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Abstract
Identifying unusual crowd events is highly challenging, laborious, and prone to errors in video surveillance applications. We
propose a novel end-to-end deep learning architecture called Stacked Denoising Auto-Encoder (DeepSDAE) to address these
challenges, comprising SDAE, VGG16 and Plane-based one-class Support Vector Machine (SVM), abbreviated as PSVM,
to detect anomalies such as stationary people in an active scene or loitering activities in a crowded scene. The DeepSDAE
framework is a hybrid deep learning architecture. It consists of a four-layered SDAE and an enhanced convolutional neural
network (CNN) model. Our framework employs Reinforcement Learning to optimise the learning parameters to detect crowd
anomalies. We use the Markov Decision Process (MDP) with Deep Q-learning to find the optimal Q value. We also present
a late fusion procedure to combine individual decisions from the intermediate and final layers of the SDAE and VGG16
networks to detect different anomalies. Our experiments on four real-world datasets reveal the superior performance of our
proposed framework in detecting (frame-level and pixel-level) anomalies.

Keywords Crowd behavior · Anomaly detection · Motion features · Late fusion · Video surveillance

1 Introduction

Video-based crowd motion analysis is a fundamental prob-
lem in surveillance applications. In particular, anomalous
event detection is one of the most popular tasks in the
domain of crowd motion analysis. Varadarajan and Odobez
[1] defined a crowded event as an action that happens at
temporal and spatial levels. Anomalous crowd behavior or
events denotes any sudden incidents that capture human
attention or exhibit different behavior patterns from the reg-
ular pattern of behavior. There is an increasing need to
monitor public places (shopping malls, transport stations,
airports, streets, and other gathering places) to identify
anomalous crowd patterns, such as sudden changes in crowd
movements or size. Furthermore, there is a need to detect
anomalous events in an emergency, such as in public places,
and raise the alarm accurately and timely.
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Existing research has contributed significantly to mon-
itoring human behavior using large surveillance cameras.
The widely used closed-circuit television (CCTV) for crowd
monitoring helps to improve security up to a certain extent.
However, the CCTV alone cannot provide a complete per-
spective of all the places because of their “disjoint and
fragmented” coverage [2]. For example, CCTV cameras are
usually installed in fixed locations and have limited (fixed
field of view) coverage. Moreover, employing and maintain-
ing ubiquitous surveillance cameras is highly expensive.

Additionally, there is a high chance of not detecting any
crowd events at large crowded venues because the security
personnel who monitor the CCTV feeds are susceptible to
fatigue and concentration loss. Human observers are not
always sensitive to detect an event’s sudden occurrence:
they cannot pay attention to all of the anomalous objects or
behaviors in a scene. Hence, it is challenging to distinguish
these unusual events from ordinary activities based solely
on human observation.

In order to improve crowd event detection performance
and tackle the challenges associated with real-life applica-
tions on a large scale, an automated monitoring system is
needed to detect, analyse, and predict crowd behavior [3–5].
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Thus, analysing and understanding a large group of peo-
ple in crowds have attracted increasing attention. Although
crowd analysis covers many tasks, this paper focuses on
anomalous event detection.

This paper proposes a novel end-to-end hybrid deep
learning framework for highly accurate anomalous object
detection and abnormal movement pattern detection. In
contrast to the preliminary analysis presented in [6], this
work explores a new architecture called the DeepSDAE
model, as shown in Fig. 1). The proposed framework
employs a Stacked Denoising Auto-Encoder (SDAE) and
an improved VGG16 model [7]. In particular, we extract
continuous motion trajectories as pre-features and feed
them to the SDAE. In contrast to the work presented
in [6], we first extract two output channels from the
SADE’s hidden and final layers. We then feed these
channel outputs to (1) a Plane-based one-class Support
Vector Machine (1SVM), abbreviated as PSVM and (2) an
optimised VGG16 that feeds to another PSVM. Finally, we
combine the decisions from these two PSVM outputs with
reinforcement learning to detect crowd anomalies using a
late fusion mechanism. Our approach detects anomalous
crowd movement behaviors, such as those in the baseline
datasets, namely the UCSD [8], Avenue [9, 10] and Subway
Surveillance [11] datasets. The abnormal activities include
non-pedestrian objects, such as people riding bicycles,
skaters, carts, and anomalous motions in the UCSD dataset
[8]; strange actions, a person walking in the wrong direction
and non-pedestrian objects in the Avenue dataset [9, 10];
people entering and exiting the subway in the wrong
direction, loitering and irregular interactions in the Subway
Surveillance dataset [11]. In addition, it can detect abnormal
activities, such as standing and loitering people appearing

in the densely crowded Melbourne Cricket Ground (MCG)
dataset [5, 12]. Our main contributions in this work are:

1. The proposed novel end-to-end deep neural network
architecture, called DeepSDAE, enables long-clue
Spatio-temporal crowd motion anomaly detection,
where the raw videos are used twice via two channels.
We use this proposed approach only once while
still achieving superior performance. Moreover, the
proposed framework convergence is stable and quick
because of our optimised deep learning framework.

2. We derive a set of optimal parameters for detecting
the anomalies by modelling the crowd flow process
as a Markov Decision Process (MDP) and solving
them using a Deep Q-learning (DQN) method [13].
As a result, our approach produces a generalised set
of learned parameters, improving the ability to detect
similar events from different, new scenarios.

