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Abstract
Aiming at the identification problems arising for fractional-order Hammerstein-Wiener system parameter coupling, namely, the
difficulty of estimating the fractional order, low algorithm accuracy and slow convergence, an alternate identification method
based on the principle of multiple innovations is proposed. First, a discrete model of a fractional-order Hammerstein-Wiener
system is constructed. Second, an information matrix composed of fractional-order variables is used as the system input,
combined with the multi-innovation principle, and the multi-innovation recursive gradient descent algorithm and the multi-
innovation Levenberg-Marquardt algorithm are used to alternately estimate the parameters and fractional order of the model. The
algorithms are executed cyclically and alternately presuppose each other. Finally, the convergence of the overall algorithm is
theoretically analyzed, and the fractional-order Hammerstein-Wiener nonlinear system model is used to carry out numerical
simulation experiments to verify the effectiveness of the algorithm. Moreover, we apply the proposed algorithm to an actual
flexible manipulator system and perform fractional-order modeling and identification with high accuracy. Compared with the
methods proposed by other scholars, the method proposed in this paper is more effective.
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1 Introduction

Fractional calculus has become ubiquitous in an increasing
number of physical systems and industrial processes, such as
viscous materials [1], fluid mechanics [2], and advanced ma-
terials [3]. Many complex physical and industrial systems are
difficult to explain with traditional integer calculus, but the
introduction of fractional calculus can largely overcome this
difficulty. Therefore, fractional-order systems have absolute
advantages in modeling, identification and control compared
to integer order systems [4–6].

However, a known system model and parameters are pre-
requisites for a system to be accurately controlled. Therefore,
before controlling the system, we first need to obtain the mod-
el structure and parameters of the system by means of system
identification. Modeling and identification are particularly

important for applications involving practical systems, such
as batteries; hence, many scholars have explored and compre-
hensively summarized various modeling and identification
methods for lithium-ion batteries [7, 8]. Actual systems often
exhibit strong nonlinear characteristics, and block structure
mode l s such as the Hammers te in , Wiener , and
Hammerstein-Wiener models connect the nonlinear dynamic
part and the linear static part of a system to each other, so that
the nonlinear characteristics of the system can be described.

Regarding the modeling and identification of fractional-
order systems, a large number of researchers have addressed
these topics [9–12]. Zhang Qian and other scholars studied the
identification of fractional- order systems with colored noise,
combined the multi-innovation principle with the Levenberg-
Marquardt algorithm, and successfully applied their results to
a fractional-order Hammerstein system [13]. Later, on the ba-
sis of this previous research, these researchers adopted the
fractional-order Hammerstein method of separation identifica-
tion, and used a neuro fuzzy model to fit the nonlinear part of
the Hammerstein model, thus converting the identification of
the nonlinear system into a completely linear problem [14].
Rahmani et al. combined the Lyapunov method with a linear
optimization algorithm and applied it for the modeling and
identification of a fractional-order Hammerstein model [15].
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At the same time, other scholars have also combined intelli-
gent optimization algorithms with traditional classical identi-
fication algorithms for the identification of fractional-order
systems [16–18]. Hammar et al. applied the particle swarm
optimization algorithm for the parameter identification of the
state space model of a fractional-order Hammerstein system
[19]. Sersour et al. then extended this particle swarm optimi-
zation algorithm to propose an adaptive velocity particle
swarm optimization algorithm, which can successfully identi-
fy fractional-order discrete Wiener systems [20].

Most of the literature has focused on fractional- order
Hammerstein and Wiener systems. Compared with a
Hammerstein-Wiener system, these two types of systems have
simpler structures, and it is more difficult to fully express the
strong nonlinearity of more complex systems. Therefore, it is
very important to explore an identification method suitable for
fractional-order Hammerstein-Wiener systems.

Through a comprehensive analysis of the identification
methods for the transfer functions of fractional-order systems
in the above literature, the main problems encountered in sys-
tem identification are identified as follows: 1) There are many
parameters and variables to be identified, and they are coupled
with each other. 2) The estimation of fractional orders is dif-
ficult. 3) The algorithms converge slowly. 4) The algorithms
may not always successfully converge. Therefore, this paper
proposes a hybrid parameter identification algorithm based on
the multi-innovation principle. Previous scholars [21–24]
have proposed a multi-innovation least-mean-square algo-
rithm based on the principle of multi-innovation identifica-
tion. The basic principle of the multi-innovation identification
method is to expand the scalar innovation into a multi-
innovation vector, and the innovation vector into an innova-
tion matrix, allowing both the current data and past data to be
used. In this paper, it is shown that this multi-innovation series
identification algorithm can achieve improved convergence
and improved accuracy of parameter estimation; therefore,
this paper introduces the multi-innovation principle into the
proposed identification algorithm. The main contributions of
this paper are as follows: 1) A fractional-order discrete
Hammerstein-Wiener system model is constructed. 2) A
multi-innovation recursive gradient descent algorithm is de-
signed to estimate the model parameters with an information
vector composed of fractional-order variables as input, there-
by adapting the Levenberg-Marquardt algorithm to estimate
the fractional order. The modeling efficiency is improved by
using two multi-innovation algorithms interactively. 3) Based
on the convergence theorem, the performance of the proposed
algorithm is analyzed.

The main structure of this paper is as follows: Section 2
introduces background knowledge on fractional calculus and
describes the fractional-order Hammerstein-Wiener system
model. Section 3 introduces the multi-innovation gradient de-
scent algorithm used to estimate the parameters of fractional-

order nonlinear models. Section 4 proposes the multi-
innovation Levenberg-Marquardt algorithm to estimate the
fractional orders of nonlinear systems. Section 5 applies the
convergence theorem to analyze the performance of the pro-
posed algorithm. Section 6 presents a simulation case study.
Finally, a summary of this research and an outlook on future
research are given.

