

}
∈ R

mg×dk , respectively.

When modelling image features, self-attention to local
image features is achieved using a proportional dot-product
attention unit. We take the grid visual feature as an example,
which is expressed explicitly as:

QD = XGWQ, KD = XGWK, VD = XGWV , (7)

Ai =
(

sof t max

(
QDKT

D√
dh

)
VD

)
, (8)

Hi = LA (A, w, f, b) , (9)

where w=t/m represents the local window size, f represents
backward attention, and b represents forward attention. For
example, when f=2 is set, it means to pay attention to the

number of front/back adjacent windows. Considering the
computational cost, we set f and b to be 0 or 1, respectively,
in our experiments. If f=1 is set, the partial window focuses
on the previous window and interacts with it. In the same
way, if b=1 is set, it means that the local window pays
attention to a window behind and interacts with it. If f=b=1
is set at the same time, it means that the windows can follow
each other and learn interactively.

As shown in Fig. 5, global self-attention and local
window attention under different settings are compared,
respectively. Among them, Fig. 5(a) represents the global
self-attention mechanism of traditional methods in mod-
elling visual feature self-attention, calculating the interac-
tion between all image features. Figure 5(b) shows that the
local self-attention only pays attention to the local window
and does not interact with other windows for modelling
learning. Figure 5(c) shows that interactions with subse-
quent adjacent windows are also calculated in addition to the
current window’s internal self-attention. Similarly, Fig. 5(d)
shows that in addition to the self-attention of the current
window, the interaction with the previous adjacent window
is also calculated. Figure 5(e) shows that in addition to the
current window self-attention, the interaction modelling of
the current window’s adjacent front and back windows is
also calculated.

The LSGA unit obtains the question features through
the encoder to guide the decoder modeling to focus on
key image features. In order to improve and improve the
expressiveness of image features, the model can obtain
feature representations in different locations and subspaces.
In the decoder, h parallel attention heads are employed,
and each head scales the attention individually using the
dot-product attention (as in (4)). Finally, all the heads are
connected to get the image feature representation:

F2 = concat (H1, H2, · · · , Hh) WO, (10)

FFN (F2) = max (0, F2W3 + b3) + b4, (11)

where Wi and bi denote the learnable parameter matrix and
bias weights, Hi denotes the i-th local self-attention image
feature, and concat (.) denotes concatenating all attention

Fig. 5 Comparing the global attention pattern and the configuration of local self-attention patterns in our LSAT
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heads. The image features obtained by the multi-head self-
attention mechanism and the original input grid image
features are added to obtain Q′

D:

Q′
D = LN

(
XG + FFN (F2)

)
, (12)

F3 = MHAtt
(
Q′

D, K ′
E, V ′

E

)

= concat (head1, head2, · · · , headh) WO, (13)

headi = Att
(
Q′

DW
Qd

i , K ′
EW

Ke

i , V ′
EW

Ve

i

)
, (14)

where W
Qd

i , W
Ke

i and W
Ve

i represent learnable parameter
matrices, and LN (·) represents layer normalization. The
definition of the Att (·) function is the same as that of (4).

3.3 Feature fusion and answer prediction

The image and question features output by the encoder
and decoder are fused to predict the correct answer.
Following the method in [2], we use a two-layer MLP

(e.g., FC(512)-ReLU -Dropout(0.1)-FC(1)). The network
structure compresses two different features to the same
dimension and fuses question Y with regional visual feature
XR or grid visual feature XG. In order to more succinctly
present this process, a visual grid feature is provided as
an example. Specifically, input question feature Y is input
into the MLP network layer to align the language and
visual modalities. Then the softmax function calculates the
attention weight value, and finally, multiplies and adds each
corresponding attention weight to get the final question
feature. Similarly, the fusion of question features and
regional visual features is similar. This is shown in (15) and
(16):

λ = sof t max
(
MLP

(
Y (l)

))
, (15)

Ȳ =
n∑

j=1

λiy
(l)
j , (16)

Where λ = [λ1, λ2, · · · , λn] ∈ Rn is the question of
learning weight, the visual grid and area features can be
obtained as X̄G and X̄R , respectively. Finally, the fusion
feature can be obtained by the linear fusion method, and the
specific expression is shown in (17):

FG = layerNorm
(
WT

xg X̄
G + WT

y Ȳ
)

, (17)

FG denotes the fusion feature of visual grid features,
question features, WT

xg and WT
y the learning parameter

matrix. Finally, FG is classified and predicted by the
nonlinear function ReLU and sigmoid function, and binary
cross-entropy (BCE) [25] is used as a loss function during
training.