3. We evaluate our proposed framework on the MCG
dataset [5, 12], the UCSD Ped1 and Ped2 [8], Avenue
[9, 10], and Subway Surveillance [11] datasets. These
datasets consist of various abnormal crowd activities,
and we evaluate 13 other approaches comprehensively.
The proposed DeepSDAE frame outperforms existing
approaches in detecting anomalies (frame level or pixel
level) in crowded scenes.

4. The DeepSDAE is a novel Reinforcement learning -
deep learning model to detect crowd anomalies, where
RL is firstly introduced to explore the parameter set.
It produces superior results by learning the optimal
crowd anomaly detection parameters (i.e., the time
window of each tracklet, the neighbouring relationship
of individuals and fusing decisions to arrive at anomaly
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Fig. 1 Overview of the proposed end-to-end crowd anomaly detection
architecture. We extract the motion features from the raw videos and
represent the crowd trajectories as crowd collectiveness using Kanade-
Lucas-Tomasi (KLT) tracklets’ manifold, rendering continuous motion
maps. The proposed DeepSDAE framework comprises SDAE with
an optimised VGG16 model to discern the normal and abnormal

movement patterns. Classifying normal and abnormal patterns in
highly crowded scenarios is challenging. Therefore, we introduce two
information channels in the DeepSDAE framework with PSVMs to
produce two anomaly scores and merge the decisions via the late fusion
scheme, delivering outstanding crowd anomaly detection results
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scores) via the Deep Q-learning by maximising the
expected rewards.

The structure of this article is as follows: Section 2 pro-
vides the literature review on abnormal crowd detection
methods. In Section 3, we introduce our proposed method-
ology. Section 4 provides the evaluation results for the four
datasets, and Section 5 provides the conclusion.

2 Related work

We find several methods proposed to detect anomalous
crowd events in video surveillance applications. We will
review the recent abnormal crowd detection approaches
in this section. In the literature, we find crowd tracking
algorithms [5, 14], object detection methods [15] and
detecting people fighting methods [16]. However, these
approaches work only in specific experimental scenarios;
finding a general approach is still challenging. Motion
representation methods (with texture and dynamic models)
[17, 18] and sparse coding [19] have partially solved these
challenges. These methods approached abnormal detection
as the outlier detection problem. The generalised approach
considers training regular image sequences and testing
whether the new incoming frame is normal or abnormal
compared with the trained regular pattern.

The Mixture of Dynamic Textures (MDT) [17] captures
the crowd dynamics and the appearance in crowded scenar-
ios to represent crowd behavior. The hierarchical mixture
of dynamic texture (H-MDT) li2014anomaly modifies the
original MDT to improve the temporal anomaly detection
process. This modification involves partitioning each frame
into multiple sub-blocks and extracting the small patches
with spatio-temporal information as MDT. The resulting
H-MDT creates multi-scale anomaly maps, both at tempo-
ral and spatial levels. An online conditional random fields
(CRF) scheme detects anomalous events, fusing temporal
and spatial anomaly maps. The results demonstrate that the
H-MDT outperforms the MDT [17]. However, the training
of CRF requires handcrafted annotated training samples,
making it less attractive for real-world applications.

Deep learning has demonstrated exemplary performance
in object detection and behavioral analysis. Likewise, deep
learning is a promising approach for anomalous event
detection. Xu et al. [20] have proposed a novel architecture,
called Appearance and Motion DeepNet (AMDN), for
anomalous event detection. Feng et al. [21] use the
SDAE to extract the spatial features. They implement
the time-dependent Long Short-Term Memory (LSTM),
capturing the long-term clues. Hasan et al. [22] combine
conventional handcrafted Spatio-temporal local features and
convolutional fully-connected feed-forward auto-encoder

(Conv-AE) with learning local features and classifying
activities. Chong et al. [23] proposed convolutional LSTM
(ConvLSTM) to combine spatial features and temporal
evolution of spatial features to detect video anomalies. The
authors demonstrated that their framework works better
than [22]. Dubey et al. [24] studied the joint learning
approach to extract appearance and motion features using
context-dependency called the Deep-network with Multiple
Ranking Measures (DMRMs). Morias et al. [25] extract
the dynamic skeleton features using a message-passing
encoder-decoder recurrent network for anomaly detection.

The authors in [19] proposed a stacked Recurrent
Neural Network (RNN) based deep model implementing
coherent sparse coding. In addition, we find high-level
feature extracting deep learning models proposed to
detect anomalous event tasks [26, 27], such as the Fully
Convolutional Neural Networks (FCNs) [26] and Plug-
and-play Convolutional Neural Networks (PCCNs) [27].
Recently, algorithm called CO-attention Siamese Network
(COSNetin) [28, 29] is utilized to tackling this problem,
leading to a zero-shot solution, which is a unified and
end-to-end trainable architecture, that can catch diverse
joint feature. Dubey et al. [24] studied the joint learning
approach to extract appearance and motion features using
context-dependency called the Deep-network with Multiple
Ranking Measures (DMRMs).By combining optical flow
and HOG, Mishra et al. [30] presented a tensor-based model
for motion description to identify any unusual behavior in
the crowd scene. The authors [31, 32] proposed a two-fold
CNN based framework to complete end-to-end solution,
which can achieve robust classification with a specific and
dedicated deep learning heuristic.