2 Problem formulation and preliminary

2.1 Fractional calculus

From different perspectives, researchers have obtained several
common forms of fractional calculus operators, including the
Grünwald-Letnikov (GL) fractional operators [25], the
Riemann-Liouville (RL) fractional operators [26] and the
Caputo fractional operators [27]. The GL-type fractional op-
erator for a discrete system that is used in this paper is defined
as follows:

Δαx khð Þ ¼ 1

hα
∑
k

j¼0
−1ð Þ j α

j

 !
x k− jð Þhð Þ ð1Þ

where 0 < α < 1 is the fractional order; k and h represent the
number of sampling times and the sampling time, respective-

ly; and
α
j

� �
is defined as follows:

α
j

 !
¼

1 for j ¼ 0

α α−1
� �

⋯ α− jþ 1
� �
j!

for j > 0

8><>: ð2Þ

This can be written in recursive form as:

β 0ð Þ ¼ 1

β jð Þ ¼ β j−1ð Þ
j− α −1
� �

j
for j ¼ 1;…; k

8><>: ð3Þ

where β jð Þ ¼ −1ð Þ j α
j

� �
. To facilitate simulation and con-

cise expression, Eq. (1) can be written as follows according to
Eqs. (2) and (3):

Δαx khð Þ ¼ 1

hα
∑
k

j¼0
β jð Þx k− jð Þhð Þ ð4Þ

Under the assumption that the system sampling time is h =
1, Eq. (4) can be organized into the following equation:

Δαx kð Þ ¼ ∑
k

j¼0
β jð Þx k− jð Þ ð5Þ
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In this paper, the fractional calculus operator expressed in
Eq. (5) will be used.

2.2 Fractional-order linear model

For fractional-order systems, there are different linear model
descriptions. This paper considers the following linear discrete
transfer function model:

y kð Þ ¼ G zð Þu kð Þ ¼ B zð Þ
A zð Þ u kð Þ ð6Þ

where u(k) and y(k) are the system input and output, respec-
tively. A(z) and B(z) are the denominator and numerator poly-
nomials of the transfer function, A zð Þ ¼ a1z−α1 þ a2z−α2 þ⋯
þanaz

−αna a n d B zð Þ ¼ b1z−γ1 þ b2z−γ2 þ⋯þ bnbz
−γnb ,

where αiand γj (i = 1, 2, …, na, j = 1, 2, …, nb) are the
fractional orders of the corresponding polynomials, satisfying
αi ∈ R+ and γj ∈ R+, and z−1 is the backshift operator, that is,
z−1y(k) = y(k − 1).

Model (6) can be written in the following form:

∑
i¼1

na

aiz−αi y kð Þ ¼ ∑
i¼1

nb

biz−γi u kð Þ ð7Þ

When the fractional orders of the denominator and numer-
ator polynomials in (7) are completely different, the fractional-
order model is called a nonhomogeneous system; when the
fractional order of each polynomial is of the form αi ¼ i−α;
γi ¼ j−α i ¼ 1; 2…; na; j ¼ 1; 2…; nbð Þ (α is the order fac-
tor), the model is a same-dimensional system. The
fractional-order same-dimensional case is considered in this
paper.

The regression equation for Eq. (7) can be written as:

∑
i¼1

na

aiz−iþαy kð Þ ¼ ∑
i¼1

nb

biz−iþαu kð Þ ð8Þ

By introducing the fractional backward operator z−i + αx(t)
= Δαx(t − i), Eq. (7) can be written in the following form by
means of the discrete fractional operator Δ:

∑
i¼1

na

aiΔ
αy k−ið Þ ¼ ∑

i¼1

nb

biΔ
αu k−ið Þ ð9Þ

We will use Eq. (9) to describe the linear part of the
fractional-order Hammerstein-Wiener model.

2.3 Problem description

In a block-structure nonlinear model, the dynamic linear and
static nonlinear blocks are connected in series, in parallel or in
a feedback structure. Such a model can well describe the

nonlinear system of an actual process. The general structure
of a Hammerstein-Wiener system is shown in Fig. 1, where a
linear dynamic module is surrounded by two static nonlinear
modules at its input and output.

Specifically, the input-output relationship of the
Hammerstein-Wiener system can be expressed as:

y kð Þ ¼ A zð Þg y kð Þð Þ þ B zð Þ f u kð Þð Þ þ v kð Þ ð10Þ

In this equation, u(k) and y(k) are the input and output of the
system, respectively, and v(k) is the external noise of the sys-
tem. The nonlinear links can be represented by two static
nonlinear functions f(⋅) and g(⋅). The linear elements are rep-
resented by the polynomials A(z) and B(z) containing the
backshift operator z−1, i.e.,

A zð Þ ¼ a1z−α1 þ a2z−α2 þ⋯þ anaz
−αna ¼ ∑

i¼1

na

aiz−αi

B zð Þ ¼ b1z−γ1 þ b2z−γ2 þ⋯þ bnbz
−γnb ¼ ∑

i¼1

nb

biz−γi
ð11Þ

The two static nonlinear functions f(⋅) and g(⋅) are nonlinear
functions composed of several known basis functions, as
follows:

f u kð Þð Þ ¼ p1 f 1 u kð Þð Þ þ p2 f 2 u kð Þð Þ þ⋯þ pnp f p u kð Þð Þ
¼ ∑

i¼1

np

pi f i u kð Þð Þ

ð12Þ
g y kð Þð Þ ¼ q1g1 y kð Þð Þ þ q2g2 y kð Þð Þ þ⋯þ qnpgq y kð Þð Þ

¼ ∑
i¼1

nq

qigi y kð Þð Þ ð13Þ

where f 1 ⋅ð Þ;…; f np ⋅ð Þ are np known basis functions and g1 ⋅ð Þ
;…; gnq ⋅ð Þ are nq known basis functions.