4 Experiments and discussion

4.1 Datasets

VQA 2.0 The LSAT model is trained, validated, and tested
on the VQA 2.0 [56] dataset, which is based on Microsoft
COCO image data and is currently the most commonly
utilized large-scale dataset for evaluating the performance
of VQA models. The model- tries to minimize the
effectiveness of the model learning dataset bias by balancing
the answers to each question. The VQA 2.0 dataset contains
1.1M questions posed by humans. It consists of three parts:
training set, validation set, and testing set. Each valid piece
of data is represented by a three-element question and
answer group composed of the dataset (image, question,
answer). The training set contains 82,783 images and
443,757 question and answer groups corresponding to the
images. The verification set includes 40,504 images and a
corresponding 214,354 question and answer groups, and the
testing set contains 81,434 images and 447,793 questions
and answers groups. According to the categories of answers,
questions can be divided into three types: yes/no (Yes/No),
count (Number), and Other. We show the results on test-
dev and test-standard on the VQA evaluation server. To
be consistent with ‘human accuracy’, the accuracy matric

is min
(

#humans that provided that answer
3 , 1

)
, showing that

an answer is regarded as 100% accurate if at least three
annotations exactly match the predicted answer.

CLEVR CLEVR [24] tests the reasoning ability of visual
diagnostic datasets, including counting, comparing, logical
reasoning, and storing information in memory. It consists
of 100,000 3D images of random shapes, sizes, materials,
colors, and in rendered images in the dataset (70,000 for
training, 15,000 for validation, and 15,000 for testing).
The dataset contains nearly one million natural language
questions, and 853,554 unique questions. Questions can
be grouped into five general types: Exist, Count, Compare
Numbers, Query Attributes, and Compare Attributes. There
are 699,989 training questions, 149,991 validation, and
149,988 testing questions. The size of the vocabulary
questions and answers is 82 and 28, respectively.

4.2 Experimental setup

All experiments in this paper are based on Linux Ubuntu
system, the GPU is NVIDIA TITAN V 12GB, the deep
learning framework is Pytorch, and the CUDA version is
10.0. For a fair comparison, LSAT follows most of the
parameter settings in MCAN and TRAR. The question
encoder adopts GRU, the dimension is 512, and the input
question word is initialized by GLOVE embedding, which
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size is set to 300. The encoder and decoder layers in
Transformer are both N = 6, used for the question and visual
modeling, respectively, and the hidden dimension size is
1024. To effectively illustrate our method’s effectiveness,
we conducted experiments with regional visual features and
grid visual features, respectively. The question words and
image features are insufficient to fill 14 and 100 with 0
padding. The number of regional visual features mR is
set to 100, and the number of divided windows is wR ∈
[10, 20, 25, 50]. The number of grid visual features mG

is set to 64, and the corresponding number of division
windows is wG ∈ [4, 8, 16, 32]. The CLEVR dataset uses
more minor image grid features, the number of grid features
mC is set to 224, and the corresponding local window
is divided into wC ∈ [28, 56, 112]. The model training
parameters are optimized using the Adam [23] optimizer,
where β1 = 0.9 and β2 = 0.999 are set. We adopted
a learning rate warm-up strategy, where the learning rate
is set to min

(
2.5te−5, 1e−4

)
, where t is the current epoch

number starting from 1. After 10 epochs, the learning rate
is decayed by 1/5 every 2 epochs. The number of training
epochs on the VQA 2.0 and CLEVR datasets is 13 and 16,
respectively. The batch size is set to 64 and uses the binary
cross-entropy loss (BCE) function. A gradient clipping
strategy with a threshold of 0.25 is used to prevent exploding
gradients during training. We use weight normalization and
dropout for each linear map to stabilize training and prevent
overfitting.

4.3 Ablation analysis

In this section, we mainly discuss the test results of the
LSAT model on the VQA 2.0 and CLEVR benchmark
datasets. The region and grid visual features are employed
for training and testing on the VQA 2.0 dataset, respectively.
Different sizes of windows and interaction methods are set
for specific image feature sizes to test the impact on the
model performance. The train+val+vg method was used to
train on the VQA 2.0 dataset and tested on the test dataset,
and get the results. Visual Genome (VG) is an ongoing effort
to connect structured image concepts and language datasets.
We utilize the train+val method to train and test On the
CLEVR dataset. We explore the effect of the local self-
attention mechanism on grid visual features in Section 4.3.1
and the impact on regional visual features in Section 4.3.2.
Section 4.3.3 studies the effect of the local self-attention
mechanism on the CLEVR dataset.