3Methodology

Figure 1 illustrates our proposed end-to-end architecture,
which uses continuous motion maps as input for the
proposed DeepSDAE model for performing crowd anomaly
detection. Continuous motion map is learned from raw
video using a deep model that comprises crowd movement
features [33]. The proposed deep network model includes
a four-layer SDAE with a transfer learning-based VGG
optimisation model.

We first extract the continuous motion maps from the
raw videos. The continuous motion maps help build the
relation between appearance and motion features. The
creation of the motion map involves extracting the motion
features, represented via the KLT manifold collectiveness
and finally rendering the continuous motion maps [6]. We
then input these maps to the DeepSDAE. The denoising
characteristic of DeepSDAE makes the framework more
robust to changing crowd motions.
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We use transfer learning to optimise the original VGG
model to overcome the overfitting problem and improve the
model generalisation. The optimised component comprises
one convolution layer and three FC layers. The outputs
from the VGG and the hidden layer of SDAE are
fed to two PSVMs via two channels, respectively, to
produce different anomaly scores. We chose PSVM in
our architecture because of its demonstrated high anomaly
detection performance in the recent work [7]. We employ
the late fusion mechanism to combine the two anomaly
decision scores. We derive the weight vectors for combining
the decisions using the DQN framework.

3.1 DeepSDAE framework

In previous works, experiments performed on the MCG
dataset [5, 12] using SDAE with one-class SVM [20]
showed limitations in achieving good performance because
the scenarios in the MCG dataset are highly crowded.
This section introduces the unsupervised hybrid deep model
called DeepSDAE to perform crowd anomaly detection.
Figure 1 shows our framework, including an SDAE, an
optimised VGG16 model, and a PSVM [7, 34] to efficiently
separate the normal and abnormal patterns.

Detecting anomalies include first extracting the features
and then applying SDAE to learn the embeddings. The
SDAE produces two outputs: we feed (1) the first output
from the hidden layer of the SDAE to a PSVM to produce an
anomaly score, and (2) the second output from the decoder
of the SDAE to the improved VGG model, followed by
a PSVM, to produce another anomaly score. Finally, the
outputs from the two PSVMs are combined using a deep
reinforcement learning-based late fusion [35] mechanism to
detect anomalous crowd events.

3.1.1 Learning representations

In this work, we exploit the SDAE’s capability to learn
useful representations frommotion feature maps. At the pre-
training stage, the target is to find out a suitable mapping
function, and train one-layer auto-encoder, where are then
being fed to the next layer, till forming stacked four-layer
feedforward denoising neural network.

For fine-tuning, we use the the training data φc =
{
dc
i

}Mc

i=1, where c denotes the motion maps and Mc

represents the number of training samples. The objective
function in DeepSDAE model is given by,

J
(
φc

) =
Mc∑

i

∥∥∥dc
i − d̂c

i

∥∥∥
2

2
+τF

M∑

i=1

(∥∥ωc
i

∥∥2
F

+ ∥∥ω′c
i

∥∥2
F

)
(1)

where dc
i and d̂c

i represent the input motion features and
the reconstructed sample of the SDAE; τF aims at setting

the balance between the two terms in the objective function
by regularising the weights of the encoder and the decoder;
ωc

i and ω′c
i represents the corresponding weights in encoder

and decoder segments of the SDAE. The output of the
hidden layer is used with sparsity constraints, aiming
at making data representation perform better. We apply
sparsity constraints on the outputs of the hidden units
to find a valuable data representation. We use Stochastic
Gradient Descent (SGD) for a stable and guaranteed global
convergence.

3.1.2 Optimising the VGG16model

The Computer Vision Group from Oxford University
proposed a VGG16 architecture, in 2014, for performing
deep learning-based classification tasks. The model has 16
layers comprising 13 convolutional layers and three FC
layers. We can arrange the layers into five blocks (block
1 to block 5) with different convolutional and pooling
layers. For example, blocks 1 and 2 in the VGG16 model
have two convolutional layers followed by a max-pooling
layer. In contrast, blocks 3-5 have three convolutional layers
followed by the max-pooling layer. Among them, the size
of all convolution kernels is 3 × 3, and the size of pooling
kernels is 2×2. Therefore, the VGG16 network replaces the
convolution kernels of size 5 × 5 and 7 × 7 by stacking the
convolution kernels 3×3. As a result, the optimised VGG16
model can obtain the same receptive field, significantly
reducing the number of parameters and increase the depth
of the network [36]. In addition, the stacked convolutional
layers increase the non-linear transformation layers and
feature extraction capability of the network. The non-linear
transformation here uses the ReLU function, defined as:

ReLU(x) = max(x, 0) (2)

VGG16 model includes many parameters, and most
parameters are concentrated in the FC layers. To decrease
the overfitting of the model during training, we use transfer
learning and fine-tuning [37] to optimise the VGG16 model.
The optimised VGG16 model comprises a trained VGG16
model and a convolutional neural network, as shown in
Fig. 2. We use binary cross-entropy metric as the loss
function, which is defined as

loss = −
(∑n

i
yi log ŷi + (1 − yi) log(1 − ŷi )

)
, (3)

where n is the total number of samples, yi is true label of
the samples, and ŷi is the predicted label.

