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Abstract
Online streaming feature selection plays an important role in dealing with multi-dimensional data problems. Many online
streaming feature selection algorithms have been combined with evolutionary algorithms (EA) and play an important role,
however, most of them use single-objective optimization which has some limitations. Meanwhile, they ignore the interaction
between features. The combination of features with each other may generates higher relevance. Therefore, this paper
proposes a new online group feature selection algorithm PSO-NRS by fusing particle swarm optimization (PSO) algorithm
and neighborhood rough set theory (NRS). PSO-NRS is able to select the set of features that are highly correlated with
labels by combining features randomly. Using NRS for online feature selection does not require any domain knowledge,
which makes PSO-NRS generalize better and can handle different types of data. PSO-NRS applies two layers of filtering for
online feature selection. In the first filtering layer, two objective functions are designed and multi-objective optimization by
particle swarm is used to select the set of features with the highest relevance. In the second filtering layer, a search strategy is
defined using a rough set-based evaluation method to complete the final feature selection. The interactions between features
are considered and redundant features are removed during the two filtering layers. Finally, PSO-NRS is experimented on 14
different types of datasets and compared with six state-of-the-art online feature selection algorithms to strongly validate the
effectiveness and generalization of this algorithm.

Keywords Particle swarm optimization · Neighborhood rough set · Multi-objective optimization · Feature interaction ·
Streaming feature

1 Introduction

Feature selection as an effective tool for processing high-
dimensional data has been used in various aspects of
research and has shown good performance [1–3]. An
online feature selection method in the form of “streaming”
features is becoming popular to make feature selection more
relevant. In real life, features are generated all the time and
appear one after the other with time. For example, Weibo
hot topics are updated every minute, and when a hot topic
appears, it may contain a new keyword, which is the key
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feature to identify the hot topic [4]. The trend of streaming
feature popularity makes some feature selection methods
that require a complete feature space no longer applicable,
because it is impossible to wait for all the features to arrive
before processing them uniformly.

To handle data with “streaming” features, researchers
have conducted a lot of research and proposed many
online feature selection methods, such as Online Streaming
Feature Selection (OSFS) [5], a new online streaming
feature selection method based on Gap relation (OFS-A3M)
[6], Alpha-Investing [7], etc. OSFS [5] is the first form
of streaming features and designed a novel framework to
handle streaming features. However, the parameter alpha
must be specified in advance before feature selection,
which has an impact on the algorithm’s independence test.
Processing features individually undoubtedly increase the
algorithm’s running time, and this disadvantage becomes
more apparent as more features are chosen. For example,
Alpha-Investing [7] is a framework for processing large
data sets where the runtime does not increase exponentially
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regardless of the number of features, but processing the
features only once reduces the time overhead, but increases
the redundancy among features, making the algorithm less
accurate. At the same time, rough sets are a powerful tool
for handling streaming features. To solve the drawback
that rough sets cannot handle real-valued data, Hu et
al. proposed a neighborhood rough set approach that
allows the algorithm to support both continuous and
discrete data [8]. For example, OFS-A3M [6] processes
streaming features using NRS and proposes an adaptive
neighborhood relationship that allows the algorithm to
select the right number of features for different instances
in the data set, reducing the influence of parameters on the
algorithm. However, the above method does not consider
the interaction between features, when two or more features
are combined will show higher correlation with the labels.
Therefore, some important features will be missing if
feature interactions are not considered.

Due to the characteristics of group inspiration, evolution-
ary algorithms have been introduced to solve the feature
selection, but most of them only consider a single objective
and ignore multiple objectives. DAEA [9] is an EA algo-
rithm based on repeated analysis and improves the basic EA
framework in three aspects to obtain good classification and
generalization results. To solve the problems encountered
by the above methods, this paper uses the PSO evalua-
tion technique to find the best quality feature combinations
by a two-layer filtering method. PSO has good exploration
ability in solving the supervised feature selection problem.
PSO is used in the first layer of filtering to choose the
most relevant feature combinations for the arriving groups
in the multi-objective optimization function [10] with the
objective function. We will use the neighborhood rough set
evaluation method for features in the second layer of filter-
ing to judge the features chosen in the first layer of filtering,
and we will get the final result after processing all of the
groups. There have been many algorithms in papers that
combine PSOwith rough set(RS), such as MMOFS-3S [11],
which combines PSO, MI, and RS, but RS is not the core.
Some other algorithms apply to an objective equation that
may not be related to NRS or have only one objective func-
tion. While our algorithm based on NRS design two kinds
of objective functions for optimization, which makes the
quality of selected features better.

The contributions made in this paper are as follows:
1) A two-layer filtering architecture is designed by fusing
PSO and NRS, which considers the interaction between
features and removes redundant features to obtain the best
set of features. 2) Two NRS-based objective functions
are designed so that the algorithm is optimized according
to multiple objectives during the iterative process, finally
obtaining the set of features with the highest relevance to
the label space. 3) The PSO-NRS algorithm was evaluated

on 14 datasets with 6 online streaming feature selection
algorithms from 3 classifiers to verify the effectiveness
and generalization of the algorithm. Meanwhile, the
stability of the algorithms as well as the significance
differences are verified using Spider web graph and Critical
Difference (CD) pictures. 4) To verify the effectiveness
of the combination of PSO and NRS, we designed
ablation experiments and demonstrated the effectiveness by
analyzing the experimental results.