4.3.1 Grid image features with local self-attention

As shown in Fig. 6, we report our experimental data results
with different interaction modes and different window
sizes. Where ‘0-0’ denotes f=0, b=0, each local window

only realizes the self-attention learning modeling within
the window. It can be seen from the experimental results
that the local window is used but the interaction between
neighboring windows is not modeled. The experimental
results are not very good. ‘0-1’ represents f=0, b=1, which
is to model the interactive attention learning inside each
local window and between its preceding neighboring local
windows. ‘1-0’ means f=1, b=0, which is to model the
interactive attention learning inside each local window and
adjacent local windows. ‘1-1’ means f=b=1, (i.e., modeling
interactive attention learning inside each local window and
the neighboring local windows in front and behind it). The
experimental results show that better results can be achieved
in modeling the interaction between the local window and
the adjacent windows before and after. For example, when
the window size is set at w=32, the highest accuracy is
71.67% when answering the question type ‘All’.

Table 1 lists the best experimental results with differ-
ent interaction methods and window sizes and the experi-
mental results for comparison of the advanced benchmark
TRAR Base model. TRAR Base [10] represents a baseline
model based on the traditional Transformer structure global
attention mechanism and uses grid visual features as input.
In order to facilitate writing, use LSATG-[(f, b),w] to rep-
resent the experimental method using grid image features in
different windows and different interaction methods. Where
f =b=1 indicates backward or forward attention, w denotes
the window size. In particular, the best experimental results
can be obtained when both the front and rear of the local
window are concerned with each other, and the test result
of answering the question type ‘All’ on test-std is 71.94%.
The above experiments demonstrate the effectiveness of the
LSAT model on grid visual features.

4.3.2 Region image features with local self-attention

This section discusses the experimental effect of using the
local self-attention mechanism on regional visual features.
We use different window sizes and interaction methods
to explore the effectiveness of local self-attention. Since
the number of regional features is mR ∈ [10, 100] , the
window size is set to wR ∈ [10, 20, 25, 50] .The properties
of the experimental parameters f and b discussed in this
section are defined similarly as in Section 4.3.1. As shown
in Fig. 7, we model the interaction between windows and
lean forward or backward attention. Although the accuracy
of the LSAT model in answering the question types ‘Other’
and ‘All’ is significantly improved, the experimental effect
of regional visual features is not as good as that of grid
visual features. We think this is because the number of
regional visual features is not fixed. The grid feature is to
grid all the image features. The number of features is fixed,
and the number of features containing visual information
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(a) (b)

(d)(c)

Fig. 6 The experimental results of the LSAT model are based on
grid visual features on the VQA 2.0 dataset, and the windows
sizes are set to wG ∈ [4, 8, 16, 32]: (a) represents the accuracy
of “Yes/No” using different interaction methods, (b) represents the

accuracy of “Number” using different interaction methods, (c) rep-
resents the accuracy of “Other” using different interaction methods,
and (d) represents the accuracy of “All” using different interaction
methods

related to correctly answering the question is relatively
stable. Therefore, the local self-attention mechanism is
more suitable for a model using grid features. This also
proves the necessity of modelling the window’s interior and
interaction with other windows.

Table 2 lists the experimental results of using a the
window size w of 50 and under different interaction modes
to compare with MCAN [2]. MCAN is a model that uses the
global self-attention mechanism in traditional transformers
under regional visual features. For the convenience of

Table 1 Represents the best
results using local attention
with different interaction styles
and window sizes under visual
grid features

Test-dev Test-std

Model Yes/No Number Other All All

TRAR Base [10] 87.43 53.80 61.81 71.45 −
LSATG-[(0,0),32] 87.62 52.39 61.66 71.30 −
LSATG-[(0,1),16] 87.61 54.18 61.98 71.66 −
LSATG-[(1,1),32] 87.74 54.51 61.83 71.67 71.94

LSATG-[(1,0),16] 87.54 54.25 61.85 71.57 −
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(a) (b)

(c) (d)