The parameters in the five blocks (1 to 5) in the pre-
trained VGG-16 network are retained and frozen, reducing
the number of trainable parameters, and a simple CNN
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Fig. 2 The proposed VGG16 optimisation model

replaces the FC layer. Since the network contains only one
convolutional layer, a relatively small dataset can meet the
training requirements. Figure 2 shows the structure of our
proposed VGG16 optimisation model.

When constructing a VGG16 model, we first initialise
the model parameters based on ImageNet and then
freeze the parameters of 5 blocks. Then, we connect the
constructed simple CNN for training. Table 1 shows the
changes in parameters after freezing. From Table 1 we
clearly see that the number of trainable parameters that
significantly reduced between VGG-16 (15,895,105) and
optimized VGG-16 (1,180,417), which is a 92.6% reduction(14, 714, 688
15, 895, 105

)
in trainable network parameters and the

reduction is observed in the training time.

3.1.3 Classifying anomalies

We implement PSVM [7, 34] in this step for classifying
anomalies. PSVM aims at finding a hyperplane from the
high-dimensional feature space that can classify the normal
and abnormal data. The reason we chose PSVM is that it
is computationally simpler. Implementing PSVM involves
implicitly projecting the data vectors xi ∈ Rd(i =
1, 2, ..., n) to a high-dimensional feature space via kernel
functions and requires solving the following quadratic
optimisation problem

min
�,ξ,ρ

1

2
‖W‖2 + 1

σ · n

N∑

i=1

ξi, (W ∗ ϕ (xi)) + ξi ≥ θ̄ , (4)

Table 1 Parameters of the optimised VGG16 model

Layer(type) Parameter Layer(type) Parameter Output shape

Original VGG16 15,895,105 Optimized VGG16 1,180,417 (None,4,4,512)

Block 1-5 14,714,688 Frozen Layer 0 (None,4,4,512)

Conv2d 1 131,328 Conv2d 1 131,328 (None,4,4,256)

Flatten 1 0 Flatten 1 0 (None,4096)

Dense 1 (Dense) 1,048,832 Dense 1 (Dense) 1,048,832 (None,256)

Dense 2 (Dense) 257 Dense 2 (Dense) 257 (None,1)

Total params: 15,895,105 Total params: 15,895,105

Trainable params: 15,895,105 Trainable params: 1,180,417

Non-trainable params: 0 Non-trainable params: 14,714,688

The frozen blocks in the modified VGG-16 model increases the compactness of the model because of the frozen parameters
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where W denotes the weight vector, σ denotes the regu-
larisation parameter indicating the proportion of anomalous
data from the entire data; ξi are the slack variables that allow
us to control the vectors on either side of the classification
hyperplane and θ̄ is a pre-defined offset that allows that
aids in classification. We make use of the radial basis func-
tion (RBF) kernel to map input data to the high-dimensional
feature space. The RBF is defined as

K
(
xi, xj

) = e
−∥∥xi − xj

∥∥2

2τ 2
, (5)

where τ denotes the extent of spread of the RBF kernel.
The anomaly score in the testing data are denoted as xt ,
where it can be explored by using δ = W ∗ ϕ(xt ) − θ̄ .
The σ denotes the lower boundary for the support vectors
and the corresponding upper boundary for the proportion
of abnormal data. An unsupervised PSVM model training
method is implemented in this paper [34].

3.1.4 Merging decisions via late fusion scheme

The anomalies score output from two branches is combined
by implementing late fusion. Late fusion can learn semantic
representations directly from the unimodal features [35]. In
addition, we use a weight vector to merge these two PSVM
values as A = [ω, 1−ω], where ω is the weight of the upper
branch (SDAE-VGG-PVSM), and we choose this parameter
by utilising a reinforcement learning. Anomaly score from
each branch (δ = W ∗ ϕ(xt ) − θ̄ ) is calculated and the final
anomaly decision score is given by

δc = ωδ1 + (1 − ω)δ2. (6)

We use a flexible threshold η to depict the receiver
operating characteristic curve (ROC) in our work. If δc < η,
then the frame will be recognised as normal data at the
frame level and the associated pixels will also be detected
as normal data at the pixel level. On the other hand, if
δc ≥ η, then the frames and the related pixels will be treated
as anomalies. The ROC curve and the corresponding Area
Under Curve (AUC) are obtained by changing the threshold
η. The details are discussed in Section 4 (experimental
evaluation).

3.2 OP-RLmethod

Learning optimal parameters is an essential but difficult
task, and we usually choose them empirically. We need to
learn a set of three parameters, N , K and ω, for detecting
crowd anomalies. The parameters N and K are from the
motion maps. The parameterN denotes the value of the time
window of each tracklet and K denotes the parameter about
the number of nearest neighbour in k-NN graph, where it
is used to represent the interactions among the individuals

obtained from the KLT tracklets. The third parameter, ω,
is the weight vector of the first branch in the late fusion
scheme, producing the combined anomaly decision score
δc. We develop a reinforcement learning approach to select
the optimal parameters. We model the parameter learning
process as the MDP and propose a optimal parameter
learning method (OP-RL) to find the optimal parameters for
anomalies detection.

