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Abstract
Recent advances in deep learning technology, and the availability of public shadow image datasets, have enabled significant
performance improvements of shadow removal tasks in computer vision. However, most deep learning-based shadow removal
methods are usually trained in a supervised manner, in which paired shadow and shadow-free data are required. We developed a
weakly supervised generative adversarial network with a cycle-in-cycle structure for shadow removal using unpaired data. In
addition, we introduced new loss functions to reduce unnecessary transformations for non-shadow areas and to enable smooth
transformations for shadow boundary areas. We conducted extensive experiments using the ISTD and Video Shadow Removal
datasets to assess the effectiveness of our methods. The experimental results show that our method is superior to other state-of-
the-art methods trained on unpaired data.
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1 Introduction

Shadows are common in most natural images. They can be
categorized into cast and self-shadows depending on the source.
Cast shadows are caused by tall objects in the vicinity that block
the light source, whereas self-shadows arise from object sur-
faces that are not directly illuminated by light sources [1]. The
published literature in the field of computer vision and graphics
provides evidence that the presence of shadows negatively af-
fects the processing, analyses, and understanding of images
[1–7]. Therefore, realistic shadow removal is an essential task
for improving the performance of many computer vision objec-
tives, such as image segmentation, object detection, and track-
ing. Early shadow removal approaches were mostly based on
the development of physical models for analyzing the statistics
of color and illumination and used hand-crafted features [7–9].
However, these approaches failed for complex images [10]. In
recent years, public shadow image datasets, such as ISTD [11],

SBU [12], and USR [2], have enabled learning-based methods,
particularly those using deep learning, to achieve state-of-the-
art results for shadow removal. Current deep learning-based
shadow removal methods are typically trained in a supervised
manner, in which pairs of shadow and shadow-free images of
identical scenes are required for learning to remove shadows.
However, paired training samples are expensive to collect. They
also have limitations, such as lack of diversity in terms of the
collectible scenes as well as inconsistent color and luminosity
between the paired images [6, 13, 14].

Several methods and algorithms have been proposed to
address the limitations of paired datasets for learning-based
shadow removal. On one end of the spectrum are approaches
for generating large-scale, diverse synthetic shadow and
shadow-free image pairs that apply various techniques, rang-
ing from simple affine transformation to deep generative
models [4, 5, 14–16]. Although these approaches help im-
prove the performances of shadow removal networks by
enriching the training samples, the quality and diversity of
the generated shadow images are still limited. For instance,
synthetic shadow images from the SynShadow dataset [14]
are constrained by such assumptions as occluded objects be-
ing outside the camera view, and float surfaces for shadow
projection. At the other end of the spectrum, a group of re-
searches learned to remove shadows from unpaired shadow
and shadow-free images by employing cycle consistency and
a generative adversarial network (GAN) [17] to translate the
shadow images into shadow-free images [6, 7, 18]. These
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approaches are inferior (performance wise) to deep learning
models trained in a supervised manner [14]. Therefore, there
is considerable room for improvement [18].

We combined the advantages of both approaches and
established a novel weakly supervised GAN with a cycle-
in-cycle structure for removing shadows using unpaired
data, which we call the C2ShadowGAN. Our method exploits
the cycle consistency constraint based on the cycle-in-cycle
structure, in which multiple cycled subnetworks are stacked,
to learn to remove the shadows (Fig. 1). Specifically, given
an input shadow image and the corresponding shadow
mask—that is, zeros which denote non-shadow pixels and
ones which denote shadow pixels—the first cycled subnet-
work for shadow removal learns to remove the shadows
from the input images and then generates realistic shadow-
free images. The resulting shadow-free images and their

corresponding auxiliary information are used in the second
cycled subnetwork where the shadow-free images are re-
fined. The auxiliary information indicates whether shadows
in the input images are either removed or attenuated in the
previous step. Therefore, similar to shadow masks, the aux-
iliary information plays the role of guiding the learning for
the refinement tasks. In this manner, we can linearly stack
zero or more cycled subnetworks for refinement. Each cy-
cled subnetwork is responsible for refining the intermediate
shadow-free image generated by its preceding cycled sub-
network. The entire network is thus jointly trained using
adversarial learning in an end-to-end manner.

One of the limitations of the shadow removal system based
on the cycle consistency constraint, such as the Mask-
ShadowGAN [6], is that sufficient statistical similarity be-
tween two image domains is required [19, 20]. We adopted

(a) Network architecture of the first cycled subnetwork for shadow removal 

(b) Network architecture of C2ShadowGAN composed of the first cycled subnetwork for shadow removal and second cycled subnetwork for 

refinement 

(c) Generalized network architecture of C2ShadowGAN composed of a cycled subnetwork for shadow removal and (n-1) cycled subnetworks 

for refinement 

Fig. 1 Network architecture of the proposed C2ShadowGAN.Gi
sf andG

i
s

denote generators in the ith cycled subnetwork to produce shadow-free
and shadow images. Di

sf and Di
s denote discriminators in the ith cycled

subnetwork to determine whether the generated images are real shadow-

free or shadowed images. I isf and I is denote generated shadow-free and

shadow images in the ith cycled subnetwork. Ms and Mr are shadow

masks. Mi
s is a difference map that provides the information about the

difference between the original input shadow image and the output
shadow-free image from the (i-1)th step
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the approach by Le et al. [13] to address this issue; here, the
training dataset was prepared by cropping shadow and non-
shadow patches from the same image to construct unpaired
data for network training. Thus, we ensured significant statis-
tical similarity. We then trained the proposed shadow removal
system with this training set to learn mapping from patches in
the shadow set to patches in the non-shadow set, which is
considered an image-to-image translation task.

We conducted extensive experiments to assess the effec-
tiveness of our approach using the ISTD [11] and Video
Shadow Removal [13] datasets. The experimental results
show that C2ShadowGAN is stable during training and con-
verges faster. In addition, we demonstrate that our method
achieves quantitatively and qualitatively competitive perfor-
mances as compared with state-of-the-art methods.

The main contributions of this work are as follows:

& We propose a weakly unsupervised single image shadow
removal system based on the cycle-in-cycle structure, in
which multiple cycled subnetworks can be stacked linear-
ly to learn to remove shadows.

& We introduce new loss functions to reduce unnecessary
transformations for non-shadow areas and to enable
smooth transformations of the shadowed boundary areas.