Fig. 7 The size of the window is set to wR ∈ [10, 20, 25, 50]: (a)
represents the accuracy of ‘Yes/No’ using different interaction meth-
ods, (b) represents the accuracy of ‘Number’ using different interaction

methods, (c) represents the accuracy of ‘Other’ using different interac-
tion methods, and (d) represents the accuracy of ‘All’ using different
interaction methods

writing, LSATR-[f-b,wR] represents the use of different
local windows and interaction methods under the regional
visual feature. When f or b is set to 1, there is an interaction
between windows. Otherwise, there is no interaction. The
experimental results in Table 2 show that when only the
a local window is used without interaction, the results are

better than in the MCAN model, where the LSATR-[0-0,50]
of test result on the test-std dataset is 71.14% ( 0.24% higher
than MCAN). We believe that the critical target features
detected using regional visual features are concentrated in
a specific image region. The local self-attention mechanism
can more effectively locate the target region. Therefore,

Table 2 Represents the best
results using local attention
with different interaction styles
and window sizes under
regional image features

Test-dev Test-std

Model Yes/No Number Other All All

MCAN [2] 86.82 53.26 60.72 70.63 70.90

LSATR-[(0,0),50] 86.87 53.54 60.91 70.69 71.14

LSATR-[(0,1),50] 86.74 53.46 60.88 70.69 70.93

LSATR-[(1,1),50] 87.00 53.43 61.04 70.87 70.99

LSATR-[(1,0),50] 87.06 53.32 61.04 70.88 71.13
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only modelling the interior of the local window is better than
that of the MCAN model, and the experimental results in the
case of interaction also exceed the MCAN baseline model,
which fully demonstrates the effectiveness and feasibility of
the LSTA model.

4.3.3 Local self-attention on CLEVR

This section mainly discusses the experimental results using
the local attention mechanism on the CLEVR dataset.
The images in the CLEVR [24] dataset have 224×224
grid image features, and we use different windows and
interaction methods to test the model effects on the CLEVR
dataset. As shown in Table 3, the window size was set
to 112, 56, and 28, respectively, to compare with the
TRAR Base model in different interaction modes. LSATC-
[f -b, w] is defined as the size of the global image feature
window in the CLEVR dataset, and is 224, and the local
window size can be divided under different interaction
methods as w. f -b represents the interaction mode before
the window, which is the same as the definition used in
the above experiment. Table 3 shows that when the window
size is set reasonably, the effect of using the local self-
attention mechanism is significantly better than the global
self-attention model TRAR Base [10] model even without
interaction(0-0). Since the image feature information in the
CLEVR dataset is more fragmented, it can perform well
when modeled with local windows. It also illustrates the
critical role of the local self-attention mechanism in the
end-to-end visual reasoning task.

4.4 Comparison with state-of-the-art

4.4.1 Comparison on VQA 2.0 dataset

The experimental data are based on the VQA 2.0 dataset
test results. We compare the effects of the LSAT with the
current advanced VQA methods. As shown in Table 4, the
LSAT model surpasses the performance of these traditional
Transformer-based VQA methods and achieves new state-
of-the-art performance on this benchmark. All results were
obtained by a single model. Table 4 is divided into three
blocks in the row. The first part summarizes several models
that do not use Faster-RCNN to extract features, and the
second part uses pre-trained Faster-RCNN to detect salient
objects while using Glove for word vector encoding. Our
results use the same pre-trained Faster-RCNN and Glove
models to experiment with the last block’s grid and region
visual features. The experimental results demonstrate the
effectiveness and applicability of our method.

Among these state-of-the-art VQA models, Bottom-
up [25] and Bottom-up+MFH [25] are models that
combine regional visual features with question-guided
visual attention, which takes into account the natural
underpinnings of attention. BAN [28] is a bilinear attention
network that considers bilinear interactions between input
multimodalities to fully exploit question and image feature
information. BAN-Counter [28] combines BAN with
Counter [28], a neural network component that allows
robust counting between visual object proposals, further
improving the model’s accuracy on counting metrics.

Table 3 Comparison of
experimental results using
different window sizes and
interaction methods on the
CLEVR dataset

Model f-b All Count Exist CN QA CA

TRAR Base [10] − 98.54 96.34 99.24 98.60 99.43 98.93

LSATC -[f-b,28] 0-0 98.55 96.30 99.20 98.58 99.46 99.13

0-1 98.59 96.45 99.26 98.75 99.52 98.96

1-0 98.30 95.79 99.13 97.86 99.44 98.81

1-1 98.27 95.40 99.18 98.51 99.50 98.80

LSATC -[f-b,56] 0-0 98.72 96.81 99.31 98.77 99.52 99.12

0-1 98.63 96.53 99.21 98.76 99.48 99.14

1-0 98.52 96.04 99.30 98.83 99.48 99.11

1-1 98.63 96.53 99.25 98.83 99.50 99.02

LSATC -[f-b,112] 0-0 98.50 96.22 99.15 98.69 99.50 99.13

0-1 98.54 96.49 99.26 97.88 99.50 98.96

1-0 98.55 96.10 99.22 98.68 99.46 99.06

1-1 98.41 95.61 99.22 98.78 99.52 99.02

CI, QA, CA stand for Count Integer, Query Attribute and Compare and Compare Attribute, respectively
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Table 4 Performance
comparison results on VQA 2.0
with SOTAs