In reinforcement learning, we let the agent learn an
interactive environment by trial and error while using a
reward to measure its interactions. Figure 3 demonstrates
the fundamental elements and the process involved in
reinforcement learning. An environment is a world in which
the agent operates. State St is the current situation sequence,
and St+1 is the subsequent sequence the agent perceives.
The reward is the feedback from the environment, and it also
measures the influence of action (At ), where t represents
the current time. The agent’s target is to interact with the
environment using different actions and get the maximal
reward in the future. The reward Rt at timestep t could be
defined as Rt = ∑T

t ′=t γ
t ′−t tt ′ , where γ is a discounted

factor. The optimal action–value function, Q∗(s, a), is
calculated using Q∗(s, a) = maxπ E[Rt |st = s, at = a, π],
where π is a policy sequence of actions.

The optimal action–value function follows an identity
called the Bellman equation. This equation is based on the
intuition that if the optimal value Q∗(s′, a′) of the state
sequence s′ at the next timestep was known for all possible
actions a′, then the optimal strategy is to select the action a′
that maximises the expected value r + γQ∗(s′, a′), where,

Q∗(s, a) = Es′∼ε

[
r + γ max

a′ Q∗(s′, a′)|s, a
]
. (7)

As discussed above, the reinforcement learning algo-
rithm interactively updates the action–value function using
the Bellman equation. The action–value function can be

Agent

Environment

Action
State Reward

tS tR

1tS +

+1tR

tA

Fig. 3 The basic elements and the processes involved in reinforcement
learning. The environment is a world in which the agent operates.
State St is the current situation sequence, and St+1 is the subsequent
sequence the agent perceives. The reward is the feedback from the
environment, and it also measures the influence of action (At ), where
t represents the current time
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denoted as Q(s, a; θ), where the weight θ can be learned
with a neural network such as the Q-network. Training the
Q-network involves minimising the loss function Li(θi) for
each iteration i, given by

Li(θi) = Es,a∼ρ(·)
[
(yi − Q(s, a; θi))

2
]
, (8)

where yi = Es′∼ε[r + γ maxa′ Q(s′, a′; θi−1)|s, a] is the
target for iteration i and ρ(s, a) is a probability distribu-
tion over the State sequence s and the action sequence a.
When optimising the loss function Li(θi), the parameter
θi−1 is fixed. The gradient is calculated using ∇θi

Li(θi) =
Es

[(
r + γ maxa′ Q(s′, a′; θi−1) − Q(s, a; θi)

) ∇θi
Q(s, a;

θi)]. Note that when optimising the loss function using
SGD, computing the gradient is usually computationally
expensive.

Markov decision process(MDP), defined by the tuple
(S,A, P , r, γ ), where S is the state space, A is the action
space, P is the state transition probability from state s to
the next state s′ under action a, R is a reward function
represents the expected reward for executing action a in
state s, and γ ∈ (0, 1) is the discount factor. The agent
interacts with the environment with its policy π , a mapping
from state to action.

In terms of the detailed algorithm, we adopt the Deep
Q-learning (DQN) to solve the parameter optimization prob-
lem (refer to Fig. 4). DQN is the first deep reinforcement
learning method proposed by DeepMind [13] to learn con-
trol policies directly from the high-dimensional sensory
inputs. The process of Q-value iteration in the DQN frame-
work is the same as what we discussed before and Fig. 5
illustrates our entire approach. In reinforcement learning,
the main component for one episode1 is (state, next state,
action, reward). State is expressed as St , next state as St+1,
action as set At , and the reward as Rt at the current time
t . We use the generated motion maps as the state St . The
parameters N , K and ω are chosen from the action set
At = (N, K, ω). In the current episode t , reward Rt is cal-
culated as Rt = δc to measure how the actions are chosen.
The reward, Rt , in this work is a value between 0 and 1,
and the higher reward indicates the action chosen being bet-
ter. For the next episode t + 1, we use the next state of the
updated motion maps St+1.

The optimal action-value function Q∗(St , At ) is defined
as the maximum expected return achievable by following
any strategy, after seeing the State sequence S and taking the
action a. The objective is to find an optimal policy which
can maximize the expected discounted long-term reward
R̃ = Eπ [∑∞

t=0 γ tRt ], where where π is a policy mapping
sequences to actions. Through the iterative process, RL
model converges, when the value of R̃ is maximal. Finally,

1Sequence of states, actions and rewards that reach a terminal state

the decided action set At = (N, K, ω) by using the above
converged model corresponds to the optimal parameter set.

As the value of N , K and ω are all discrete, which is also
the reason why we take DQN as the reinforcement learning
algorithm. The action space chosen in DQN is discrete,
where action space is continues in some other algorithms
like DDPG. In details, for N , the value in action space is
changing from 3 to 10, round to one decimal place. So for
this value, the size of action space for this value is 70. In
terms of parameter K , the value in action space is changing
from 1 to 10. The size of action space for this value is 10.
For parameter ω, the value in action space is changing from
0 to 1, round to one decimal place. The size of action space
for this value is 10.

4 Results and discussion

4.1 Experiment setup

We implemented our proposed framework in C++ and
Python using Anaconda 3.5 package manager in Visual
Studio 2015. We used Windows 10 Operating System (OS)
and NVIDIA® Geforce® GTX 2080Ti graphics card for our
experiments.