The rest of the paper is structured as follows. Section 2
discusses related work. Section 3 introduces theoretical
knowledge and symbolic definitions. Section 4 presents
the algorithm. Section 5 shows experimental results and
Section 6 concludes the paper.

2 Related work

In recent years, online streaming feature selection
[12–14] has become popular as an important branch of fea-
ture selection, assuming that features come one by one with
the flow of time and processing the incoming features in
real time [15, 16]. Since there is no complete feature space,
it becomes extremely difficult to select features with high
efficiency.

• Feature selection using neighborhood rough sets
To resolve continuous data types, NRS are pro-

posed to address the issue that classical rough sets
[17–19] are inconvenient for dealing with data sets
with numerical type attributes. the classical rough set
must discretize the data but the discretization process
alters the data’s original attribute properties. The NRS
[20, 21] can handle both continuous and discrete data.
OSFS-ET [22] is a novel early terminated online
streaming feature selection framework, which could
terminate the streaming feature selection early before
the end of streaming features and guarantee a compet-
ing performance with the currently selected features.
However, the traditional rough set cannot handle real-
valued features leading to relatively low usability of
the algorithm. A new online streaming feature selec-
tion method based on adaptive density neighborhood
relation (OFS-Density) [23] proposes a new adaptive
neighborhood relation based on density information
from surrounding instances that does not require any
prior domain knowledge. However, the disadvantage of
the feature processing dominance in the online selec-
tion process causes the algorithm to occasionally fail to
select the best combination of features. An online multi-
label streaming feature selection framework (OM-NRS)
[24] customizes a criterion to select important features
and designs a pairwise correlation constraint between
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features to filter out the redundant features. Although
the algorithm is capable of handling multi-label [25–27]
data, however, feature interactions are not considered.

In conclusion, although using NRS has the advantage
of not requiring domain knowledge, most algorithms
do not consider the interactions between features.
Therefore, this paper uses feature groups to explore
the interactions between features and improve the
efficiency of the algorithm.

• Feature selection through Particle SwarmOptimiza-
tion

The PSO algorithm is inspired by birds foraging and
finds the optimal particles through continuous particle
swarm iteration. Using PSO to select features has a
positive effect [10, 28, 29]. The algorithm works by
first initializing N particles, each of which consists of
a multidimensional position and velocity vectors, and
then the particles update themselves by pursuing two
extremes, one of which is the optimal solution reached
by the particle itself, called p(best), and the other is the
optimal solution found by the whole population, called
p(gest), and the pbest and gbest are updated through
continuous iterations until the maximum number of
iterations is reached or the optimization function has
converged.

A PSO based feature selection method using mutual
information (PSO-FS-MI) [30] treats feature selection
as a minimization problem and combines PSO with
mutual information (MI) [4, 31, 32] using the idea of
wrappers for feature selection. Although the wrapper-
based approach is time-consuming, satisfactory optimal
feature sets can be produced by good optimization
techniques. A Multi-objective framework based, Multi-
label learning, Online Feature Selection algorithm
(MMOFS-2S) [11] divides feature selection into three
steps and processes streaming features as a group in
line with the idea of online feature selection. Combining
PSO, MI, and rough set for feature selection via a three-
level filtering framework demonstrates the algorithm’
effectiveness. The complexity of the optimization
function, on the other hand, becomes a disadvantage
of the algorithm. PEFS [33] models feature selection
as a bi-objective optimization problem with feature
relevance and redundancy, based on a filtering strategy
and using a heterogeneous approach for integrated
learning. The method is not able to process streaming
features and needs to have the full feature space before
performing feature selection. In conclusion, the PSO
algorithm for feature selection is a reasonable solution;
however, the computational consumption caused by
multiple iterations becomes a major disadvantage of the
algorithm, and how to design the optimization function
reasonably becomes the key.

3 Theory preparation

NRS support both continuous and discrete data sets, which
well increase the scalability of the algorithm. In this section,
we review some basic concepts and notations of NRS. The
symbols and definitions of this section are given in Table 1.

Definition 1 Given DS, �(x, y) satisfies the following
properties [8]:

(1). �(x, y) ≥ 0; �(x, y) = 0; if and only if x = y
(2). �(x, y) = �(y, x)

(3). �(x, z) ≤ �(x, y) + �(y, z)

Definition 2 Given DS and A, the neighborhood xi of the
instance on A can be expressed as [8]:

θA(xi) = {xj‖xj ∈ U, �(xi, xj ) ≤ θ} (1)

The size of the threshold θ determines the number of
neighbors of the instance xi . The value of θ is taken as 0.35
of the distance from the farthest instance of xi , which will
eventually lead to an adaptive neighborhood relation R.

Definition 3 Given that DS, θA(xi), X1, X2, · · · XN are
sets of instances divided according to whether the values
of decision attributes are the same, the upper and lower

Table 1 Symbol definition

Symbols Definition

U Non-empty set of instances

C Conditional attribute set

D Decision attributes (labels)

DS =< U, C, D > Decision system

A Subset of properties of C

CF Candidate feature set

SF The first layer of filtering selects the features

�(x, y) Distance between instance x and instance y

P Position matrix

V Velocity matrix

S Selected features

NS Unselected features

NAD D with regard to the lower approximation of A

NAD D with regard to the upper approximation of A

θ Threshold

θA(xi) The neighborhood of instance x on A

γA(D) The dependence of A on D

σA(D, f ) The importance of f to D

R Neighborhood relationship

NDS Non-dominated sorting

CW Crowding distance
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approximation of D with respect to A is defined as follows
[8]:

NAD =
N⋃

i=1

NAXi (2)

NAD =
N⋃

i=1

NAXi (3)

Among them

NAX = {xi‖θA(xi) ⊆ X, xi ∈ U} (4)

NAX = {xi‖θA(xi) ∩ X �= ∅, xi ∈ U} (5)

NAD is the positive region of the decision, denoted by
POSA(D).