Test-dev Test-std

Model Yes/No Number Other All All

Language only [19] − − − − 44.26

LSTM+CNN [19] − − − − 54.22

MCB reported in [19] − − − − 62.27

DCN [36] 83.50 46.60 56.72 66.60 67.00

Bottom-up [25] 81.82 44.21 56.05 65.32 65.67

Bottom-up+MFH [25] 84.27 49.56 59.89 68.76 −
MFH [29] 85.31 49.56 59.89 68.76 −
BAN [28] 85.42 50.93 60.26 69.52 −
BAN-Counter [28] 85.42 54.04 60.52 70.04 70.35

VRR [34] 83.31 45.51 58.41 67.20 67.34

DFAF [37] 86.09 53.32 60.49 70.22 70.34

MuRel [50] 84.77 49.84 57.85 68.03 68.41

ReGAT [49] 86.08 54.42 60.33 70.27 70.58

MCAN [2] 86.82 53.26 60.72 70.63 70.90

TRAR Base [10] 87.43 53.80 61.81 71.45 −
LSAT-R(ours) 87.06 53.32 61.04 70.88 71.13

LSAT-G(ours) 87.74 54.51 61.83 71.67 71.94

The blackened part indicates that the accuracy is the highest among all the comparison data, emphasizing
the meaning of higher accuracy than other data

DCN [36], DFAF [37] and MCAN [2] have similar network
architectures, as these models all build a deep co-attention
network to mine dense interactions among multimodalities
so that the models achieve the best performance. MuRel [50]
and ReGAT [49] utilize graph neural networks to build
deep inference networks, which build graph inference
networks based on relationships between objects and
achieve impressive experimental results, especially on the
type for “Number” metrics. TRAR Base [10] is a model that
employs the global self-attention mechanism in a traditional
transformer under grid visual features, which can further
refine image features by employing grid visual features.
We utilized the local self-attention mechanism to capture
richer visual context information based on regional and
grid visual features. The performance of our proposed
LSAT model compared with current state-of-the-art visual
question answering models on the VQA 2.0 dataset is
shown in Table 4. The MCAN model is the champion
model of the 2019 VQA Challenge. Compared with the
baseline model MCAN, the LSAT-R model has higher
accuracy. The accuracy of answering the question type “All”
is improved by 0.25% and 0.20% on test-dev and test-std,
respectively. Compared with the benchmark TRAR Base
model, the LSAT-G model is also significantly improved,
and the accuracy of answering the question type “All” is
improved by 0.22% in test-dev. It is worth noting that the
accuracy of the LSAT model in the “Number” type has been

significantly improved, and it surpassed the existing models
BAN-Counter [28] and ReGAT [49], which are good at
answering the count type.

4.4.2 Comparison on CLEVR dataset

To further evaluate the generalization ability of LSAT, we
also validated LSAT on the another widely used benchmark,
CLEVR. CLEVR is primarily a visual reasoning dataset,
and the questions involve complex reasoning. As shown in
Table 5, the LSAT model outperforms existing state-of-the-
art models on all question attribute accuracy metrics tested
on the CLVER dataset. FILM [51] is very effective for
visual reasoning models, demonstrating that answering image-
related questions requires multi-step reasoning. TBD [52]
proposes a complex visual question answering model for
visual primitive reasoning. The recently proposed SNAMT
[53] model is based on an encoder and decoder structure,
which can adaptively adjust the question feature encoding
and layout, and decoding by considering intermediate
question results. v-VRANet [54] proposes a novel encoder-
decoder visual relational reasoning module that can reason
about object-relational visual and textual information
guided by textual information. RWSAN [55] proposes a
residual weight-sharing attention network based on the
encoder and decoder structure, which achieves competitive
performance with lower cost and fewer parameters. The
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Table 5 Comparison of
experimental results using
different window sizes and
interaction methods on the
CLEVR dataset