& We conducted experiments using public datasets and
demonstrated that the proposed C2ShadowGAN could
achieve comparable performance to state-of-the-art
methods.

2 Related works

Shadow removal is an essential task in improving the perfor-
mances of many computer vision tasks and has been heavily
studied in recent times. Our review of the related research
focuses primarily on methods involving deep learning-based
shadow removal because the objective of this study is to in-
vestigate these methods. Comprehensive surveys on shadow
detection and removal methods can be found in previously
published literature [21–24].

Hu et al. [6] proposed the Mask-ShadowGAN for learning
to remove shadows from unpaired training data by extending
CycleGAN [25]; they modified CycleGAN to learn the under-
lying relationships between the shadow and shadow-free do-
mains with the guidance of shadow masks, which are also
learned from shadow images automatically. The Mask-
ShadowGAN is the first data-driven shadow removal method
that uses unpaired data for training. The method proposed by
Vasluianu et al. [7] was similar to the Mask-ShadowGAN.
Both these methods were based on the vanilla CycleGAN
approach. However, they formulated a component in the train-
ing objective to generate more sophisticated synthetic shadow

masks; instead of shadow masks being computed as binarized
differences between the real shadow images and generated
shadow-free images. In addition, they used perceptual losses
rather than pixelwise fidelity losses. Liu et al. [18] developed
the LG-ShadowNet to improve the performance of the Mask-
ShadowGAN by introducing a new lightness guided strategy;
the core aspect of this approach was to learn the lightness
information from the input images by separate training and
by using this information to guide the learning of shadow
removal. All these methods required shadow-free images. In
addition, a small domain difference was required between the
unpaired shadow and the shadow-free images for stable learn-
ing, making it challenging to acquire shadow-free images in
some cases.

Le et al. [13] proposed a patch-based shadow removal sys-
tem to prevent the dependency on paired training data, where
unpaired patches were cropped from the same image used for
the network training. In addition, they introduced three differ-
ent deep neural networks to learn a set of physics-based con-
straints that define a transformation closely modeling shadow
removal. The G2R-ShadowNet proposed by Liu et al. [16]
addressed the issues related to the patch-based shadow remov-
al system, such as heavy computational load and strict
physics-based constraints. They constructed paired shadow
and non-shadow images using only shadow images and their
corresponding masks to form training data. The shadow re-
moval subnetwork removes the shadows from the images, and
the shadow refinement subnetwork refined intermediate
shadow-free images by leveraging contextual information.
Since both methods generated synthetic training data using
the same shadow images, their domain gaps were small and
well-controlled.

In contrast to the CycleGAN-based shadow removal
methods mentioned above, our method introduces a novel
cycle-in-cycle structure. Multiple cycled subnetworks are
stacked linearly and jointly trained in our approach. In addi-
tion, our method eliminates the weakness of the CycleGAN-
based systems by adopting a state-of-the-art patch-based train-
ing strategy, where unpaired data are used for network
training.

3 Methodology

According to previous observations [2, 26, 27], a shadow
image Is can be generated from the pixelwise product of a
shadow-free image Isf and a shadow matte α, as shown in (1).

I s ¼ α⊗I sf ð1Þ

Similarly, from (1), we can deduce that a shadow-free im-
age Isf can be considered a pixelwise product of a shadow
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image Is and another shadow matte β. Thus, we used shadow
matting instead of generating the shadow-free image directly
for both patch-level and image-level shadow removal. In par-
ticular, both shadowmattes (α and β) are learned by the cycle
consistency constraints and adversarial training of the pro-
posed C2ShadowGAN.

3.1 Cycled subnetwork for shadow removal

The first cycled subnetwork of the C2ShadowGAN is based
on the Mask-ShadowGAN approach with two generators and
two discriminators for the shadow and shadow-free domains,
respectively. In detail, the shadow image Is is transformed to

the shadow-free image I1sf by the generator G
1
sf , which is fur-

ther transformed to the shadow image I1s by the generator G
1
s ,

as illustrated on the left-hand side of Fig. 1a. Similarly, the
shadow-free image Isf is transformed to the shadowed image

I1s by the generator G1
s , which is further transformed to the

shadow-free image I1sf by the generator G1
sf , as illustrated on

the right-hand side of Fig. 1a. Note that both generators are
trained to produce a shadow matte that is multiplied in a
pixelwise manner with the input shadowed image for the
shadow removal or with the input shadow-free image for the
shadow addition. Furthermore, shadow masks Ms and Mr are
used to guide the shadow removal and shadow addition. The
shadow maskMs corresponds with the shadowed areas of the
input image, which can be obtained either manually, semi-
interactively, or automatically using shadow detection
methods [13]. The shadowmaskMr is randomly selected from
the masks of the training set. The discriminators D1

sf and D1
s

learn to distinguish between the synthetic shadow-free and

shadowed images (e.g., I1sf and I
1
s ) and the randomly selected

real shadow-free and shadowed images, helping generators

G1
sf and G1

s to produce better outputs. The adversarial losses

to optimize the generator G1
sf and the discriminator D1

sf for

shadow removal and the generator G1
s and discriminator D1

s
for shadow addition are given as

L1GAN G1
sf ;D

1
sf ;G

1
s ;D

1
s

� �
¼ Lsf ;1GAN G1

sf ;D
1
sf

� �
þ Ls;1GAN G1

s ;D
1
s

� �
Lsf ;1GAN G1

sf ;D
1
sf

� �
¼ 1

N
∑− log D1

sf I sf
� �� �

þ log 1−D1
sf G1

sf I s;Msð Þ⊗I s
� �� �h i

Ls;1GAN G1
s ;D

1
s

� � ¼ 1

N
∑− log D1

s I sð Þ� �þ log 1−D1
s G1

s I sf ;Mr
� �

⊗I sf
� �� �� �

;

ð2Þ
where N represents the number of training samples.

To preserve the cycle consistency between the input and

reconstructed images, the network is trained to ensure that G1
s

G1
sf I sð

�
;MsÞ;MsÞ is identical to the shadowed input image Is

and G1
sf G1

s I sf
��

;MrÞ;MrÞ is identical to the shadow-free

input image Isf:

L1cycle G1
sf ;G

1
s

� �
¼ Lsf ;1cycle G1

sf ;G
1
s

� �
þ Ls;1cycle G1

s ;G
1
sf

� �
Lsf ;1cycle G1

sf ;G
1
s

� �
¼ 1

N
∑ G1

s G1
sf I s;Msð Þ⊗I s;Ms

� �
⊗I1sf −I s

��� ���
1

� �
Lsf ;1cycle G1

s ;G
1
sf

� �
¼ 1

N
∑ G1

sf G1
s I sf ; Imr
� �

⊗I sf ; Imr
� �

⊗I1s−I sf
��� ���

1

� �
;

ð3Þ
where ‖∙‖1 represents L1 loss.