Definition 4 In DS, the dependence of A on D is
represented by γA(D) in the following equation [8]:

γA(D) = ‖pos(A)‖
‖U‖ (6)

We can observe that the range of γA(D) is [0,1]. If γA(D)

is equal to 1, it means that the feature subset A depends
entirely on D.

Definition 5 In DS, given A and D, the importance of
feature f for D is defined as follows [8]:

σA(D, f ) = γA(D) − γA\{f }(D) (7)

4 Proposal method

This paper presents a multi-objective optimization algo-
rithm for online group feature selection, which combines a
PSO algorithm and NRS to enable the algorithm to select
a more effective combination of features. During the algo-
rithm’s processing, the arrival of features in groups allows to

consider the interaction between features. To select a better
combination of features, we divide the algorithm into two
parts, which we call two-layer filtering. Intra-group feature
selection uses a multi-objective PSO algorithm to find SF by
filtering features in groups. The NRS online feature selec-
tion evaluates features based on the neighborhood rough
set evaluation criterion, and redundancy updates are pro-
cessed for features that meet the redundancy requirements.
The feature selection algorithm based on two-layer filter-
ing eventually generates a combination of features CF with
high relevance and low redundancy to the labels, and the
framework is shown in Fig. 1.

4.1 Problem definition

Given:

• A single-label data set, which can be represented using
labels D and feature sets C = {f1, f2, · · · , fn}.

• The features arrive at different periods and continuously
flow into the group. Target:

• A subset of features M is selected from C. The number
of M is much smaller than C.

• M can produce similar efficiency as the original C.

4.2 Intra-group feature selection

The PSO algorithm’s first filtering layer feature selection
methods are classified as batch or online stream based on
whether or not the entire feature space is available. We
consider a group-based approach to stream feature selection
to capitalize on the benefits of batch methods while taking
the trend of streaming features into account. In the first
layer of filtering, the features in the group Gt that arrive
over time are randomly combined using thePSO algorithm,
which eventually produces a combination of features that
are highly correlated with the decision feature D through
continuous iterations.

Fig. 1 Overview of PSO-NRS
online feature selection
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4.2.1 The particle

When initializing a particle swarm, a matrix can be used to
represent the swarm and provide a clear view of the state of
each particle. Each row in the matrix represents a particle,
also known as a solution, which has a position and a velocity
vector. The ultimate goal of the PSO algorithm is to
discover the best solution. In (8), N particles are initialized
and the dimensionality of the vectors in the matrix is the
same as the number of features in each group. Every element
pj in the P of each particle every element is initially set to
[0,1] and the element value is expressed as the probability
of selecting that feature. When the probability value is
greater than 0.6 it means that this feature is selected, and the
opposite is true. The V is initialized in the range [−0.5,0.5]
and is mainly used for the particle update operation.

position :

⎛

⎜⎝
p11 . . . p1W
...

. . .
...

pN1 · · · pNW

⎞

⎟⎠ velocity:

⎛

⎜⎝
v11 . . . v1W
...

. . .
...

vN1 · · · vNW

⎞

⎟⎠

(8)

Finding the optimal solution through continuous itera-
tions of the particle swarm is the core of the PSO algorithm.
In (9) and (10), the process of updating the position and
velocity of particle j from the i th to the i + 1 th iteration is
described. In each iteration, the particle moves from its posi-
tion to a new position to approach the optimal position. The
position and velocity matrix of the particle can be updated
as:

veli+1
j = w × velij + c1 × r1 × (p(best)ij

− posi
j )

+c2 × r2 × (g
(best)

j
i

− posi
j ) (9)

posi+1
j = veli+1

j + posi
j (10)

where c1 and c2 are two constant values, p(best) is the
personal best position of the particle and g(best) is the best
position reached by the particle swarm, and r1 and r2 are
random values in the range [0, 1] to increase the randomness
of the search. w is the Inertia weights, which represents the
particle’s trust in the previous state of its own motion.

When w is large, the algorithm is good at global
exploration; when w is small, the algorithm is good at local
exploration. As a result, this algorithm employs a decreasing
weight strategy, allowing it to find higher-quality solutions.
The update process of w can be expressed as:

w = (winit − wend) × (I terinit − I ter)/I ter + wend (11)

The formula sets w as the current weight, winit as the
initialized weight at the beginning, wend as the size of the
weight at the final end, I terinit as the maximum number of
iterations set, and I ter as the current number of iterations.

4.2.2 Optimization functions

In general, the multi-objective EC-based (Evolutionary
Computation) feature selection algorithms mainly use
archiving and diversity enhancement techniques of Pareto
dominance mechanism [34]. The PSO algorithm has the
advantage of simplicity compared to other optimization
algorithms, but the number of particles and multiple
iterations makes the computational loss of the algorithm
significantly higher, and the optimization function needs to
be carefully designed to reduce the impact of computational
effort. The NRS was chosen as one of the methods for
calculating the dependency between features and labels
because it requires no domain knowledge and no parameters
to be set. The algorithm generates the objective function by
taking into account the dependencies of S and NS in the
group on the labels. In this case, using NRS to determine
the dependence of labels on multiple variables significantly
greatly reduces the computational overhead. We can find the
dependency of features by using the (6).