In the four-layer SDAE architecture we used, the number
of neurons in the first layer is set to be 1024, every time
reduced by half for the rest of the layers. Precisely, the
SDAE encoder consists 1024 → 512 → 256 → 128
neurons in the four layers, and the corresponding decoder
neurons in the four layers as 128 → 256 → 512 → 1024.
The learning rate λF is set to 0.0001. At the pre-training
and fine-tuning stage, the number of epochs is set to 10 and
20, respectively. We used Quick Model Selection method
[34] for tuning the parameters of the PSVMs, where C =
(2−5, 2−3, ..., 215). The best value of γ for the RBF kernel
is selected from γ = (2−15, 2−13, . . . , 23), using cross
validation. We used the tuning parameters provided in [34].

The optimal parameters learned by using Reinforcement
Learning are given in Table 2. The parameters N and K are
from the motion maps, where the value of N denotes the
value of the time window of each tracklet and K denotes the
parameter about the number of nearest neighbour in k-NN
graph, where it is used to represent the interactions among
the individuals obtained from the KLT tracklets. In terms of
ω, it is the weight vector of the first branch in the late fusion
scheme, producing the combined anomaly decision score δc.

It seems that the parameters are adaptive to different type
of videos, based on different type of anomalies, but the
change of these parameters are very slight.

We utilise SDAE to learn valuable representations in an
unsupervised manner. In addition, PSVM is highly effective
in classifying the outliers [34]. Therefore, the proposed
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Fig. 4 Deep Q-learning framework for learning optimised set of parameters

method guarantees better performance by overcoming the
lousy performance caused by the noise and unlabelled
training data in traditional one-class SVM. Furthermore,
we implement DQN to learn optimal parameters instead of
manually choosing parameters.

We evaluate our proposed framework on four datasets.
These include UCSD [8], Avenue [9, 10], Subway
Surveillance [11] and densely crowded MCG datasets,
and we compare the results with existing state-of-the-art
approaches in the recently published papers.

4.2 MCG dataset

MCG dataset is a real-world Ground dataset collected from
a sport stadium of Melbourne. We use videos from C2, C5
and C6 cameras installed at different corridors in MCG.
Figure 6 shows the sample images obtained from the MCG
dataset.

The MCG dataset is a real-world dataset collected from a
sports stadium in Melbourne [5, 12]. It consists of different

camera views of actively moving crowds in the MCG
corridors with people standing and loitering events. The data
includes videos collected on four dates from six different
cameras (C1 to C6) during Australian Football League
(“footy”) matches at MCG, summing to approximately 31
hours of data [5, 12]. Specifically, we use 16-Sep-C2, 16-
Sep-C5 and 16-Sep-C6 video sequences from C2, C5 and
C6 cameras to evaluate our framework to detect loitering
events. Figure 6 shows the sample images obtained from the
MCG dataset.

4.2.1 Frame-level abnormal crowd detection

We consider loitering events abnormal in densely crowded
scenes and aim to detect frame-level loitering events. A
frame is defined as anomalous if there is at least one actual
abnormal pixel (related to a loitering event) in the frame.
We obtain the ROC curve and the AUC by changing the
threshold η. The x-axis denotes the False Positive Rate
(FPR), and the y-axis denotes True Positive Rate (TPR).

Fig. 5 Our proposed OP-RL
model for learning optimal
parameters in this work
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Table 2 The evaluation metric for parameter set

Dataset N K ω

MCG 7.0 6 0.6

UCSD Ped1 7.6 4 0.6

UCSD Ped2 7.6 4 0.6

Avenue 7.4 3 0.6

Subway 7.1 3 0.6

Also, we note that FNR = 1−TPR. The FPR corresponds to
the frame identified as anomalous when normal. In contrast,
the TPR denotes the number of anomalous frames detected
correctly as anomalous. Figure 7(a) shows the frame-level
abnormal (loitering) events detected in video frames for
Cameras C2, C5 and C6 of the MCG dataset. For the
three video sequences (16-Sep-C2, 16-Sep-C5 and 16-Sep-
C6), our proposed DeepSDAE has better AUC (86.4%,
74.6% and 79.3%) and lower EER (18.1%, 29.5% and
23.4%) when compared with DBN’s AUC (85.4%, 70.1%
and 79.1%) and EER (20%, 35% and 23%), indicating an
improved frame-level anomaly detection results.

We use AUC and Equal Error Rate (EER) to evaluate
this work quantitatively. Table 3 furnishes the performance
comparison of DeepSDAE architecture with previous
works. Furthermore, we can observe that the proposed
architecture outperforms Deep Belief Nets (DBN) [6] when
evaluated on the data from three cameras (C2, C5 and C6)
from the MCG dataset.

4.2.2 Pixel-level abnormal crowd detection

As before, we focus on detecting loitering events in densely
crowded scenes. If we identify actual abnormal pixels
account for more than 40% of the ground truth in the
pixel level comparisons, we consider those pixels as true
positive (TP) detection. In contrast, we consider it a false
positive (FP) even if a single regular pixel is identified
as abnormal. Figure 7(b) shows the ROC for pixel-level
anomaly detection, and Table 3 furnishes the quantitative
results. Figure 7(b) and Table 3 show that the performance
of DeepSDAE is better than anomaly detection presented
using DBN architecture [6]. For the three video sequences
(16-Sep-C2, 16-Sep-C5 and 16-Sep-C6), our proposed
DeepSDAE has better AUC (69%, 68.3% and 73.3%) and
lower EER (34.8%, 37.7% and 28.5%) when compared with
DBN’s AUC (67.6%, 64.1% and 70.4%) and EER (35%,
40.2% and 30.7%), indicating a better anomaly detection
results at pixel level.