Furthermore, G1
sf is regularized to produce the output I1sf

that is close to the shadow-free input image Isf with the guid-
ance of the all-zero shadow-free maskM0. Similarly, using the

shadow mask M0 and shadow input image Is, G1
s is trained to

generate the shadowed image I1s , which contains no newly
added shadows:

L1identity G1
sf ;G

1
s

� �
¼ Lsf ;1identity G1

sf

� �
þ Ls;1identity G1

s

� �
Lsf ;1identity G1

sf

� �
¼ 1

N
∑ G1

sf I sf ;M 0

� �
⊗I sf −I sf

��� ���
1

� �
Ls;1identity G1

s

� � ¼ 1

N
∑ G1

s I s;M 0ð Þ⊗I s−I s
�� ��

1

� � ð4Þ

In addition to the losses described thus far, we introduce the
non-shadow-area loss (i.e., Lnsa) to reduce unnecessary trans-
formation of the non-shadow areas; and boundary loss (i.e.,
Lba) to enable smooth transformation of the shadowed bound-
ary areas (BAs), such as the penumbra areas. The umbra, non-
shadow, and penumbra areas can be roughly identified with

the shadowmask given. Therefore, we train the generatorsG1
sf

and G1
s so that the non-shadow areas of the reconstructed

images I1sf (i.e., G1
sf I s;Msð Þ ) and I1s (i.e., G1

s I sf ;Mr
� �

),

which are indicated by the corresponding shadow masks Ms

and Mr are identical to those of their input images Is and Isf,
respectively:

L1nsa G1
sf ;G

1
s

� �
¼ Lsf ;1nsa G1

sf

� �
þ Ls;1nsa G1

s

� �
Lsf ;1nsa G1

sf

� �
¼ 1

N
∑

1

NSAj j ∑
i∈NSA

p Is; ið Þ−p G1
sf I s;Msð Þ⊗I s; i

� ���� ���
1

	 


Ls;1nsa G1
s

� � ¼ 1

N
∑

1

NSAj j ∑
j∈NSA

p Isf ; j
� �

−p G1
s I sf ;Mr
� �

⊗I sf ; j
� ��� ��

1

0BB@
1CCA

ð5Þ
where p(I, x) represents a pixel value at position x in image I,
and |NSA| denotes the number of pixels in the non-shadow
areas according to the shadow masks (Ms and Mr). The
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objective of Lnsa loss is similar to that of Le et al. [13]. In the
case of a non-shadow pixel, both approaches force the pixel
value in the output image to be equal to that in the input image
by controlling the shadow mattes. However, unlike the ap-
proach of Le et al., in which the values of the shadow matte
are manipulated directly, we apply the reconstruction error to
the non-shadow areas between the two images. Thus, we en-

sure a more natural overall output image. This is a similar
effect to those of Lmat − α [13] and Lsm − α [13].

The shadow effects are assumed to vary smoothly across
the shadow boundaries. Thus, we applied local variation reg-
ularization on the shadow boundary areas, which are defined
as areas within Bstep pixels from the shadow boundaries in the
shadow mask:

L1ba G1
sf ;G

1
s

� �
¼ Lsf ;1ba G1

sf

� �
þ Ls;1ba G1

s

� �
Lsf ;1ba G1

sf

� �
¼ 1

N
∑

1

BAj j ∑
i∈BA

∇hp G1
sf I s;Msð Þ⊗I s; i

� ���� ���
1
þ ∇wp G1

sf I s;Msð Þ⊗I s; i
� ���� ���

1

� �	 

Ls;1ba G1

s

� � ¼ 1

N
∑

1

BAj j ∑
j∈BA

∇hp G1
s I sf ;Mr
� �

⊗I sf ; j
� ��� ��

1
þ ∇wp G1

s I sf ;Mr
� �

⊗I sf ; j
� ��� ��

1

� � ! ð6Þ

where ∇h(∙) and ∇w(∙) are operations to compute the horizontal
and vertical gradients of a given pixel, and |BA| denotes the
number of pixels in the shadow boundary areas. When Bstep is
set to the image size, it is equal to the total variation regular-
ization. In this study, the configurable parameter Bstep was set
to 2 for all experiments. The sensitivity to Bstep will be pre-
sented in a later section. In summary, the final objective loss
for the first cycled subnetwork for shadow removal is the
weighted sum of the five loss functions.

L1total ¼ ω1
1L

1
GAN þ ω1

2L
1
cycle þ ω1

3L
1
identity þ ω1

4L
1
nsa þ ω1

5L
1
bað7Þ

where ω1
i ; i∈ 1; ::; 5f g controls the relative importance of each

loss. We follow the previously reported result [25] and empir-
ically set ω1

1, ω
1
2, ω

1
3, ω

1
4, ω

1
5 as 1.0, 10.0, 5.0, 10.0, and 5.0,

respectively.

3.2 Cycled subnetworks for refinement

Although the first cycled subnetwork is aimed at realistic
shadow removal, some residual shadows or blurry regions
may remain in the generated shadow-free images. Therefore,
we use multiple cycled subnetworks to refine the shadow-free
images step by step, and every step introduces a new larger
cycle that encompassed the previous one. Cycled subnetworks
for refinement consist of two generators and two discrimina-
tors for the shadowed and shadow-free domains, similar to the
cycled subnetwork for shadow removal. Learned shadow
mattes are used to generate synthetic shadow-free and
shadowed images. All additional cycled subnetworks for re-
finement have the same architecture.