Algorithm 1 details the calculation of feature-to-
label dependencies. The Euclidean distance between each
instance and the other instances is calculated first, and
the appropriate number of neighbors for each instance is
returned using the corresponding neighborhood relation. To
complete the dependency calculation, the Definition 3 is
used to find the lower approximation of the corresponding
feature subset and divide it by the number of instances.

In the initialized particle swarm probability matrix, we
label the elements in each particle as S and NS by the
magnitude of the probability. Dependency is obtained for
each particle’s S and NS on the decision features, labeled
rS(D), rNS(D).

Obj1 = rS(D) − rNS(D) (12)

In (12), we want to make the S combinations extremely
correlated with the decision features, while the NS

combinations are less correlated, so it is not difficult to
conclude that the larger the value of Obj1, the better.

If onlyObj1 is used as the optimization function, we find
that the number of features in S increases with the number
of iterations. To restrain the above trend and find the optimal
combination of features more accurately, a second objective
equation is proposed:

Obj2 = rNS(D)/rS(D) (13)

rS(D) and rNS(D) are the same as in Obj1, so the smaller
the value of Obj2, the better. Optimization by multi-
objective equation will make the feature combination after
iteration produces good results.
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Algorithm 1 Calculate dependency.

4.2.3 Pareto optimal

Pareto optimality refers to an ideal state of resource
allocation, indicating that there is no dominance between
each other. The objective values of two solutions are
constrained to each other in multi-objective optimization,
making it difficult to choose the best solution. As a result,
NDS [35] and CW [36] are applied to the algorithm for it
to find the best solution. NDS takes the objective values of
all particles as input and ranks the particles using a certain
strategy. The final result is returned as a set of frontiers, with
each frontier containing a collection of particles. At each
frontier, no particle has an advantage over other particles.
The upper frontier outnumbers the lower frontier. In the
algorithm, each update to the position matrix produces
a different target value, and we rank the particles non-
dominantly and obtain frontier 1 as the set of candidate
solutions. To select the most suitable from the many non-
dominated solutions, we use the crowding distance as a
measure and select the one with the lowest density between
particles as the optimal solution generated by this iteration.

4.2.4 The specific process of the first phase

We assume that features arrive as streams and the general
online streaming feature selection algorithm processes the
arriving features in real time. The arriving features are
summarized into groups until the number of features
satisfies the group size or there are no more features.

The concept of combining the PSO algorithm in the
Algorithm 2. Initialize N particles and each particle is given
a P and V with dimensions equal to the group’s size.

Following the determination of the target value for each
particle, the N particles are subjected to NDS and CW

calculations, and the best particle is chosen for comparison
with g(best). During each iteration, if a more suitable
solution appears, g(best) and p(best) need to be updated
until the maximum number of iterations or the optimization
function has converged. In the end, we get a set of features
that are more combinable and the random combination
of features breaks the drawbacks of traditional streaming
features.

Algorithm 2 Intra-group feature selection.

4.3 NRS online feature selection

The feature set SF has a high dependency on the label, but
there is no redundant update operation among the features
in SF , which can easily make some very poor features
added to CF . As a result, we will introduce the feature
evaluation method based on the rough set, which improves
the efficiency the selected features.

4.3.1 The maximum dependency

In Algorithm 3, to select the optimal feature set, the features
in SF need to be judged one by one. If the feature fi is
added to CF making the overall dependency increase, fi is
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added to CF , and if it does not increase or even decrease,fi

needs to be eliminated. If the dependency remains the same
as before, it means that fi has a redundant relationship with
the features in CF and must be processed for redundancy
updates. This evaluation method is theoretically the most
effective in the rough set, but the slow computation speed
and lack of sufficient experimental samples make producing
equivalent result classes in the high-dimensional space
difficult.

Algorithm 3 NRS online feature selection.

4.3.2 Redundant updates

In a set of feature sets, there are often redundant features that
do not serve any purpose and, on the contrary, sometimes
reduce the efficiency of the algorithm. For instance, if one
of the two features fi and fj is useful, the other will have
effect. If the redundant features are not removed, the final
feature selection process becomes lengthy and inefficient.
When the newly arrived feature reduces the overall
dependency to the previous dependency, it is added to the
CF and the important test is run on each feature in the CF .
If the significance of the feature is equal to 0, the feature is
redundant.

4.4 General overview of algorithm

The proposed algorithm considers features arriving contin-
uously over time and saved into a group. Groups arrive in an

online fashion. Intra-group feature selection and NRS online
feature filtering are used to filter the features in each group.
PSO−NRS employs the PSO technique as the foundation
for feature selection, combining the features in the group at
random to find the most relevant feature set SF.In the second
stage, the features in SF are filtered again using the fea-
ture evaluation method of NRS. The overall PSO − NRS

algorithm can be referred to Fig. 2.

The Intra-group feature selection:

• N particles are initialized at the beginning, each par-
ticle is represented by a multidimensional position
and velocity vector and the dimension of the vec-
tor is equal to the group size. The position vector is
initialized to some random values of probability for
each dimensional element, and the probability val-
ues are used to obtain S and NS. The target value of
each particle is derived from the target equation as a
criterion for evaluating the merit of the particle.