Substituting the above two equations into Eq. (10), we
obtain:

y kð Þ ¼ ∑
i¼1

na

aiz−αi g y kð Þð Þ þ ∑
i¼1

nb

biz−γi f u kð Þð Þ þ v kð Þ ð14Þ

Substituting Eqs. (12) and (13) into Eq. (14) yields the
following expression for the description of the entire system:

y kð Þ ¼ ∑
i¼1

na

aiz−αi ∑
j¼1

nq

q jg j y kð Þð Þ þ ∑
i¼1

nb

biz−γi ∑
j¼1

np

p j f j u kð Þð Þ

þ v kð Þ ð15Þ

In this paper, the fractional-order discrete system is consid-
ered to be a symmetric system, that is, αi ¼ i−α; γi ¼ j−α,
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with Δ representing the differential operator. Thus, Eq. (15)
can be written as:

y kð Þ ¼ ∑
i¼1

na

ai ∑
j¼1

nq

q jΔ
αg j y k−ið Þð Þ þ ∑

i¼1

nb

bi ∑
j¼1

np

p jΔ
α f j u k−ið Þð Þ þ v kð Þ

¼ q1 ∑
i¼1

na

aiΔ
αg1 y k−ið Þð Þ þ⋯þ qnq ∑

i¼1

na

aiΔ
αgnq y k−ið Þð Þ

þ p1 ∑
i¼1

nb

biΔ
α f 1 u k−ið Þð Þ þ⋯þ pnp ∑

i¼1

nb

biΔ
α f np u k−ið Þð Þ þ v kð Þ

ð16Þ

The parameter vectors are defined as:

a ¼
h
a1∈Rna ; b ¼

h
b1∈Rnb ;

p ¼
h
p1∈Rnp ; q ¼

h
q1∈Rnq

ð17Þ

To obtain unique model parameters, the parameters of the
model are normalized. For this purpose, the first coefficients
of the two nonlinear modules are fixed; that is, the first ele-
ments in the parameter vectors p and q take values of 1, p1 = 1
and q1 = 1. On this basis, Eq. (16) can be rewritten as:

y kð Þ ¼ ∑
i¼1

na

aiΔ
αg1 y k−ið Þð Þ þ q2 ∑

i¼1

na

aiΔ
αg2 y k−ið Þð Þþ

⋯þ qnq ∑
i¼1

na

aiΔ
αgnq y k−ið Þð Þ þ ∑

i¼1

nb

biΔ
α f 1 u k−ið Þð Þþ

p2 ∑
i¼1

nb

biΔ
α f 2 u k−ið Þð Þ þ⋯þ pnp ∑

i¼1

nb

biΔ
α f np u k−ið Þð Þ þ v kð Þ

ð18Þ

According to the definition of each parameter vector in Eq.
(17), Eq. (18) can be written in linear regression form as fol-
lows:

y kð Þ ¼ φT k;α
� �

θþ v kð Þ ð19Þ

where φT k;αð Þ is the information vector, which is

φT k;α
� �

¼
ψ k;α
� �

ζ k;α
� �24 35∈Rn; n ¼ nq � na þ np � nb ð20Þ

where whereψ k;αð Þ ¼ ψT
1 k;αð Þ;ψT

2 k;αð Þ;⋯;
�

ψT
nq k;αð Þ�

T∈Rnq�na ;

ψi k;αð Þ ¼ Δαgi y k−1ð Þð Þ;⋯;Δαgi y k−nað Þð Þ
h i

T;

i ¼ 1; 2;…; nq;

ζ k;αð Þ ¼ ζT1 k;αð Þ; ζT2 k;αð Þ;⋯; ζTnp k;αð Þ
h i

T∈Rnp�nb ;

and

ζ j k;αð Þ ¼ Δα f j u k−1ð Þð Þ;⋯;Δα f j u k−nbð Þð Þ
h i

T; j ¼ 1; 2;…; np.
θis the unknown parameter vector, which is

θ ¼ a; q2a;⋯; qnqa; b; p2b;⋯; pnpb
h iT

¼ q⊗a; p⊗b½ �T∈Rn;

where⊗ is the Kronecker product or direct product, defined as
follows: given A = [aij] ∈ Rm × n and B = [bij] ∈ Rp × q, A
⊗ B = [aijB] ∈ R(mp) × (nq).

In the following sections, an identification method is de-
signed in accordance with Eq. (19) to estimate the unknown
parameter vectors a, b, p, q and the fractional order α in a
fractional-order model.

3 Model parameter identification based
on the multi-innovation identification
principle

To enable the estimation of the parameters of Model (19), an
objective function is first given:

J θð Þ ¼ y kð Þ−φT k;α
� �

θ
h i2

ð21Þ

Fig. 1 Hammerstein-Wiener
nonlinear system structure
diagram
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According to the minimum value of the objective function
(21), it is necessary to take the extreme value of the estimated
parameter, and the following stochastic gradient descent algo-
rithm can be obtained:

bθ kð Þ ¼ bθ k−1ð Þ

þ μ kð Þφ k;α
� �

y kð Þ−φT
�
k;α

�bθ k−1ð Þ
h i

ð22Þ

where bθ kð Þ is the estimated parameter vector at the kth in-
stance of sampling. Notably, the fractional order α in (22) is
unknown, and the information vector φ k;αð Þ cannot be ob-
tained, meaning that algorithm (22) cannot be used. To over-
come this problem, the real fractional order α is replaced with

the fractional order estimate bα; then, by taking μ(k) = 1/r(k),

with r kð Þ ¼ r k−1ð Þ þ bφ k; bα� ���� ��� 2, the gradient descent al-

gorithm can be written as:

bθ kð Þ ¼ bθ k−1ð Þ þ
bφ k;

b
α

� �
r kð Þ y kð Þ−bφT�

k;
b
α
�bθ k−1ð Þ

� 	
ð23Þ

r kð Þ ¼ r k−1ð Þ þ bφ k;
b
α

� ����� ����2; r 0ð Þ ¼ 1 ð24Þ

In this equation, bφ k; bα� �
is the kth estimated information

vector, which is:

bφ k;
b
α

� �
¼

bψ k;
b
α

� �
bζ k;

b
α

� �
2664

3775∈Rn; n ¼ nq � na þ np � nb ð25Þ

where ψ k; bα� �
¼ bψT

1 k; bα� �
; bψT

2 k; bα� �
;⋯; bψT

nq k; bα� �h i
T∈Rnq�na ;

bψi k; bα� �
¼ Δ

bαgi y k−1ð Þð Þ;⋯;Δ
bαgi y k−nað Þð Þ

� 	
T; i ¼ 1; 2;…; nq;bζ k; bα� �

¼ bζT1 k; bα� �
;bζT2 k; bα� �

;⋯;bζTnp k; bα� �h i
T; and

bζ j k; bα� �
¼ Δ

bα f j u k−1ð Þð Þ;⋯;Δ
bα f j u k−nbð Þð Þ

� 	
;

j ¼ 1; 2;…; np.bθ kð Þ is the kth estimated parameter vector, bθ ¼
bq⊗ba; bp⊗bbh i

T∈Rn.

For the gradient descent algorithm of Eq. (23), its main
disadvantage is its slow convergence rate. To improve its per-
formance, the information length is introduced, and the multi-
innovation identification principle is adopted to improve the
identification performance. The principle of multi-innovation
identification is to enhance single-innovation correction tech-
nology by proposing a multi-innovation correction technique

in order to establish an identification method with multi-
innovation correction, which can significantly improve the
convergence speed of the identification algorithm. For identi-

fication, the single innovation e kð Þ ¼ y kð Þ−bφT k; bα� �bθ
k−1ð Þ is expanded to a P-dimensional multi-innovation,

E P; k;
b
α

� �
¼
h
y kð Þ−bφT

k;
b
α

� �bθ k−1ð Þ; y k−1ð Þ−bφT
k−1;

b
α

� �bθ k−1ð Þ;…;

y k−P þ 1ð Þ−bφT
k−P þ 1;

b
α

� �bθ k−1ð �T∈RL

The input-output innovation matrix bΦ P; k; bα� �
and the

stacked output vectorY(P, k) are defined as:

bΦ P; k;
b
α

� �
¼ bφ k;

b
α

� �
; bφ�k−1; bα�;…; bφ�k−P þ 1;

b
α
�� 	

∈Rn�P

ð26aÞ
Y P; kð Þ ¼ y kð Þ; y k−1ð Þ;…; y k−P þ 1ð Þ½ �T∈RP ð26bÞ

The P-dimensional multi-innovation error vector E

P; k; bα� �
is expressed as:

E P; k;
b
α

� �
¼ Y P; kð Þ−bΦT

P; k;
b
α

� �bθ k−1ð Þ ð27Þ

When themulti-innovation satisfiesP = 1, because bΦ 1; k; bα� �
¼ bφ k; bα� �

a n d E 1; k; bα� �
¼ y kð Þ−bφT k; bα� �bθ k−1ð Þ,

Eq. (23) can be equivalently expressed as:

bθ kð Þ ¼ bθ k−1ð Þ þ
bΦ 1; k;

b
α

� �
r kð Þ E 1; k;

b
α

� �
ð28Þ

By replacing the 1-dimensional information vectors bΦ
1; k; bα� �

and E 1; k; bα� �
with a P-dimensional information

matrix and multi-innovation vector and taking r kð Þ ¼ r k−1ð Þ þbΦ P; k; bα� ���� ��� 2, the fractional order estimate bα can be obtained

by means of the multi-innovation Levenberg-Marquardt algo-
rithm discussed in Section 4. At this time, the multi-innovation
recursive gradient descent algorithm (MIGD) is expressed as
follows:

bθ kð Þ ¼ bθ k−1ð Þ þ
bΦ P; k;

b
α

� �
r kð Þ E P; k;

b
α

� �
ð29Þ
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E P; k;
b
α

� �
¼ Y P; kð Þ−bΦT

P; k;
b
α

� �bθ k−1ð Þ ð30Þ

r kð Þ ¼ r k−1ð Þ þ bΦ P; k;
b
α

� ����� ����2; r 0ð Þ ¼ 1 ð31Þ

bΦ P; k;
b
α

� �
¼ bφ k;

b
α

� �
; bφ�k−1; bα�;…; bφ�k−P þ 1;

b
α
�� 	

∈Rn�P

ð32Þ
Y P; kð Þ ¼ y kð Þ; y k−1ð Þ;…; y k−P þ 1ð Þ½ �T∈RP ð33Þ

bφT
k;
b
α

� �
¼

bψ k;
b
α

� �
bζ k;

b
α

� �
2664

3775∈Rn; n

¼ nq � na þ np � nb ð34Þ

bψ k;
b
α

� �
¼ bψT

1 k;
b
α

� �
; bψT

2 k;
b
α

� �
;⋯; bψT

nq k;
b
α

� �� 	T
∈Rnq�na

ð35Þ

bψi k;
b
α

� �
¼ Δ

b
αgi y k−1ð Þð Þ;⋯;Δ

b
αgi y k−nað Þð Þ

24 35T

; i

¼ 1; 2;…; nq ð36Þ

bζ k;
b
α

� �
¼ bζT1 k;

b
α

� �
;bζT2 k;

b
α

� �
;⋯;bζTnp k;

b
α

� �� 	T
ð37Þ

bζ j k;
b
α

� �
¼ Δ

b
α f j u k−1ð Þð Þ;⋯;Δ

b
α f j u k−nbð Þð Þ

24 35; j
¼ 1; 2;…; np ð38Þ

For the initial values of the parameters to be identified, bθ
0ð Þ ¼ 1n0=p0 is taken, where 1n0 is a column vector consisting
entirely of 1 s.