For the sake of brevity, we explain an instance of
C2ShadowGAN composed of a subnetwork for shadow re-
moval and another subnetwork for refinement, as shown in

Fig. 1b. The generator G2
sf is trained to generate a shadow

matte for transforming the shadow-free image I1sf generated

by the first cycled subnetwork to the refined shadow-free im-

age I2sf , which is indistinguishable to the discriminator D2
sf

between the synthetic and real shadow-free images. The mod-
el can be confused if the original shadow mask Ms is used as
auxiliary information for network training in the refinement
task, as in the first cycled subnetwork. For instance, the shad-
ow mask eventually provides false information if the generat-
ed shadow-free image is close to the real shadow-free image.
Therefore, the auxiliary information for the refinement task,
called the difference map, needs to provide information on
how well the shadow was removed along with the shadow’s
location information. For this purpose, we adopt a simple
assumption that the smaller the differences in the shadow
pixels between the input image and generated shadow-free

image, the less is the shadow removed. Thus,M 2
s i; j½ � is com-

puted as M 2
s i; j½ � ¼ min 1= I s i; j½ �−I1sf i; j½ �

��� ������
þεÞÞ ; 1:0Þ if

Ms[i, j] = 1. Otherwise,M 2
s i; j½ � ¼ 0. Furthermore, adversar-

ial learning for G2
sf alone may generate artifacts in the gener-

ated shadow-free images [6]. Therefore, another generator G2
s

is employed to generate a shadow matte for transforming the

generated shadow-free image I2sf back to the original shadow

image Is. This also ensures cycle consistency between the
original and reconstructed shadow images. The introduction
of discriminators D2

sf and D2
s enables adversarial training for

both generators (G2
sf and G2

s ), which also affects the optimi-

zation of the first cycled subnetwork. Thus, we formulate the
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adversarial, cycle consistency, identity, non-shadowed area,
and boundary area losses for the second cycled subnetwork
as follows:

L1GAN G2
sf ;D

2
sf ;G

2
s ;D

2
s

� �
¼ Lsf ;2GAN G2

sf ;D
2
sf

� �
þ Ls;2GAN G2

s ;D
2
s

� �
Lsf ;2GAN G2

sf ;D
2
sf

� �
¼ 1

N
∑− log D2

sf I sf
� �� �

þ log 1−D2
sf G2

sf I1sf ;M
2
s

� �
⊗I1sf

� �� �h i
Ls;2GAN G2

s ;D
2
s

� � ¼ 1

N
∑− log D2

s I sð Þ� �þ log 1−D2
s G2

s I2sf ;Ms

� �
⊗I2sf

� �� �h i
ð8Þ

L2cycle G2
sf ;G

2
s

� �
¼ Lsf ;2cycle G2

sf ;G
2
s

� �
Lsf ;2cycle G2

sf ;G
2
s

� �
¼ 1

N
∑ G2

s I2sf ;Ms

� �
⊗I2sf −I s

��� ���
1

� � ð9Þ

L2identity G2
sf ;G

2
s

� �
¼ Lsf ;2identity G2

sf

� �
þ Ls;2identity G2

s

� �
Lsf ;2identity G2

sf

� �
¼ 1

N
∑ G2

sf I1sf ;M 0

� �
⊗I1sf −I sf

��� ���
1

� �
Ls;2identity G2

s

� � ¼ 1

N
∑ G2

s I s;M 0ð Þ⊗I s−I s
�� ��

1

� � ð10Þ

L2nsa G2
sf ;G

2
s

� �
¼ Lsf ;2nsa G2

sf

� �
þ Ls;2nsa G2

s

� �
Lsf ;2nsa G2

sf

� �
¼ 1

N
∑

1

NSAj j ∑
i∈NSA

p Is; ið Þ−p
�
G2

sf I1sf ;M
2
s

� �
⊗I1sf ; i

���� ���
1

	 


Ls;1nsa G1
s

� � ¼ 1

N
∑

1

NSAj j ∑
j∈NSA

p Isf ; j
� �

−p G2
s I2sf ;Ms

� �
⊗I2sf ; j

� ���� ���
1

0BB@
1CCA;

ð11Þ

L2ba G2
sf ;G

2
s

� �
¼ Lsf ;2ba G2

sf

� �
þ Ls;2ba G2

s

� �
Lsf ;2ba G2

sf

� �
¼ 1

N
∑

1

BAj j ∑
i∈BA

∇hp G2
sf I1sf ;M

2
s

� �
⊗I1sf ; i

� ���� ���
1
þ ∇wp G2

sf I1sf ;M
2
s

� �
⊗I1sf ; i

� ���� ���
1

� �	 

Ls;2ba G2

s

� � ¼ 1

N
∑

1

BAj j ∑
j∈BA

∇hp G2
s I2sf ;Ms

� �
⊗I2sf ; j

� ���� ���
1
þ ∇wp G2

s I2sf ;Ms

� �
⊗I2sf ; j

� ���� ���
1

� � !
;

ð12Þ

L2total ¼ ω2
1L

2
GAN þ ω2

2L
2
cycle þ ω2

3L
2
identity þ ω2

4L
2
nsa

þ ω2
5L

2
ba ð13Þ

where ω2
i ; i∈ 1; ::; 5f g are the weights of the corresponding

loss functions. Similar to the first cycled subnetwork, we em-
pirically set ω2

1, ω
2
2, ω

2
3, ω

2
4, ω

2
5 as 1.0, 10.0, 5.0, 10.0, and 5.0,

respectively. We can also stack zero or more cycled subnet-
works onto the first subnetwork, as illustrated in Fig. 1c.

Unlike the forward-backward cycle consistency loss of the
first cycled subnetwork for shadow removal, the cycled sub-
networks for refinement exploit the cycle consistency loss in

only one direction to encourage the reconstructed image I2s to
be identical to the original input shadow image Is, that is,

I s→
G1

sf I1sf →
G2

sf I2sf →
G2

s I2s . As the objective of the refine-

ment step is to improve shadow removal, the direction for
shadow addition is not included. However, we plan to incor-
porate the forward-backward cycle consistency loss in future
work and we will evaluate its performance.

3.3 Network architecture

We consider the network architecture of the Mask-
ShadowGAN [6] as the general architecture of the genera-
tors and discriminators for the cycled subnetworks for both
shadow removal and refinement. The original architecture
of Mask-ShadowGAN was drawn from CycleGAN [25],
which is a seminal architecture for general image-to-
image translation, instead of a specific design for shadow
removal. Each generator consists of three convolutional
layers, followed by nine residual blocks with stride-two
convolutions and two deconvolutional layers for up-
sampling and output generation. Furthermore, instance nor-
malization [28] is used after each convolution and
deconvolution operation. The generators concatenate the
shadow or shadow-free image with the corresponding aux-
iliary information (e.g., shadow mask or difference map),
which have four channels in total. For the discriminators,
we used PatchGAN [29].
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4 Experiments

4.1 Dataset and evaluation metrics

The ISTD dataset [11] is a standard benchmark used for shad-
ow detection and removal experiments. It contains 1870 trip-
lets of shadows, shadow masks, and shadow-free images un-
der 135 different scenarios. Although the ISTD dataset ex-
hibits various illumination properties, shapes, and scenes, it
has an illumination inconsistency problem between the paired
shadow and shadow-free images owing to slight changes in
ambient light [11]. Le et al. [5] addressed this problem in
previously published results using a color correction method
to mitigate the color inconsistencies between the shadow and
shadow-free image pairs. We also applied a color-corrected
test dataset because the color-adjusted shadow-free images
significantly affect the experimental results.