• P and V need to be updated according to the
individual optimal p(best) and global optimal g(best),
and the updating process can be seen in Section 4.2.1.

• When the maximum number of iterations is satisfied
or the function has converged to the state indicating
that we have selected the optimal particle g(best) in
the group. the is obtained in the g(best) for the second
stage of filtering.

The NRS online feature filtering:

• This process involves adding features fi to the CF

in the SF until there are no more features in the SF .
The feature fi needs to be processed in real time,
after a maximum dependency and redundancy update
strategy to decide whether the feature is needed or
not, as described in Section 4.3.

• By filtering each set of features at two levels, we end
up with a set of features that are highly relevant to
the label and have low redundancy.

4.5 Time complexity

From the principle, we can know that the time complexity
is mainly concentrated in the calculation of the dependency
on the label and the iteration of PSO. For the arrival of
a set of features, the time complexity of the computation
of the target equation in the first layer of filtering
is O(MNI 2 log I ), where M is the number of target
equations, N is the number of particles, and I is the
number of instances. The time complexity of Algorithm
1 is O(N2 logN). The calculation of the non-dominated
ranking as well as the congestion distance can be expressed
as O(N2 logN), so the total time complexity of the first
layer of filtering is O(MNI 2 log I + MN2 logN), which
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Fig. 2 Overview of online feature selection PSO-NRS

can be reduced to O(MNI 2 log I ). The second layer of
filtering is primarily for feature evaluation and redundancy
update, so in the worst case a redundancy update operation
for each featuremay be required, with time complexity of
O(SCI log I ), where S is the total number of features
selected by the first layer of filtering and C is the candidate
feature set of total number of features. The total time
complexity is O(MNI 2 log I + SCI log I ), which can be
summarized as O(MNI 2 log I ).

5 Experiment

5.1 Data sets

In the experiment, we use three classifiers to evaluate
the selected feature set in MATLAB R2018b. The whole
algorithm is written by python language. All experimental
results are generated in a computer with Intel(R) i7-8750H
CPU 8G memory.

To validate the algorithm, 14 benchmark data sets from
different domains were found for validation (overview of
the data sets) The selected data sets have instances between
62 and 2600. The number of features ranged from 500 to
12582 and the range of categories was between 2 and 40. It

can be seen that the selected data sets cover a wide range
of types from small to large samples and from low to high-
dimensional. It is possible to verify the effectiveness of the
algorithm. The details of each data set, such as the number
of instances, the number of features, and the number of
categories, are listed in Table 2.

Table 2 Details of the data sets

Data set Instance Feature Class

ALL-AML 72 7129 2
ALL-AML-3 72 7129 3
ALL-AML-4 72 7129 4
LYMPHOMA 62 4026 3
MLL 72 12582 3
ORL 400 1024 40
ORLRAWS10P 100 10304 10
SRBCT 83 2308 4
WARPPIE10P 210 2420 10
YALE 165 1024 15

LUNG 203 3312 5

COIL20 1440 1024 20
ISOLET 1560 617 26
MADELON 2600 500 2
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Table 3 Prediction accuracy using KNN classifier

Data sets OSFS Fast-OSFS SAOLA Alpha-Investing OFS-A3M OFS-Density PSO-NRS SD

ALL-AML 86.09 93.14 49.04 84.57 85.90 84.57 97.23 3.39

ALL-AML-3 81.61 85.90 48.09 45.24 77.24 81.52 92.95 7.83

ALL-AML-4 68.76 77.33 41.05 56.57 82.86 77.43 90.10 7.32

LYMPHOMA 36.53 51.05 93.74 23 75.11 23 88.63 8.19

MLL 76.1 78.86 39.52 66.29 79.05 86 95.81 3.43

ORL 23 40.5 6.25 65.75 80.5 72.75 88.75 2.85

ORLRAWS10P 41 61 43 79 91 58 94 2

SRBCT 79.63 84.26 96.32 79.49 89.12 84.19 97.65 4.71

WARPPIE10P 67.62 80 31.43 87.62 94.29 21.43 94.76 3.81

YALE 13.33 15.76 13.33 30.91 46.06 27.27 58.18 6.47

LUNG 74.37 81.28 92.61 86.18 88.13 74.91 95.06 1.6

COIL20 64.44 81.94 32.71 99.79 98.68 11.39 99.24 0.77

ISOLET 35.58 37.56 71.6 85.19 78.27 74.81 91.09 1.59

MADELON 55.69 55.96 55.65 65.42 69.54 49.92 77.75 11.99

5.2 Experiment to verify the effectiveness of the
algorithm

5.2.1 Analysis of experimental data

We present the experimental results for the best performing
algorithms in the table with bold and italicized. Tables 3, 4
and 5 lists the accuracy of each algorithm on different clas-
sifiers. There are three classifiers used in the experiments
K-nearest neighbor (KNN), random forest (RF ) and dis-
criminant analysis (DA). Since the initial P and V of the
algorithm are randomly generated, different experimental
results are generated at the end. To get rid of the randomness
of the algorithm in the data set, we perform a fivefold cross-
validation on the data set and use the average of the results

as the final experimental results. There are various ideas for
the implementation of classifiers. For example, For exam-
ple, KNN compares the unlabeled features with the labeled
features and finally selects K labels with the most occur-
rences. The random forest classifier embodies the idea of
integration by having many decision trees, each of which
is a classifier. It is the diversity of classifier algorithms that
makes the final output different.