4.3 UCSD Ped1 and Ped2 dataset

UCSD Ped1 dataset [8] contains pedestrian walkway video
sequences. The dataset contains 34 and 36 videos available
for training and testing, respectively. Each frame in the
video sequences has 238 × 158 pixel resolutions. UCSD
Ped2 dataset [8] contains crowds of people moving parallel
to the camera plane. It comprises 16 video sequences
(360 × 240 pixel resolutions) for training and 12 videos

Fig. 6 Sample results obtained
by DeepSDAE on the real-world
MCG dataset, where the red
block denotes the anomalies.
Loitering is the most common
abnormal pattern in the MCG
dataset
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Fig. 7 The evaluation result of MCG dataset: (a) frame-level based abnormal event detection, (b) pixel-level based abnormal event detection

for testing. Because we do not require pre-training, we
only use the test sequences of these two datasets. For
both USCD Ped1 and Ped2, the expected behavior includes
people walking. The abnormal behavior includes anomalous
motion patterns and non-pedestrian objects like cyclists,
people with wheelchairs, cars, and skaters. We kept all the
model parameters the same as the MCG dataset. Figure 8
shows the sample results we obtained from the proposed
SDAE scheme. Figures 9 and 10 show the evaluation results
for UCSD Ped1 and Ped2 datasets.

We compared our quantitative results using DeepSDAE
with the 13 recently published algorithms. Tables 4 and 5
show the quantitative results on the UCSD Ped1 and UCSD
Ped2 datasets. Regarding the result on the UCSD Ped1
dataset, Our proposed DeepSDAE has AUC of 91.5% and
65.7% at detecting frame-level and pixel-level anomalies,
outperforming the majority of the existing state-of-the-art
approaches. Compared with the Feng [21], TCP [27] and
sRNN-AE [38], DeepSDAE is inferior to these methods.
Likewise, our approach has lower EER compared to most
algorithms.

Regarding the result on the UCSD Ped2 dataset, Our
proposed DeepSDAE has AUC of 88.9% and EER of
19.9% at detecting frame-level anomalies, outperforming
the existing methods on the UCSD Ped2 dataset by at

least 1%, with lower EER. Especially, when it is compared
with the Feng [21], TCP [27] and sRNN-AE [38], where
DeepSDAE is inferior to these methods in UCSD Ped1
dataset, DeepSDAE can perform better in this case.

4.4 Subway surveillance and avenue datasets

The Subway Surveillance dataset [11] is collected in a
subway station, where anomalous behaviors correspond to
people moving in the wrong directions. The entire dataset
contains two video sequences at entry (144249 frames) and
exit (64900 frames) gates. The Avenue Dataset [9] contains
16 training and 21 testing video clips acquired on The
Chinese University of Hong Kong (CUHK) campus with
a total of 30652 frames (15328 for training and 15324 for
testing) [10].

We keep the experimental parameters for all the
components unchanged (same as the previous datasets).
Figure 8 shows the example results. We evaluated the
performance at the frame level for these two datasets
because the Subway Surveillance dataset [11] and Avenue
[9] does not provide the pixel-level based ground truth.
Tables 6 and 7 show the quantitative results compared with
other methods.

Table 3 Comparison of performance of deep belief nets (DBN) [6] and the proposed DeepSDAE on MCG dataset (cameras C2, C5 and C6)

Dataset Approaches Frame-level anomalies Pixel-level anomalies

AUC EER AUC EER

16-Sep-C2 DBN [6] 85.4% 20.0% 67.6% 35.0%

16-Sep-C5 DBN [6] 70.1% 35.0% 64.1% 40.2%

16-Sep-C6 DBN [6] 79.1% 23.0% 70.4% 30.7%

16-Sep-C2 DeepSDAE 86.4% 18.1% 69.0% 34.8%

16-Sep-C5 DeepSDAE 74.6% 29.5% 68.3% 37.7%

16-Sep-C6 DeepSDAE 79.3% 23.4% 73.3% 28.5%
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Fig. 8 Sample results of
DeepSDAE on three benchmark
datasets, where red coloured
pixels denoting the detected
anomalies in (a) UCSD Ped1
dataset [8], (b) UCSD Ped2
dataset [8], (c) Subway
Surveillance dataset [11], and
(d) Avenue dataset [9]

( a )

(b )

( c )

(d )

For the Subway Surveillance dataset, we can see that
the performance of our approach is second only to the
method proposed in [46], and it outperforms the rest of
the existing approaches. In addition, our method produces
the best performance in terms of EER. Furthermore, our
DeepSDAE is also the second-best for the Avenue dataset

compared with the existing approaches. It achieves good
performance than most of the past methods.