The Video Shadow Removal dataset [13] contains a set of
eight videos, each containing a static scene without visible
moving objects. For each video, the dataset provides a single
pseudo shadow-free frame (i.e., pseudo ground truth) as well
as a moving-shadow mask for each frame of the video. The
moving-shadow mask marks the pixels appearing in both the
shadow and non-shadow areas in the video. Following previ-
ous works [13, 17], we set a threshold of 80 to determine if a
pixel is included in the moving-shadow mask.

Following the approach by Le et al. [13] for preparing the
training dataset, patches of size 128 × 128 were cropped from
a real shadow image of size 640 × 480 with a step size of 32.
These were grouped into two sets according to the corre-
sponding shadowmasks: a non-shadow set containing patches
without shadow pixels and a shadow set containing patches
with both shadow and non-shadow pixels. In particular, we set
the minimum percentage of shadow pixels of each patch in the
shadow set to 10% to ensure differences between the shadow
and non-shadow areas within the patch. In total, we created
110,201 non-shadow patches and 110,201 shadow patches
from 1330 triplets. The remaining 540 triplets were used for
testing. Following previous works [13, 16, 17], all shadow
removal results with a resolution of 256 × 256 were used
for the performance evaluations. However, our method can
accept input images of any size.

We used the root-mean-squared error (RMSE) and mean
absolute error (MAE) between the ground truth and generated
shadow-free images in the LAB color space as evaluation
metrics. Their formulas are as follows:

MAE ¼ 1

N
∑
N

j¼1
y j−by j��� ���

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑
N

j¼1
y j−by j� �2s

;

ð14Þ

where N represents the number of test data items, and yj andby j
denote the predicted value and corresponding ground truth,
respectively. MAE is a linear score that weighs all individual
differences equally on average, whereas RMSE assigns a
higher weight to large errors [30]. RMSE is most useful when
large errors are particularly undesirable. We computed the
RMSE and MAE for each test image and then averaged the
scores over all test images, emphasizing the quality of each
image for the shadow and non-shadow areas [16]. In general,
the smaller these values are, the better is the performance.

4.2 Training details

Each patch image of size 128 × 128 in the training dataset
was resized to 112 × 112, and a random crop of 100 × 100
was used for training. All generators and discriminators were
initialized using a zero-mean Gaussian distribution with a
standard deviation of 0.02. The entire network is jointly
trained in an end-to-end manner using the Adam optimizer,
with the first and second momentum values set as 0.5 and
0.000, respectively. The learning rate was set to 2 × 10−4

for the first half of the epochs and then gradually decreased
to zero with a linear decay rate in the next half of the epochs.
The mini-batch size was set to one, and the training epoch was
set to 60 for all experiments.

Our model was implemented using the PyTorch framework
with a CUDA backend. We used a single NVIDIA GeForce
GTX 2080ti graphics processing unit for training and testing.
It took approximately 178 h to train C2ShadowGAN with a
single cycled subnetwork for shadow removal and a single
cycled subnetwork for refinement.

4.3 Results

We first conducted an experiment to assess the effectiveness
of the shadow-matting approach over direct generation of
shadow-free images for C2ShadowGAN. For this experiment,
we modified only the generators of C2ShadowGAN to pro-
duce shadow and shadow-free images directly, as in Mask-
ShadowGAN. The same training strategy and hyperparameter
settings were used for both networks. In addition, we config-
ured both networks to contain only the first cycled subnetwork

Table 1 Performance comparisons between two different methods for
generating shadow-free images

Method Shadow area Non-shadow area All

MAE RMSE MAE RMSE MAE RMSE

Direct generation 16.32 5.28 4.67 2.88 6.50 3.47

Shadow matting 7.31 3.83 3.65 1.80 4.22 2.21
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for shadow removal. Finally, we used DSDNet++ [14],
pretrained on the SynShadow dataset and fine-tuned on the
ISTD dataset, to obtain the shadow masks for our settings for
all experiments. The quantitative results for the shadow areas,
non-shadow areas, and all areas are shown in Table 1.

For shadow removal, the shadow-matting-based method
outperformed that based on direct image generation by
35.1% for MAE and 36.3% for RMSE. The former method
exhibited better performances in both shadow and shadow-
free areas.

Comparative performance of C2ShadowGAN according to
the configuration (i.e., number of cycles) is shown in Table 2.
When the number of cycles in C2ShadowGAN is 1 (i.e.,NC =
1), the network consists of a cycled subnetwork for shadow
removal only. In contrast, when the number of cycles in
C2ShadowGAN is n > 1 (i.e., NC = n), the network consists
of the first cycled subnetwork for shadow removal and (n-1)
additional linearly stacked cycled subnetworks for refinement.

C2ShadowGAN achieved the best performance with the
configuration of a cycled subnetwork for shadow removal
and a cycled subnetwork for refinement (i.e., NC = 2), reduc-
ing the RMSE in the shadow and non-shadow areas to 3.76
and 1.58, respectively. However, the overall performance and
per-area performance decrease owing to overfitting as the
number of cycled subnetworks increase. Figure 2 shows the

visual results generated from individual generators (e.g.,Gi
sf )

of the cycled subnetworks for both shadow removal and re-
finement. This demonstrates the negative impact of including
more cycles than necessary. In the case of C2ShadowGAN
with two cycled subnetworks, we observed that the final
shadow-free images were refined from the intermediate
shadow-free images, resulting in improved image quality
(see Fig. 2c–d). However, in the case of C2ShadowGAN with
four cycled subnetworks, we observed that the quality of the
output image deteriorated with each additional cycle (see Fig.
2e–g). For instance, the colors of the shadow areas are not
consistent with those of adjacent non-shadow areas, residuals
on the shadow boundary remain sharp, and visually obvious
artifacts are generated in the shadow and shadow-free areas.