We compare with several state-of-the-art algorithms,
such as SAOLA [12], OFS-A3M [6], OFS-Density [23],
etc. As can be seen in Table 3, the algorithm performs
quite well in the KNN classifier, with the accuracy better
than the other algorithms in 12 of the 14 data sets and
above 90% in 10 of the data sets. In the RF classifier,
our algorithm achieves the optimum in ten data sets, while

Table 4 Prediction accuracy using RF classifier

Data sets OSFS Fast-OSFS SAOLA Alpha-Investing OFS-A3M OFS-Density PSO-NRS SD

ALL-AML 85.98 90.28 46.19 77.71 87.43 87.33 93.05 4.22

ALL-AML-3 85.9 84.38 48.16 61.71 85.81 91.52 87.33 9.45

ALL-AML-4 68.76 73.01 38.1 61.9 80.19 78.76 80.48 12.54

LYMPHOMA 50.11 60.47 83.52 44.84 77.21 44.84 78.21 8.19

MLL 83.74 85.9 36.67 81.62 86 91.62 92.86 3.43

ORL 21.76 44.5 6.25 71.75 83.75 78.25 88.25 4.51

ORLRAWS10P 49 49 43 77 91 59 91 7.35

SRBCT 80.74 85.44 98.82 97.57 89.12 82.94 96.4 2.94

WARPPIE10P 65.71 77.14 31.43 89.05 91.43 18.58 92.38 5.08

YALE 10.3 16.97 12.12 51.52 60.61 32.73 65.45 10.94

LUNG 81.28 87.68 93.11 88.13 90.65 84.27 90.61 3.37

COIL20 70.63 85.42 33.75 99.65 98.33 9.93 99.167 0.35

ISOLET 43.01 48.85 81.99 89.62 81.41 78.59 90.83 1.63

MADELON 59.15 61.38 51 68.69 73.62 50.46 78.46 9.58
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Table 5 Prediction accuracy using DA classifier

Data sets OSFS Fast-OSFS SAOLA Alpha-Investing OFS-A3M OFS-Density PSO-NRS SD

ALL-AML 83.24 91.71 59.05 80.29 84.48 85.81 86.1 7.14

ALL-AML-3 84.57 81.62 61.81 61.81 83.05 88.76 81.62 5.87

ALL-AML-4 73.39 73.39 52.29 57.71 81.52 78.57 81.62 5.87

LYMPHOMA 50.11 58.47 91.74 47 75.11 47 81.32 9.58

MLL 80.38 88.76 39.52 74.44 80.57 87.43 84.57 9.32

ORL 16.5 35 2.75 68.75 83.25 69 91 3.1

ORLRAWS10P 15 49 17 62 77 22 84 8.6

SRBCT 67.43 87.79 97.57 79.34 90.29 74.63 91.47 7.21

WARPPIE10P 46.19 66.67 22.38 95.71 88.8 10.48 84.76 9.36

YALE 10.3 12.73 8.48 29.7 50.3 11.52 52.12 7.99

LUNG 83.27 86.7 93.11 90.62 91.61 83.28 96.04 2.55

COIL20 51.74 59.51 18.19 96.53 82.64 9.51 83.75 2.62

ISOLET 41.67 44.49 79.17 91.41 78.46 75.43 91.47 1.03

MADELON 59.73 59.54 55.42 59.54 60.58 47.69 59.62 1.56

differing little from the optimum in the remaining data
sets. Six data sets achieved the best results in the DA.
Although slightly inferior to the previous two classifiers,
the algorithm’s efficiency is relatively stable and it does
not perform well on one data set but performs poorly on
another. By comparing different algorithms, it can be found
that there is a big difference in the performance of the
algorithms in different domain data sets. In our experiments,
we found that the algorithm selected only one feature in
a certain data set resulting in a low accuracy rate. There
are various reasons for this, it may be due to the data set
or the features flowing over too well that other important
features cannot be selected. PSO-NRS uses an online group
feature selection method and combines features within
groups randomly to discover a high-quality feature set.
Meanwhile, the application of NRS can adapt to various
types of datasets to enhance the generalization ability of the
algorithm. Therefore, PSO-NRS can effectively overcome
the above-mentioned drawbacks.

To measure the dispersion of the accuracy obtained from
the five-fold cross-validation, the standard deviation (SD)
was calculated for the five experimental results. Although
it is the same data set, the data distribution has been
changed significantly by continuously transforming the
training and testing sets. From the SD results in Tables 3–
5, they are basically scattered in the range of 0–12, with
most of them in the middle of the range, indicating that
the experimental results are not too scattered, which also
illustrates the necessity and effectiveness of the five-fold
cross-validation.

To prove the effectiveness of the algorithm, we compared
PSO-NRS with the latest NRSIPSO algorithm [37], which
incorporates PSO and NRS. Due to the unavailability of
code, the experimental results of this artical are directly

quoted in this paper. The ten-fold validation used by
NRSIPSO to get the final results, and the five-fold cross-
validation used by PSO-NRS, it has been stated that the
results of ten-fold cross-validation and five-fold cross-
validation are not very different. The results are shown in
Table 6. It can be seen that there is not much difference
between the two algorithms in terms of accuracy. In the
ISOLET dataset, 91 features were selected in the PSO-
NRS algorithm, while 152 features were selected in the
NRSIPSO, indicating that our algorithm is more efficient in
this dataset. In the PROState dataset, PSO-NRS selects 19
features and NRSIPSO selects 4 features, which is slightly
inferior to the PSO-NRS algorithm in this dataset. But in
general, the PSO-NRS algorithm does not differ much from
the recent algorithms in terms of efficiency.