Once the estimated parameter vector bθ has been obtained,

the first na elements in bθ are estimates of the vector ba, and the
(nanq + 1)th element to (nanq + nb)th elements in bθ are

estimates of the vector bb. In the parameter vector bθ, there
are na estimates of bqj and nb estimates of bpj. The final esti-

mates are calculated by averaging:

bqj ¼
1

na
∑
i¼1

na θna j−1ð Þþibai ; j ¼ 2; 3;…; nq ð39Þ

bpj ¼
1

nb
∑
i¼1

nb θnanqþ j−1ð Þnbþibbi ; j ¼ 2; 3;…; np ð40Þ

4 An estimationmethod for the fractional order
α based on the multi-innovation principle

For the identification of a fractional-order system, the main
parameters to be identified are the fractional order α and the
model parameters {ai, bi, pi, qi}. Fractional order estimation
and model parameter identification are two stages in the sys-
tem identification process. The identification results provide
the initial conditions for another phase of the algorithm to
proceed. For the model parameter identification algorithm,
the estimation of the fractional order provides the conditions
for identification; for the fractional order estimation algorithm,
the identification of the model parameters provides the initial
premise for estimation. Figure 2 shows a description of the
interactive identification process of the two multi-innovation
identification methods.

On this basis, the design of the fractional order estimation
algorithm is the key step for the success of the whole algo-
rithm. According to the objective function of Eq. (21), the
entire identification objective function is:

J ¼ 1

N
∑
N

k¼1
y kð Þ−by kð Þ
h i2

¼ 1

N
∑
N

k¼1
y kð Þ−bφT

k;
b
α

� �bθ� 	2
ð41Þ

where by kð Þ ¼ bφT k; bα� �bθ and N is the total number of

samples.

The purpose is to find a suitable bα for the parameters bθ
estimated via the multi-innovation parameter identification
algorithm such that J is as small as possible. The Levenberg-
Marquardt algorithm iterates as follows:

b
α

mþ1ð Þ
¼ bα mð Þ

− J
0 0 þ λI

h i−1
J

0

 �

b
α¼
b
α

mð Þ ð42Þ

The update of the fractional order bα is based on the calcu-
lation of the gradient J' and the Hessian matrix J'' correspond-
ing to each α, and λ is an adjustment parameter. J' and J'' are
calculated as follows:

J
0b
α
¼ −

2

N

∂bφT
k;
b
α

� �bθ
∂
b
α

2664
3775

¼ −
2

N
∂by kð Þ
∂
b
α

" #T
y kð Þ−bφT

k;
b
α

� �bθ� 	
¼ −

2

N
σby kð Þ=bα� 	T

y kð Þ−bφT
k;
b
α

� �bθ� 	
ð43Þ
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where σby kð Þ=bα ¼ ∂by kð Þ
∂bα is the sensitivity function with respect

to bα, and its calculation process is:

σby kð Þ=bα≈by k;
b
αþ δ

b
α

� �
−by k;

b
α

� �
δ
b
α

ð44Þ

where δbα is the variation of bα.
The equation for calculating the second derivative J

0 0bα is:

J
0 0b
α
¼ 2

N
∂by kð Þ
∂
b
α

 !T
∂by kð Þ
∂
b
α

 !

¼ 2

N
σby kð Þ=bα� �T

σby kð Þ=bα� � ð45Þ

Thus, J
0bα and J

0 0bα are calculated as follows:

J
0b
α

¼ −
2

N
σby kð Þ=bα� 	T

y kð Þ−bφT�
k;
b
α
�bθ� 	

ð46aÞ

J
0 0b
α

¼ 2

N
σby kð Þ=bα� �T

σby kð Þ=bα� �
ð46bÞ

For the Levenberg-Marquardt algorithm of Eq. (42), its

essence is to use the single-innovation y kð Þ−bφT k; bα� �bθ esti-

mation algorithm. The following will introduce the multi-
innovation Levenberg-Marquardt algorithm, the basic idea
of which is to expand the scalar innovation into an innovation

vector or matrix using both current and historical data. Many
research results show that multi-innovation identification can
effectively improve algorithm convergence and the accuracy
of parameter estimation.

The stacked sensitivity function vector Ξ P; k; bα� �
is de-

fined as:

Ξ P; k;
b
α

� �
¼ σby kð Þ=bα;σby k−1ð Þ=bα;…;σby k−P þ 1ð Þ=bα� 	T

∈RP

ð47Þ

Based on the definitions of bΦ P; k; bα� �
and Y(P, k), the

multi-innovation Levenberg-Marquardt algorithm can be
expressed as follows:

b
α

mþ1ð Þ
¼ bα mð Þ

þ 2

N

n 2

N
ΞT P; k;

b
α

� �
Ξ P; k;

b
α

� �
þ λI

� 	−1
ΞT P; k;

b
α

� �
Y P; kð Þ−bΦT

P; k;
b
α

� �bθ� 	ob
α¼
b
α

mð Þ

ð48Þ

In this research, the multi-innovation gradient descent
method is used to identify the parameters of the fractional-
order nonlinear system, and the multi-innovation Levenberg-
Marquardt identification algorithm is used to estimate the
fractional order of the system. In accordance with interactive
estimation theory and the hierarchical identification princi-
ple, two algorithms alternately perform parameter identifica-
tion and fractional order estimation. In each iteration, the
parameter estimates rely on previous fractional order

Fig. 2 The interactive
identification process of two
multi-innovation identification
methods
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estimates, while fractional order estimation is performed based
on the parameter estimation of the previous iteration, and the
two steps form a complete hierarchical interactive calculation
process. The whole algorithm can be summarized as follows:

To help readers understand the logic and innovation of this
paper more clearly, we summarize the proposed algorithm in
the form of pseudocode, as shown in Table 1.

5 Performance analysis

To better illustrate the performance of the algorithm, some
mathematical notation is first introduced. The symbols
λmax[X] and λmin[X] represent the largest and smallest eigen-
values, respectively, of the matrix X. For g(k) ≥ 0, f(k) =
O(g(k)) or f(k) ∼ O(g(k)) represents that there exists a constant
δ > 0 such that f(k) ≤ δg(k). In addition, the following lemma
is given.