We also conducted an ablation study to investigate the
effectiveness of the proposed loss function. Starting from the
original model with all the proposed losses, we trained the
new models by removing the specific loss terms each time.
For this experiment, we also used C2ShadowGAN with only
the first cycled subnetwork for shadow removal because its
relatively simple architecture makes it easier to analyze how
individual loss functions affect network training.

Combinations of LGAN, Lcycle, and Lidentity have been fre-
quently adopted as objective functions by other state-of-the-
art shadow removal models based on image-to-image transla-
tion [13, 16, 18]. From row 1 of Table 3, we observe that a
significant level of shadow removal performance can be
achieved using only these loss functions, and we use it as
the baseline performance for comparison. Adding LBA or
LNSA achieves overall performance gains of 5.7% and 7.8%
for MAE and 3.75% and 7.5% for RMSE, respectively.

As shown in rows 2–3, the use of LBA loss (Lbaseline + BA) is
more effective in transforming shadow pixels to non-shadow
pixels. In contrast, the use of LNSA loss (Lbaseline + NSA) is
useful for reducing unnecessary transformation of non-
shadow areas. These results are consistent with the original
purpose of the loss functions. As LBA loss considers only

Table 2 Comparative performances according to the configuration of
C2ShadowGAN

# of cycles (NC) Shadow area Non-shadow area All

MAE RMSE MAE RMSE MAE RMSE

NC=1 7.31 3.83 3.65 1.79 4.22 2.21

NC=2 7.18 3.76 3.04 1.58 3.68 2.04

NC=3 7.69 3.97 3.05 1.58 3.78 2.10

NC=4 8.41 4.22 3.69 1.82 4.42 2.34

    (a) Input     (b) Ground Truth     (c) 1st Cycle       (d) 2nd Cycle       (d) 1st Cycle      (e) 2nd Cycle      (f) 3rd Cycle      (g) 4th Cycle 

Fig. 2 Visual results generated from generators (Gi
sf ) of individual cycled subnetworks of C2ShadowGAN with (c,d) NC = 2 and (d–g) NC = 4
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pixels within the shadow boundary area, the network can be
trained to transform these pixels to look natural in the final
shadow-free image by minimizing LBA.

On the contrary, the network is optimized using LNSA loss
to generate outputs similar to the non-shadow areas of the
input shadow image by handling the shadow and non-
shadow areas separately. Although both MAE and RMSE
for the non-shadow area increased slightly compared to the
best case (Lbaseline + NSA), the best overall performance was
achieved when both LBA and LNSA were used together

(Lbaseline + BA + NSA). Figure 3 shows the qualitative results
of C2ShadowGAN trained with different loss functions. It also
demonstrates that compared with the model trained using all
of the proposed loss functions, the other models that are
trained with a subset of the loss terms may cause obvious
artifacts in the generated shadow-free images. Overall, LBA
and LNSA losses are crucial for learning appropriate shadow
removal as they restrict the model to process individual pixels
based on their characteristics.

In Table 4, we summarize the impact of choosing different
Bstep pixels, which determines the shadow boundary area for
LBA loss. The best performance was achieved when Bstep = 2.
However, when Bstep was set to 10 or 20, the corresponding
performances were worse than those of models trained with-
out LBA loss (i.e., Lbaseline and Lbaseline + NSA). This suggests
that careful selection of Bstep is required for the performance
gains.

We also compared the proposed method with recent state-
of-the-art supervised and unsupervised methods on the ISTD
dataset: DHAN [4], Mask-ShadowGAN [6], LG-ShadowNet
[18], Le et al. [13], and G2R-ShadowNet [16]. DHAN is one
of the representative supervised shadow removal systems, in
which shadow and shadow-free image pairs are required to

Table 3 Ablation study to investigate effectiveness of loss functions

Loss Constituent loss terms Shadow area Non-shadow area All

LGAN Lcycle LIdentity LBA LNSA MAE RMSE MAE RMSE MAE RMSE

Lbaseline ✓ ✓ ✓ – – 7.98 4.10 4.13 1.97 4.73 2.40

Lbaseline+BA ✓ ✓ ✓ ✓ – 7.52 3.99 3.89 1.92 4.46 2.31

Lbaseline+NSA ✓ ✓ ✓ – ✓ 8.13 4.06 3.65 1.76 4.36 2.22

Lbaseline+BA+NSA ✓ ✓ ✓ ✓ ✓ 7.31 3.83 3.65 1.79 4.22 2.21

       (a) Input          (b) Ground Truth           (c) Lbaseline             (d) Lbaseline+BA           (e) Lbaseline+NSA (f) Lbaseline+BA+NSA 

Fig. 3 Visual results based on the loss functions

Table 4 Comparative performances according to Bstep for the shadow
boundary area

Bstep Shadow area Non-shadow area All

MAE RMSE MAE RMSE MAE RMSE

2 7.31 3.83 3.65 1.79 4.22 2.21

10 10.99 5.47 4.97 2.42 5.91 3.05

20 9.65 4.83 4.81 2.21 5.57 2.71

50 8.64 4.25 4.07 1.86 4.78 2.38

256 8.04 4.16 3.76 1.83 4.43 2.31
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learn to remove shadows. Mask-ShadowGAN and LG-
ShadowNet require unpaired shadow and shadow-free images
to train their models, while the other weakly supervised
methods, including ours, require shadow images and shadow
masks for network training. The results are either produced by
us using the officially available codes or are provided by the
authors of the original publications. For this experiment, we
used C2ShadowGAN with a cycled subnetwork for shadow

removal and a cycled subnetwork for refinement, which
showed the best performance (Table 2).