5.2.2 Verify the stability of the algorithm

To present the experimental results more clearly, we ranked
the algorithms according to their efficiency on each data set
and normalized the ranked results (the normalized range is
[0, 0.5]).

It can be observed from the Fig. 3 that our algorithm
is always at the edge of the graph (the algorithm in red in
the figure), which indicates that the algorithm is not only
stable but also very efficient. Although the graphs enclosed
in the DA classification are not very rounded, the efficiency

Table 6 Results of comparison PSO-NRS with NRSIPSO

Data sets NRSIPSO PSO-NRS

ISOLET 89.87 91.09

PROState 89.63 87.24
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Fig. 3 Examine the stability
between different online feature
selection algorithms

of the algorithm is very close to the optimal value in other
data sets where the optimal efficiency is not obtained, and
the algorithm is consistently in the top three in the ranking.
On the contrary, the graphs enclosed by the lines of other
algorithms can be represented by irregular graphs, which
can get high efficiency in some data sets but show inferiority
in other data sets, reflecting an unstable effect.

5.2.3 A significantly different test between algorithms

We use the Friedman test and Bonferroni-Dunn test for
statistical analysis of all online feature selection algorithms
to compare the performance between algorithms [38].

The Friedman test can be defined as:

FF = (N − 1)χ2
F

N(k − 1) − χ2
F

(14)

Equation (14) follows an F distribution, among them,

χ2
F = 12N

k(k+1)

[∑
j R2

j − k(k+1)2

4

]
, Rj = 1

N

N∑
i=1

r
j
i , r

j
i

denotes the ranking of the i−th algorithm on the j −th data
set. We can obtain the degrees of freedom asK−1 and (K−
1)(N − 1). When FF is higher than F{K−1}{(K−1)(N−1)}, it
means that the null hypothesis is rejected. From Table 7, we

can see that the null hypothesis is rejected for all evaluation
metrics at α equal to 0.05, which indicates a significant
difference between the algorithms. For the follow-up test,
we chose the Bonferroni-Dunn test and determined the
critical difference (CD). CD can be denoted as:

CD = qα

√
k(k + 1)

6N
(15)

When K = 7 and N = 14, CD was 2.153 at α equal to 0.05
because qα = 2.638.

To visualize the significant differences between the
algorithms, we plotted the CD graph using the computed
CD and FF data. The algorithm on the far right is defined
as the best algorithm in Fig. 4 witch has a numerical axis

Table 7 Friedman test for classifiers

Classifier FF F(6,78)

KNN 12.995 –

RF 10.175 2.22

DA 6.697 –
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Fig. 4 Statistical analysis of different algorithms using CD diagram

from largest to smallest. In the KNN and RF classifiers,
PSO-NRS and OFS-A3M are connected by a black line on
the same side and at the right end of the other algorithms,
indicating that there is no significant difference between
the two algorithms and the effect is similar, whereas the
other algorithms have a significant difference, indicating
that there is a significant difference in the effect between the
algorithms. In the DA classifier, there are four algorithms
at the right end of the number axis, but the PSO-NRS
algorithm is still at the rightmost end of the number axis,
although there is no significant difference between the four
algorithms, but our algorithm is still optimal.

5.3 Influence of parameters on the PSO-NRS

The use of the PSO algorithm leads to an increase
in the number of algorithm parameters, and selecting
the most beneficial parameters for the algorithm has a
great improvement in the performance of the algorithm.
To save space, we averaged the accuracies obtained in
the three classifiers to complete the comparison of the
experiments. Parameters such as group size, number of
particles generated, and number of iterations were explored
in four data sets.

5.3.1 The effect of group size on the PSO-NRS

The group size represents the number of features that need
to be processed for the first filtering, and a higher number of
features indicate a stronger combinability between features.
Table 8 shows that the optimum is obtained on two datasets
with a group size of 200, and one data set with a group size
of 50 and 100, respectively. Figure 5(a) shows an analysis
of the number of features selected by the algorithm and the
running time, demonstrating that the running time decreases
with increasing group size. The number of features selected
tends to average out without much deviation. Therefore, to
take into account the running efficiency of the algorithm and

the real application scenario of the streaming features, 100
is finally chosen as the group size.

5.3.2 The effect of the number of particles on the PSO-NRS

Each particle represents a solution in the PSO algorithm,
using the symbol NOP to denote the number of particles.
Table 8 shows that the algorithm achieves the best accuracy
in all three data sets when NOP is 15, and achieves the
best in one data set when NOP is 10, implying that the
number of particles can be considered between 10 and 15.
In Fig. 5(b) it can be seen that the running time is increasing
with the increase of particles, and in terms of the number of
features selected, NOP equals 10 is relatively less in four

Table 8 Influence of parameters on the PSO-NRS

Size of group

Data sets 50 100 150 200

SRBCT 97.06 95.17 91.86 94.36

YALE 59.8 58.59 61.21 61.62

WARPPIE10P 90 90.63 91.43 93.17

LUNG 94.72 95.17 93.91 90.46

Number of particals

5 10 15 20

SRBCT 90.74 95.17 96.69 92.75

YALE 59.6 58.59 62.02 60.81

WARPPIE10P 90.48 90.63 93.65 91.27

LUNG 93.52 95.17 93.89 91.59

Number of iterations

5 10 15 20

SRBCT 94.41 88.7 92.57 95.17

YALE 58.59 58.59 57.58 58.59

WARPPIE10P 92.38 93.05 90.48 90.63

LUNG 91.93 92.61 91.33 95.17
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Fig. 5 Examine the stability
between different online feature
selection algorithms

data sets, so from various considerations, we finally choose
NOP equals to 10 as the final result.