Lemma 1 Suppose that {x(k)}, {ak} and {bk} are sequences of
nonnegative random variables and satisfy the following rela-
tion:

x kð Þ≤ 1−akð Þx kð Þ þ bk ; k ≥0;

whereak ∈ [0, 1) and x(0) < ∞; then, it holds that

lim
k→∞

x kð Þ≤ lim
k→∞

bk
ak
.

Lemma 2 For system (19) and the single-innovation gradient
descent algorithm given by Eqs. (23) and (24), there is a con-

stant 0 < α < β < ∞, and the fractional order estimate bα
causes the input fractional order information vector bφ k; bα� �
of the system to satisfy the following continuous excitation
conditions:

(A1) bαIn≤ 1
N ∑

N−1

i¼0
bφ k þ i; bα� �bφT k þ i; bα� �

≤βIn; a.s. k

> 0

Then, r(k) in Eq. (24) satisfies the following inequality:
nα k−N þ 1ð Þ þ1≤r kð Þ≤nβ k þ N−1ð Þ þ1, a.s. k > 0.
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Table 1 Pseudocode of the
algorithm in this paper
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Prove By tracing both sides of condition (A1), we can obtain:

nNα≤ 1
N ∑

N−1

i¼0
bφ k þ i; bα� ���� ��� 2≤nNβ; a.s. k > 0.

Let [x] be the largest integer sum nNβ = δ1 no greater than

x; it holds that bφ k þ i; bα� ���� ��� 2≤δ1; a:s:, and for Eq. (24),

continuous iterative calculation is performed:

r kð Þ ¼ r k−1ð Þ þ bφ�k; bα����� ����2 ¼ ∑
k

j¼1
bφ� j; bα����� ����2 þ r 0ð Þ

≤ ∑
k−1
N½ �
j¼0

∑
N

i¼1
bφ jN þ i;

b
α

� ����� ����2 þ r 0ð Þ

≤ ∑
k−1
N½ �
j¼0

δ1 þ r 0ð Þ

≤
k−1
N

� 	
þ 1

� �
δ1 þ 1

≤nβ k þ N−1ð Þ þ 1

ð49Þ

In addition:

r kð Þ≥ ∑
k
N½ �−1
j¼0

∑
N

i¼1
bφ�jN þ i;

b
α
����� ����2 þ r 0ð Þ

≥ ∑
k
N½ �−1
j¼0

nNαþ r 0ð Þ

≥
k
N

� 	� �
nNαþ 1

≥nα k−N þ 1ð Þ þ 1

ð50Þ

The proof of the lemma is complete.

Theorem For system (19) and the multi-innovation gradient
descent algorithm given by Eqs. (29)–(38), the fractional order

estimate bα causes the input fractional order information vectorbφ k; bα� �
of the system to satisfy the continuous excitation

condition (A1), under the assumption that the noise signal
{v(k)} is an independent random signal that satisfies.

(A2) E[v(k)] = 0, E[v(k)v(i)] = 0, k ≠ i, E½ðv kð Þ2� ¼ σ2
v ,

where E(⋅) is the mathematical expectation. Then, the param-
eter estimation error vector eθ kð Þ≔bθ kð Þ−θ satisfies:

lim
k→∞

E eθ kð Þ
��� ���2� 	

≤ lim
k→∞

Nβσ2v nβ k−N þ 1ð Þ þ 1½ �
α nα k−N þ 1ð Þ þ 1
h i2 :

Proof To simplify the calculation, let the innovation length be
P = N, and define the noise vector as:

V P; kð Þ ¼ v kð Þ; v k−1ð Þ;⋯; v k−P þ 1ð Þ½ �T∈RP;

By subtractingθ from both sides of Eq. (29) and using Eqs.
(30), (32), (33) and (19), we obtain:

eθ kð Þ ¼ eθ k−1ð Þ þ
bΦ P; k;

b
α

� �
r kð Þ −bΦT

P; k;
b
α

� �eθ k−1ð Þ þ V P; kð Þ
� 	

¼ I−
bΦ P; k;

b
α

� �bΦT
P; k;

b
α

� �
r kð Þ

2664
3775eθ k−1ð Þ þ

bΦ P; k;
b
α

� �
V P; kð Þ

r kð Þ

ð51Þ

Taking the norm on both sides of the above equation
yields:

eθ kð Þ
��� ���2≤ I−

bΦ P; k;
b
α

� �bΦT
P; k;

b
α

� �
r kð Þ

2664
3775eθ k−1ð Þ

��������
��������
2

þ…

2eθT k−1ð Þ I−
bΦ P; k;

b
α

� �bΦT
P; k;

b
α

� �
r kð Þ

2664
3775
bΦ P; k;

b
α

� �
V P; kð Þ

r kð Þ

þ
bΦ P; k;

b
α

� �
V
�
P; k

����� ����2
r2 kð Þ

≤λmax I−
bΦ P; k;

b
α

� �bΦT
P; k;

b
α

� �
r kð Þ

2664
3775 eθ k−1ð Þ
��� ���2 þ…

2eθT k−1ð Þ I−
bΦ P; k;

b
α

� �bΦT
P; k;

b
α

� �
r kð Þ

2664
3775
bΦ P; k;

b
α

� �
V P; kð Þ

r kð Þ

þ
bΦ P; k;

b
α

� �
V
�
P; k

����� ����2
r2 kð Þ

ð52Þ
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Using Lemma 1 and condition (A1), we can obtain:

I−
bΦ P; k;

b
α

� �bΦT
P; k;

b
α

� �
r kð Þ ≤ 1−

Nα
nβ k−N þ 1ð Þ þ 1

" #
I ; a:s:

E bΦ P; k;
b
α

� �
V
�
P; k

����� ����2
" #

≤E λmax
bΦ P; k;

b
α

� �bΦT
P; k;

b
α

� �� 	
V
�
P; k

���� ���2
 �
≤LβE V P; kð Þk k2

h i
≤P2βσ2

v ¼ N2βσ2
v

ð53Þ

Takingmathematical expectations on both sides of Eq. (52)

at the same time, and noting that V(P, k)and eθ k−1ð Þ,

bΦ P; k; bα� �
, I−

bΦ P;k;bα� �bΦT

P;k;bα� �
r kð Þ are not linearly correlated,

using conditions (A1) and (A2), we have

E eθ kð Þ
��� ���2� 	

≤ 1−
Nα

nβ k−N þ 1ð Þ þ 1

" #
E eθ k−1ð Þ
��� ���2� 	

þ…

2E eθ k−1ð Þ I−
bΦ P; k;

b
α

� �bΦT
P; k;

b
α

� �
r kð Þ

2664
3775
bΦ P; k;

b
α

� �
V P; kð Þ

r kð Þ

8>><>>:
9>>=>>;

þ N2βσ2
v

nα k−N þ 1ð Þ þ 1
h i2

≤ 1−
Nα

nβ k−N þ 1ð Þ þ 1

" #
E eθ k−1ð Þ
��� ���2� 	

þ N2βσ2
v

nα k−N þ 1ð Þ þ 1
h i2

ð54Þ

Using Lemma 1, we obtain:

lim
k→∞

E eθ kð Þ
��� ���2
 �

≤ lim
k→∞

Nβσ2v nβ k−N þ 1ð Þ þ 1½ �
α nα k−N þ 1ð Þ þ 1
h i2 ð55Þ

The theorem is proven.
The meaning of the above theorem is that since the two

multi-innovation algorithms are interactive, if the fractional
order estimate can ensure that the input vector of the system
is continuously excited, then the parameter identification error
of the system can be bounded.

6 Experimental study

6.1 Academic example

To verify the effectiveness of the proposed algorithm, the
following fractional-order nonlinear system is considered:

y kð Þ ¼ A zð Þg y kð Þð Þ þ B zð Þ f u kð Þð Þ þ v kð Þ ð56Þ

whe re A zð Þ ¼ a1z−α þ a2z−2α, B zð Þ ¼ b1z−α þ b2z−2α, f

u kð Þð Þ ¼ ∑
2

j¼1
pj f j u kð Þð Þ, and g u kð Þð Þ ¼ ∑

3

j¼1
qj g j y kð Þð Þ.

The entire output of the system is:

y kð Þ ¼ ∑
3

j¼1
qj ∑

2

i¼1
aiΔ

αg j y k−ið Þð Þ þ…

þ ∑
2

j¼1
pj ∑

2

i¼1
biΔ

α f j u k−ið Þð Þ þ v kð Þ
ð57Þ

where f1(u(k − i)) = u(k − i), f2(u(k − i)) = u2(k − i), g1(y(k
− i)) = y(k − i), g2(y(k − i)) = y2(k − i), and g3(y(k − i)) =
y3(k − i).

When the fractional order is taken to be α ¼ 0:6, the entire
output of the system is:

y kð Þ ¼ a1Δ
0:6y k−1ð Þ þ a2Δ

0:6y k−2ð Þ þ q2a1Δ
0:6y2 k−1ð Þþ

q2a2Δ
0:6y2 k−2ð Þ þ q3a1Δ

0:6y3 k−1ð Þþ
q3a2Δ

0:6y3 k−2ð Þ þ b1Δ
0:6u k−1ð Þ þ b2Δ

0:6u k−2ð Þ
þ p2b1Δ

0:6u2 k−1ð Þ þ p2b2Δ
0:6u2 k−2ð Þ þ v kð Þ

The parameter vector is:
a = [a1 a2]

T = [0.1 0.2]T,b = [b1 b2]
T = [−0.4 −

0.2]T,p = [p1 p2]
T = [1 0.5]T,q = [q1 q2 q3]

T =
[1 0.7 0.35]T.

θ ¼ a1 a2 q2a1 q2a2 q3a1 q3a2 b1 b2 p2b1 p2b2½ �T
¼ 0:1 0:2 0:07 0:14 0:035 0:07 −0:4 −0:2½
−0:2−0:1�T

During the simulation, the input signal is a random signal
with zero mean and unit variance, and sampling is performed
10,000 times. The noise signal is an independent random sig-
nal with zero mean and a variance of σ2 = 0.01. In this study,
multi-innovation lengths of P = 1, 3, 5 are selected. To verify
the effectiveness of the proposed method, the relative param-

eter estimation error δ≔ bθ kð Þ−θ
��� ��� = θk k is used as the evalu-

ation indicator for verification. The parameter identification
results are given in Table 2 and Table 2 (continued).
Figure 3 shows the parameter estimation error curves with
different multi-innovations; Fig. 4 shows the estimation re-
sults for the fractional order with different multi-innovations.
From the analysis and comparison of these results, it is obvi-
ous that as the multi-innovation length increases, the conver-
gence speed of identification becomes faster and the identifi-
cation accuracy becomes higher. Figure 5 compares the output
of the identification model with the actual output when the
multi-innovation length is P = 5.

To illustrate the superiority of the proposed method, the
method proposed in this paper is compared with the single-
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innovation Levenberg-Marquardt algorithm and the single-
innovation gradient descent method proposed in references
[28, 29], etc. Figure 6 shows the results for the method in this
paper (P = 5) in terms of the relative error curves with respect
to the methods of [28, 29]. From a comparative analysis, it is
obvious that the method in this paper offers a better identifi-
cation convergence speed and higher identification accuracy.