As shown in Table 5, DHAN showed the best performance
as it was trained on paired data with pixel-level annotations
[18]. Among the unsupervised methods, our method achieves
a competitive performance advantage over other methods.
Compared with methods that use the same type of training
data as ours, our method outperformed the G2R-ShadowNet
by 10.5% and the approach of Le et al. by 20.6% in terms of
RMSE for the complete image. Although the MAE value of
the C2ShadowGAN was slightly higher than that of the G2R-
ShadowNet, we observed that the output images generated by
the C2ShadowGAN contained fewer artifacts. Figure 4 shows
the qualitative results of our method and other state-of-the-art
methods, which present some challenging cases such as large
shadow areas (first row) and shadows across backgrounds
with complex textures and colors (second, third, and fourth
rows). In most cases, except for the third row, where all
methods produced results with visible artifacts, our method
generated more realistic shadow-free images and restore the

Table 5 Comparative performance of the proposed method with state-of-the-art methods on the ISTD dataset

Methods Training Data Shadow area Non-shadow area All

MAE RMSE MAE RMSE MAE RMSE

DHAN [4] Paired shadow and shadow-free images 6.95 3.52 2.72 1.56 3.29 1.87

Mask-ShadowGAN [6] Unpaired shadow and shadow-free images 10.65 5.29 5.58 2.89 6.37 3.47

LG-ShadowNet [18] 9.81 4.89 3.27 1.94 4.29 2.69

Le et al. [13] Shadow images + Shadow masks 9.96 4.86 2.87 1.83 3.93 2.57

G2R-ShadowNet [17] 7.36 3.74 2.95 1.85 3.64 2.28

Ours (NC=2) 7.18 3.76 3.04 1.58 3.68 2.04

(a) Input     (b) Ground Truth    (c) DHAN   (d) Mask-ShadowGAN(e) LG-ShadowNet   (f) Le et al. (g) G2R-ShadowNet   (h) Ours  

Fig. 4 Visual results comparison of shadow removal on the ISTD dataset

Table 6 Comparison of generalization capability of the proposed
method and state-of-the-art methods

Method MAE RMSE

Mask-ShadowGAN [6] 33.99 31.53

LG-ShadowNet [18] 22.71 21.15

G2R-ShadowNet [16] 20.76 20.09

Ours (NC=2) 19.64 18.02
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texture details occluded by shadows. This is because our mod-
el exploits effective constraints for learning appropriate shad-
ow removal based on pixel characteristics and learns to avoid
unrealistic output images through adversarial learning.

Finally, we compared the generalization capability of our
model withMask-ShadowGAN [6], LG-ShadowNet [18], and
G2R-ShadowNet [16]. All models were trained on the ISTD
dataset and tested on the Video Shadow Removal dataset
without additional training or fine-tuning. We applied the
pretrained shadow detection model used in Le et al. [13] to
obtain a set of shadow masks for each video. By following
previous works [13, 16], we measured the MAE and RMSE in
the LAB color space between the output frame and pseudo
ground truth on the moving-shadow area marked by the
moving-shadow mask.

The quantitative results are listed in Table 6. Our method
exhibited the best performance for all the metrics. In particu-
lar, our method outperformed the G2R-ShadowNet—which
showed comparable performance to ours in terms of shadow
removal— reducing the MAE and RMSE by 5.39% and
10.30%, respectively. This result demonstrates that our meth-
od has better generalizability for other unseen environments.

Figure 5 shows the visual comparison results for four sam-
ples that present close (first and third rows) or distant shots
(second and fourth rows). The first and second rows show
examples where shadow removal was performed relatively
well. Although our method showed consistent performance
in both cases, the performances of the other methods fluctuat-
ed. For instance, G2R-ShodowNet recovered the shadow area
of the forest with fewer artifacts, as in our study (first row), but

failed to generate a shadow-free image with an occlusion ob-
ject of a complex shape (second row). In rows 3–4, although
all methods failed to remove shadows completely, we observe
that our method preserves the texture details of the shadow
area better than other methods. However, we expect that ac-
curate shadow mask generation and additional fine-tuning
processes will suppress these artifacts considerably.

5 Conclusion

In this study, we developed a novel weakly supervised
GAN with a cycle-in-cycle structure for shadow removal
using unpaired data, called the C2ShadowGAN. Our
method leverages the cycle consistency constraint based
on the cycle-in-cycle structure, in which multiple cycled
subnetworks are stacked to learn to remove shadows. We
also introduced loss functions for learning shadow re-
moval based on pixel characteristics. Thus, the network
was able to restrict simple modifications of all parts of
the image to fool the discriminator. We conducted exten-
sive experiments to assess the effectiveness of our meth-
od and showed that our method achieved competitive
performance against recent state-of-the-art shadow remov-
al methods with training on unpaired data. In the future,
we plan to extend this method to accommodate higher
resolution real-life images, such as high-resolution drone
images. We also plan to exploit state-of-the-art technolo-
gies, such as self-supervision, to enhance deep learning
methods trained on unpaired data.

(a) Input frame       (b) Pseudo Ground Truth  (c) Mask-ShadowGAN (d) LG-ShadowNet       (e) G2R-ShadowNet          (f) Ours 

Fig. 5 Visual results comparison of shadow removal on the Video Shadow Removal dataset

15077



S. Kang et al.

Acknowledgments This research was supported by a grant (22DRMS-
B147287-05) for the development of a customized realistic 3D geospatial
information update and utilization technology based on consumer de-
mand, funded by the Ministry of Land, Infrastructure and Transport of
the Korean government

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included
in the article's Creative Commons licence, unless indicated otherwise in a
credit line to the material. If material is not included in the article's
Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/ .

References

1. Zhang Y, Chen G, Vukomanovic J, Singh KK, Liu Y, Holden S,
Meetemeyer RK (2020) Recurrent shadow attention model
(RSAM) for shadow removal in high-resolution urban land-cover
mapping. Remote Sens Environ 247:111945–111959

2. Qu L, Tian J, He S, Tang Y, Lau R (2017) DeshadowNet: a multi-
context embedding deep network for shadow removal. In: Proc.
CVPR, Honolulu, Hawaii, USA, pp 2308–2316

3. Wei J, Long C, Zou H, Xiao C (2019) Shadow inpainting and
removal using generative adversarial networks with slice convolu-
tions. Comput Graph Forum 38(7):381–392

4. Cun X, Pun C, Shi C (2020) Towards ghost-free shadow removal
via dual hierarchical aggregation network and shadow matting
GAN. In: Proc. AAAI Conf. Artif. Intell., New York, NY, USA,
pp 10680–10687

5. Le H, Samaras D (2019) Shadow removal via shadow image de-
composition. In: Proc. ICCV, Seoul, South Korea, pp. 8578–8587

6. Hu X, Jiang Y, Fu C, Heng P (2019) Mask-ShadowGAN: learning
to remove shadows from unpaired data. In: Proc. ICCV, Seoul,
South Korea, pp 2472–2481

7. Vasluianu F, Romero A, Gool L, Timofte R (2021) Self-supervised
shadow removal. In: Proc. CVPRW, pp 826–835

8. Hu X, Fu C, Zhu L, Qin J, Heng P (2020) Direction-aware spatial
context features for shadow detection and removal. IEEE Trans
Pattern Anal Mach Intell 42(11):2795–2808