5.3.3 Effect of the number of iterations on the PSO-NRS

In the PSO algorithm, the idea that each particle approaches
the optimal value through continuous iterations ensures
that the algorithm can achieve a good result. Table 8
shows that the algorithm has three data sets that achieve
the best results after 20 iterations. The running time of

the algorithm significantly increases with the number of
iterations. as shown in Fig. 5(c). To make the accuracy of
the algorithm increase, we choose to trade the running time
of the algorithm for the steady state.

5.4 Analysis of PSO-NRS for ablation experiments
and running time

In this section, we design ablation experiments to verify the
effectiveness of the algorithm to combine PSO and NRS.

Table 9 Ablation experiments
Classifier LUNG SRBCT WARPPIE10P

PSO-NRS NRS PSO-NRS NRS PSO-NRS NRS

KNN 95.06 97.06 97.65 96.25 94.76 97.62

RF 90.61 94.07 96.4 87.72 92.38 90.48

DA 96.04 95.59 91.47 88.97 84.76 74.76

MLL LYMPHOMA ISOLET

PSO-NRS NRS PSO-NRS NRS PSO-NRS NRS

KNN 95.81 86 88.63 91.74 91.09 91.28

RF 92.86 87.33 78.21 70.95 90.83 91.99

DA 84.57 76 81.32 64.63 91.47 92.31
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Table 10 Number of features
selected by the algorithm in the
6 data sets

LUNG SRBCT WARPPIE10P MLL LYMPHOMA ISOLET

NRS 41 17 25 21 36 203

PSO-NRS 24 18 25 22 31 92

The first layer of filtering is removed from the original algo-
rithm and only the second layer of filtering (NRS) is used
for online streaming feature selection. The NRS is applied
to 6 different types of datasets and the accuracy of the algo-
rithm is analyzed in 3 different classifiers. Table 9 shows the
accuracy of NRS in the KNN, RF, and DA classifiers.

From Table 9 , it can be seen that PSO-NRS has higher
accuracy than NRS in all three classifiers in the SRBCT and
MLL datasets. In both WARPPIE10P and LYMPHOMA
datasets, PSO-NRS has higher accuracy than NRS in two
classifiers. In the LUNG and ISOLET datasets, NRS has
better accuracy than PSO-NRS in the classifiers. To better
verify the pros and cons of the algorithm, we compare
the number of feature sets obtained by the NRS and PSO-
NRS. As can be seen from Table 10, in the LUNG and
ISOLET datasets, the number of features selected by NRS is
significantly higher than PSO-NRS, but the accuracy are not
significantly different. In the remaining datasets the number
of features selected by the two algorithms is comparable,
however, the accuracy of PSO-NRS is significantly better
than that of NRS. Therefore, this experiment demonstrates
the effectiveness of combining PSO with NRS.

We compare PSO-NRS with the OFS-A3M algorithm in
terms of running time, which also uses NRS for online feature
selection. Both algorithms are written using the python lan-
guage. To reduce the length of the paper, we choose six datasets
to compare in terms of running time. The specific experi-
mental results are shown in Table 11. From Table 11, it is
clear that OFS-A3M is significantly better than PSO-NRS in
running time, which is the inevitable result of the reference
to PSO in the algorithm, and the constant iteration makes the
computational consumption of the algorithm significantly
higher, which becomes a drawback of the algorithm.

6 Conclusion

In this paper, we propose a novel online feature selection
algorithm called PSO-NRS. Use online group feature
selection to increase the available features and explore
the relationship between features to address the lack of
available information for online stream feature selection
that causes the selected feature set to be less efficient.
A double-objective optimization function is designed to
find the set of features that are highly correlated with the
labels. The use of NRS does not require domain knowledge
enhances the generalization ability of the algorithm. A
feature search strategy is intended to select a set of
features that are highly relevant to the labels and have
low redundancy. In the experiments, we show that PSO-
NRS is very competitive when evaluating the algorithm’s
accuracy among several classifiers and comparing it to
some state-of-the-art algorithms; the algorithm’s stability
is examined and PSO-NRS is very stable state when
compared to other algorithms; statistical tests are performed
on the algorithm, and there is a significant difference
between PSO-NRS and other algorithms, demonstrating the
algorithm’s effectiveness.

There are many scenarios in the field of feature selection
that correspond to various possible situations encountered
in the study, such as multi-label, semi-supervised, and
unsupervised feature selection. In the following research,
the above directions can be explored in depth to achieve the
purpose of solving practical problems. PSO requires several
iterations to find the optimal value therefore, which increase
a high computational overhead. In future studies of PSO,
the negative impact of iteration can be reduced by finding
suitable strategies.

Table 11 Comparison with
OFS-A3M algorithm in terms
of runtime (Unit: second)

ORL ORLRAWS10P SRBCT YALE LUNG ISOLET

PSO-NRS 1199.87 471.65 77.59 123.19 543.15 8192.44

OFS-A3M 133.37 124.52 27.46 30.8 253.82 1678
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