Methods All Count Exist CN QA CA

Human [24] 92.60 86.70 96.60 86.40 95.00 96.00

FILM [51] 97.60 94.50 99.20 93.80 99.20 99.00

TBD [52] 98.70 96.80 98.90 99.10 99.40 99.20

SNAMT [53] 96.60 91.50 97.90 98.70 98.60 98.00

v-VRANet [54] 96.10 93.40 97.10 95.10 97.40 96.80

RWSAN [55] 98.42 96.34 99.27 97.66 99.45 98.71

TRAR Base [10] 98.54 96.34 99.24 98.60 99.43 98.93

LSAT-C (ours) 98.72 96.81 99.31 98.77 99.52 99.22

The blackened part indicates that the accuracy is the highest among all the comparison data, emphasizing
the meaning of higher accuracy than other data

TRAT-Base [10] model is a global self-attention visual
reasoning model based on an encoder and decoder. The
experimental results in Table 5 show that the LSAT
model employing the local self-attention mechanism for
visual feature inference outperforms existing state-of-the-
art models, proving that the LSAT model has good
performance.

4.5 Qualitative analysis

Figure 8 compares global/local self-attention for regional
and global/local self-attention for grid visual features by
visualization. As shown in Fig. 8, when global self-attention
is used for modelling, although the image has a wide
range of attention, it also contains considerable noise

and irrelevant information. Especially when utilizing grid
visual features, the image is divided into different feature
blocks. Although the image features are fine-grained, much
irrelevant information and noise are introduced in the self-
attention learning, which affects the model performance.
As shown in Fig. 8(a), when using global self-attention,
the regional visual features focus on the person’s action
“eat” and the integrity of the “pizza” part, resulting in the
wrong final answer. The main focus of the global mesh
feature is the integrity of the entire pizza. When using
a local self-attention mechanism, interactive learning can
be modelled both within a window and across windows.
The model can pay attention to the action of ‘eat’ and the
change of ‘pizza’ simultaneously to accurately understand
the image feature information. Although the final answer

Fig. 8 Model visualization results, source images taken from VQA 2.0 dataset [56]. We show ground-truth answers (GT-A), and region global
answers (RG-A) region local answers (RL-A). At same time, we also show grid global answers (GG-A) and grid local answers (GL-A)
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of the model in Fig. 8(b) is correct, we can see from the
figure that the object regions that the model pays attention
to are different. Many visual objects in the region are
concerned with the global self-attention redundant, which
will increase the computational complexity of the model
and reduce performance of the model. When using the
global grid visual feature in Fig. 8(c), the image features
are more fine-grained because the grid visual feature is
used. The model mainly focuses on learning the target
objects in the ‘plate’ so that the model understands that
there is a deviation in locating the target object. Figure 8(d)
examines the counting ability of the model. The figure
shows that although the global self-attention using grid
visual features gives the correct answer type, it is not
the correct answer. It is also wrong in other examples.
For the counting problem, the model must not only focus
precisely on the target object in the image, but also deal
with some overlapping, tiny target objects. As shown in
Fig. 8, we employ the local attention mechanism in the grid
visual features. The model can precisely locate the counting
target and capture rich contextual information through the
mutual interaction between windows, effectively handling
some small, overlapping target objects, thereby improving
the model’s counting ability. Although our model does
not answer correctly, it can effectively approximate the
correct answer. The following visualizations demonstrate
the effectiveness and interpretability of the LSAT model.

5 Conclusion

Using global self-attention to model images in traditional
Transformers cannot capture rich contextual information
and also increases the model’s computational overhead.
This traditional approach also introduces considerable irrel-
evant information and noise. Accordingly, this paper pro-
poses an LSAT model based on a local self-attention
mechanism. LSAT reduces the introduction of irrelevant
information and noise by using adjustable local windows
and reduces the computational complexity of the model’s
global attention. In addition, LSAT can model the inter-
action between windows to better capture visual context
information with local information. To verify the effec-
tiveness of our method, we conducted validation tests on
two benchmark datasets, VQA 2.0 and CLEVR, utilizing
regional and grid visual features, proving the vital role of
the local self-attention mechanism in end-to-end visual task
reasoning. Finally, the superiority of the LSAT model is
demonstrated through ablation experiments and attention
visualization.

We hope that the local self-attention mechanism can be
widely used in future work developing the Transformer
vision field. The local attention window we designed is

a manually set local window with a fixed size. In future
research, we will explore a self-adjustable size of for the
window. Adapting sliding windows can help models to
better achieve self-attention learning.
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