6.2 Actual system

To further illustrate the applicability of this method in a prac-
tical system, we model and identify a flexible manipulator
system from the Manufacturing and Automation Laboratory
of Katolik University Leuven. In this system, a robotic arm is
mounted on a motor; the obtained system input is the reaction

Table 2 Partial parameter identification results of fractional-order nonlinear systems (P = 1, 3, 5)

P k ba1 ba2 bb1 bb2 bα
1 2000 0.1259 0.2212 −0.4203 −0.1725 0.4576

5000 0.1138 0.1705 −0.4121 −0.1842 0.4585

10,000 0.1045 0.2070 −0.4102 −0.1901 0.4587

3 2000 0.0744 0.2145 −0.4155 −0.1767 0.5170

5000 0.1250 0.2103 −0.4100 −0.1973 0.5179

10,000 0.1035 0.2057 −0.3929 −0.2046 0.5187

5 2000 0.1010 0.1810 −0.4096 −0.1886 0.5987

5000 0.0882 0.1892 −0.3825 −0.1915 0.6031

10,000 0.0982 0.1959 −0.3977 −0.1986 0.6026

True values 0.1 0.2 −0.4 −0.2 0.6

P k bq2 ba1 bq2 ba2 bq3 ba1 bq3 ba2 bp2 bb1 bp2 bb2
1 2000 0.0729 0.1298 0.3422 0.6835 −0.1871 −0.0933

5000 0.0722 0.1345 0.3454 0.6937 −0.1896 −0.0941
10,000 0.0715 0.1355 0.0358 0.0697 −0.2013 −0.1018

3 2000 0.0657 0.1298 0.0372 0.7311 −0.1884 −0.1819
5000 0.0661 0.1311 0.0367 0.0726 −0.1939 −0.0727
10,000 0.0668 0.1367 0.0361 0.0714 −0.1966 −0.1012

5 2000 0.6672 0.1537 0.0371 0.0751 −0.1834 −0.1046
5000 0.06933 0.1524 0.0363 0.0745 −0.1953 −0.0985
10,000 0.072 0.1432 0.0358 0.072 −0.1969 −0.0991

True values 0.07 0.14 0.035 0.07 −0.2 −0.1

Fig. 3 Parameter estimation error curves for different multi-innovation Fig. 4 Estimation results of fractional order of different multi-innovation
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torque of the structure, and the output is the acceleration of the
flexible arm [30]. To model this system using the method
proposed in this paper, the structure of the system needs to
be determined first. Reference [28] has carried out
Hammerstein-Wiener modeling for this system; therefore,
we adopt the system structure determined in the literature [2,
3] to directly apply the method proposed in this paper. Unlike
in the academic example of the previous subsection, where the
real parameters of the system are known and the modeling
effect can be evaluated simply by comparing the accuracy of
the parameters, in an actual system, we do not know the real
system parameters and so we need to compare the estimated
output of the system with the actual output fitting effect.

First, on the premise that the system structure is determined,
we use the method proposed in this paper to model the robotic
arm system and obtain the objective function values under dif-
ferent innovation numbers. Figure 7 shows the objective func-
tions for innovation numbers of P = 1, 3, 5. It can be seen from
Fig. 7 that with an increase in the number of iterations, the
objective function gradually converges. By zooming in on the
relevant part of the figure, it becomes obvious that the greater
the number of innovations is, the higher the estimation accuracy
and the smaller the objective function. When the number of
innovations is P = 5, the objective function is the smallest.

Therefore, an innovation number of P = 5 is selected to
model the robotic arm system. Figure 8 shows the output

Fig. 5 Comparison of the output of the identification model (P = 5) with the actual output

Fig. 6 Relative error curve of
parameter estimation between the
method in this paper (P = 5) and
the method in the literature
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fitting diagram when the innovation number is 5. The actual
output and the estimated output are basically in agreement.
Figure 9 shows the system estimation error. It can be clearly
seen that this error is small and the modeling accuracy is high.
To further verify the superiority of the method in this paper,
we have added comparisons with other methods from the
literature. References [14, 28] proposed different methods
for the modeling and identification of this manipulator system
and presented corresponding output error figures. We com-
pare the error with the results of these studies as shown in

Table 3. It can be clearly seen that the error of the method
proposed in this paper is smaller and its modeling accuracy is
higher.

7 Conclusion

To overcome the difficulties in identifying fractional-order
nonlinear systems, a hybrid parameter identification algorithm
based on the principle of multiple innovations is proposed. A
multi-innovation recursive gradient descent algorithm and a
multi-innovation Levenberg-Marquardt algorithm are de-
signed based on the principle of multi-innovation

10 20 30 40 50 60 70 80 90 100
number of iterations

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

80 82 84 86 88 90 92 94 96 98
3

4

5

6

7

8

9

10

11

12

10-4

ZOOM

Fig. 7 Objective function J under
different multi-innovation

Table 3 Comparison of the error range of the robot arm estimation with
the literature (P = 5)

Method [28] [14] The method of this paper

Error range [−0.2,0.2] [−0.15,0.15] [−0.1,0.1]
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Fig. 8 System actual output and estimated output (P = 5)
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Fig. 9 System estimated output error (P = 5)
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identification to estimate the model parameters and the frac-
tional order of the system. As seen through simulation and
verification based on an academic example, proper use of
the multi-innovation principle can increase the convergence
speed of the proposed identification algorithm and improve
the identification accuracy. In addition, the proposed algo-
rithm is applied to an actual flexible manipulator system to
verify the applicability of the multi-innovation principle in
solving practical problems and confirm the practicability of
the algorithm. In this paper, the proposed algorithm is verified
in both academic and practical applications, and the model
identification results are compared with those of algorithms
proposed by other scholars. The method proposed in this pa-
per has higher modeling accuracy and lower error.

From our simulation study, we obtain the following
conclusions:

1) With an appropriate increase in the number of innova-
tions, the convergence speed of the system identification
algorithm and the identification accuracy can be
improved.

2) By introducing the multi-innovation principle, a multi-
innovation gradient descent algorithm and a multi-
innovation L-M algorithm are designed. The two algo-
rithms take turns estimating the model parameters and
fractional order, and the overall algorithm is simple and
convenient.

The modeling ofMIMO fractional-order nonlinear systems
is still a challenging topic, and this is also a future direction of
study for researchers.
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