9. Zheng Q, Qian X, Cao Y, Lau R (2019) Distraction-aware shadow
detection. In: Proc. CVPR, Long Beach, LA, USA, pp 5167–5176

10. Khan SH, Bennamoun M, Sohel F, Togneri R (2016) Automatic
shadow detection and removal from a single image. IEEE Trans
Pattern Anal Mach Intell 38(3):431–446

11. Wang J, Li X, Yang J (2018) Stacked conditional generative adver-
sarial networks for jointly learning shadow detection and shadow
removal. In: Proc. CVPR, Salt Lake City, UT, USA, pp 1788–1797

12. Vincente TF, Hou L, Yu C, Hoai M, Samaras D (2016) Large-scale
training of shadow detectors with noisily-annotated shadow exam-
ples. In: Proc. ECCV, Amsterdam, Netherlands, pp 816–832

13. Le H, Samaras D (2020) From shadow segmentation to shadow
removal. In: Proc. ECCV, pp 264–281

14. Inoue N, Yamasaki T (2020) Learning from synthetic shadows for
shadow detection and removal. IEEE Trans Circuits Syst Video
Technol 31(11):4187–4197

15. Kim J, Jang I (2021) Dual hierarchical aggregation network based
enhanced shadow detection and removal. J Korean Soc Geospatial
Info Sci 29(2):27–34

16. Liu Z, Yin H, Wu X, Wu Z, Mi Y, Wang S (2021) From shadow
generation to shadow removal. In: Proc. CVPR, pp 4927–4936

17. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D,
Ozair S, Couville A, Bengio Y (2014) Generative adversarial nets.
Adv Neural Inf Process Syst:2672–2680

18. Liu Z, Yin H, Mi Y, Pu M, Wang S (2021) Shadow removal by a
lightness-guided network with training on unpaired data. IEEE
Trans Image Process 30:1853–1865

19. Li Y, Tang S, Zhang R, Zhang Y, Li U, Yan S (2019) Asymmetric
GAN for unpaired image-to-image translation. IEEE Trans Image
Process 28:5881–5896

20. Choi Y, Choi M, Kim M, Ha J, Kim S, Choo J (2018) StarGAN:
unified generative adversarial networks for multi-domain image-to-
image translation. In: Proc. CVPR, Salt Lake City, UT, USA, pp
8789–8797

21. Kumar PC (2019) A survey on various shadow detection and remov-
al methods. In: Proc. ICCVBIC, Coimbatore, India, pp 395–401

22. Tiwari A, Singh PK, Amin S (2016) A survey on shadow detection
and removal in images and video sequences. In: Proc.
CONFLUENCE, Noida, India, pp 518–523

23. Murali S, Govindan V, Kalady S (2016) A survey on shadow re-
moval techniques for single image. Int J Image Graph Signal
Process 8:38–46

24. Shilpa M, Gopalakrishnan MT, Naveena C (2020) Approach for
shadow detection and removal using machine learning techniques.
IET Image Process 14(13):2998–3005

25. Zhu J, Park T, Isola P, Efros AA (2017) Unpaired image-to-image
translation using cycle-consistent adversarial networks. In: Proc.
ICCV, Venice, Italy, pp 1033–1038

26. Arbel E, Helor H (2011) Shadow removal using intensity surfaces
and texture anchor points. IEEE Trans Pattern Anal Mach Intell 33:
1202–1216

27. Fan H,HanM, Li J (2019) Image shadow removal using end-to-end
deep convolutional neural networks. Appl Sci 9:1–18

28. Ulyanov D, Vedaldai A, Lempitsky V (2016) Instance normaliza-
tion: the missing ingredient for fast stylization. arXiv preprint
arXiv:1701.02096

29. Isola P, Zhu J, Zhou T, Efros A (2017) Image-to-image translation
with conditional adversarial networks. In: Proc. CVPR, Honolulu,
Hawaii, USA, pp 1125–1134

30. Son S, SongY, KimN, Do Y, Kwak N, LeeM, Lee B (2019) TW3-
based fully automated bone age assessment system using deep neu-
ral networks. IEEE Access 7:33346–33358

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

15078



C2ShadowGAN: cycle-in-cycle generative adversarial network for shadow removal using unpaired data

Sunwon Kang Song received her
BS from the Department of
Computer Science, Kyonggi
University, South Korea, in 2020,
where she is currently pursuing her
MS a t t h e Depa r tmen t o f
C o m p u t e r S c i e n c e . H e r
current research interests include
computer vision, deep learning,
a n d g e o s p a t i a l a r t i f i c i a l
intelligence.

Juwan Kim received his BS and
MS in Computer Engineering from
Pusan National University, Pusan,
South Korea, in 1993 and 1995, re-
spectively, as well as his PhD in
Computer Science from Chungnam
National University, Daejeon, in
2004. Since 1995, he has been a re-
search member of Electronic
and Telecommunications Research
Institute (ETRI). His research inter-
ests include geospatial information
science, computer vision, and
geospatial artificial intelligence.

In Sung Jang received his BS and
MS in Computer Engineering
from Pusan National University,
South Korea, in 1999 and 2001,
respectively. Since 2001, he has
been a principal member of the
research staff at ETRI. His main
research areas are platforms for
digital twins, 3D GIS service,
GeoAIoT service, locat ion
based services, and moving object
DBMS.

Byoung-Dai Lee received his BS
and MS in Computer Science
from Yonsei University, South
Korea, in 1996 and 1998, respec-
tively. He received his PhD in
C o m p u t e r S c i e n c e a n d
Engineering from the University
of Minnesota, Minneapolis,
USA, in 2003. He is currently a
full professor at the Division of
AI and Computer Engineering,
Kyonggi University, Korea.
B e f o r e j o i n i n g Kyo n g g i
Un ive r s i t y, h e worked a t
Samsung Electronics, Co., Ltd.
as a senior engineer from 2003
to 2010. His research interests in-
clude computer vision, medical
imaging analysis, and geospatial
artificial intelligence.

15079


	C2ShadowGAN: cycle-in-cycle generative adversarial network for shadow removal using unpaired data
	Abstract
	Introduction
	Related works
	Methodology
	Cycled subnetwork for shadow removal
	Cycled subnetworks for refinement
	Network architecture

	Experiments
	Dataset and evaluation metrics
	Training details
	Results

	Conclusion
	References