The reinforcement learning-based parameter setting
model helps the DeepSDAE to find the optimal learning
parameters. Hence, SDAE combined with the VGG16
optimised model (reduced trainable parameters) speeds up
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Fig. 9 Evaluation result on UCSD Ped1 dataset: (a) frame-level anomaly detection results, and (b) pixel-level anomaly detection results
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Fig. 10 ROC Curve for frame-level anomaly detection on UCSD Ped2
dataset. Pixel-level anomaly detection for this dataset is not available
because of the complexity involved and lack of available comparisons
in the literature

the training, and as a result, they converge quickly. Our
experimental results confirm this finding and are better
than other methods. Deep-Q-Learning provides a further
optimisation to improve in learning the parameters. Our

experiments suggest that the Deep-Q-Learning improves the
overall AUC and ROC in detecting anomalies.

The proposed framework can perform well in detecting
movement anomalies, but it cannot be used as a general
approach in diverse types of anomaly detection. Our future
work will include exploring late fusion mechanisms to
different anomaly detection scenarios and generalising the
framework for other crowd settings. In addition, we will
explore whether we can have a further optimised VGG-16
model or have a lightweight model (such as MobileNets
[48]) to improve overall computational time for real-time
video surveillance applications.

5 Conclusion

We proposed an end-to-end deep learning model called
DeepSDAE to detect anomalous crowd behavior. This
framework is a hybrid deep learning architecture comprising
motion maps, a four-layer SDAE, an optimised VGG16
model, and a PSVM. Our framework uses a late fusion
mechanism to combine decisions from PSVM channels for
detecting crowd anomalies. We derive optimal parameters
by modelling the crowd flow process as the MDP and
solving them using Deep Q-learning. DeepSDAE is a novel

Table 4 Comparison of results
of DeepSDAE with other
existing algorithms evaluated
on the UCSD Ped1 dataset

Approaches Frame-level Pixel-level

AUC EER AUC EER

MPPCA [39] 67.0% 40.0% 19.0% 44.1%

150 FPS [10] 91.8% 15.0% 63.8% 43.0%

SF [40] 76.8% 31.0% 21.3% 71.0%

Adam [11] 64.9% 38.0% 19.7% 76.0%

SRC [41] 86.0% 19.0% 45.3% 54.0%

SF- MPPCA [17] 76.9% 32.0% 21.3% 71.0%

MDT [17] 81.8% 25.0% 44.1% 58.0%

AMDN [20] 92.1% 16.0% 67.2% 40.1%

Compact Feature Sets [42] 81.8% 21.3% 56.9% 39.5%

Feng et al. [21] 92.8% 11.5% 69.1% 36.3%

Turchini et al. [43] 78.1% 24% 62.2% 37%

TCP [27] 94.6% 9.8% 64.1% 41.2%

SNM [44] 85.5% 20% 47.7% 51.2%

FFP [18] 90.6% 17.1% 62.1% 43.8%

sRNN-AE [38] 92.0% 15.3% 66.9% 37.4%

DeepSDAE 91.5% 16.6% 65.7% 37.5%

The results include frame-level and pixel-level detection results using AUC and EER
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Table 5 Comparison of results of DeepSDAE with other existing
algorithms evaluated on the UCSD Ped2 dataset

Approaches Frame-level

AUC EER

Adam [11] 63.0% 40.8%

MPPCA [39] 77.0% 29.8%

SF [40] 63.0% 40.5%

MDT [17] 85.0% 23.5%

SF- MPPCA [17] 71.0% 36.0%

ConvLSTM-AE [22] 88.10% –

SNM [44] 87.9% 20%

Compact Feature Sets [42] 84% 19.4%

Turchini et al. [43] 80.5% 19.3%

Feng et al. [21] 88.5% 16.9%

TCP [27] 88.1% 18.3%

FFP [18] 87.4% 22.9%

sRNN-AE [38] 88.3% 18.7%

DeepSDAE 88.9% 19.9%

The results include frame-level anomaly detection using AUC and
EER

Reinforcement learning-Deep learning model to detect
crowd anomalies, where RL is firstly introduced to explore
the optimal parameter set. The experimental evaluation on
four datasets (MCG, UCSD Ped1 and Ped2, Avenue, and
Subway Surveillance) show that our proposed DeepSDAE

Table 6 Comparison of results of DeepSDAE with other existing
algorithms evaluated on the Subway dataset

Approaches Entrance Exit

AUC EER AUC EER

SRC [41] 83.3% 24.4% 80.2% 26.4%

MDT [17] 90.8% 16.7% 89.7% 16.4%

FCNs [26] 90.1% 17.4% 89.7% 16.2%

LSTM-AE [45] 93.3% − 87.7% −
NMC [46] 91.8% − 94.2% −
DeepSDAE 90.9% 16.5% 91.1% 15.2%

The evaluation results include anomaly detection results at entry and
exit of the Subway Surveillance dataset [11]

Table 7 Comparison of results of DeepSDAE with other existing
algorithms evaluated on the avenue dataset

Approaches AUC EER

sRNN [19] 81.7% − %

150 FPS [10] 80.3% 27.5%

CAE [22] 70.2% 25.1%

FFP [18] 84.9% −
DAF [47] 84.6% −
AMDN [20] 78.0% 26.6%

LSTM-AE [45] 75.33% −
ConvLSTM-AE [22] 77.0% −
NMC [46] 88.9% −
sRNN-AE [38] 83.1% −
DeepSDAE 87.3% 20.3%

The results include anomaly detection frame-level anomaly detection
in terms of AUC and EER

surpasses existing approaches in detecting anomalies (frame
level or pixel level) in crowded scenes.
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