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Abstract
In modern data analysis, time is often considered just another feature. Yet time has a special role that is regularly overlooked.
Procedures are usually only designed for time-independent data and are therefore often unsuitable for the temporal aspect
of the data. This is especially the case for clustering algorithms. Although there are a few evolutionary approaches for time-
dependent data, the evaluation of these and therefore the selection is difficult for the user. In this paper, we present a general
evaluation measure that examines clusterings with respect to their temporal stability and thus provides information about the
achieved quality. For this purpose, we examine the temporal stability of time series with respect to their cluster neighbors,
the temporal stability of clusters with respect to their composition, and finally conclude on the temporal stability of the entire
clustering. We summarise these components in a parameter-free toolkit that we call Cluster Over-Time Stability Evaluation
(CLOSE). In addition to that we present a fuzzy variant which we call FCSETS (Fuzzy Clustering Stability Evaluation
of Time Series). These toolkits enable a number of advanced applications. One of these is parameter selection for any
type of clustering algorithm. We demonstrate parameter selection as an example and evaluate results of classical clustering
algorithms against a well-known evolutionary clustering algorithm. We then introduce a method for outlier detection in
time series data based on CLOSE. We demonstrate the practicality of our approaches on three real world data sets and one
generated data set.

Keywords Time series clustering · Over-time stability evaluation · Evolutionary clustering · Anomalous subsequences

1 Introduction

With the increase of time series (TS) data, their analysis
is becoming more and more important. There are many
different approaches which are all suitable for different
setups. However, most of the methods target the analysis
of individual time series, while only a few aim to analyse
whole TS databases. Without any doubt, the information
gained from a time series database can have a significant
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influence on the results, especially compared to an analysis
applied to only one time series of the database.

A setting which illustrates this circumstance is the stock
market: During an economic crisis most of the shares lose
value. Regarding only one share at a time could lead to a
false interpretation (e.g. an outlier sequence within the time
series), while regarding all time series simultaneously the
assessment would result differently.

Although the mentioned setting describes extreme
circumstances, it is obvious that similar problems in analysis
and interpretation also occur under normal conditions.
The examination of this kind of setups can prove to be
very difficult, since it can be useful not to look at the
whole database at once, but to look at specific groups
instead. This requires the identification of groups which
is often accomplished by applying suitable clustering
algorithms. Although this is a well researched topic
for time independent data, approaches for time series
are often insufficient, sometimes to an extent that the
produced results are meaningless [25]. As this has been
identified as a major problem in time series clustering, the
research field evolutionary clustering developed. According
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to [8] evolutionary clustering is producing a clustering per
timestamp, hence a series of clusterings. Each clustering
should be similar to the clustering of its predecessor, while
accurately reflecting the properties of its own data. As this
definition is not regarding a certain clustering algorithm,
this leads to a variety of approaches adapted to different
clustering algorithms (read more about this in Section 2).
There are also approaches which try to define the necessary
adjustments to a standard clustering algorithm to receive
an evolutionary clustering algorithm [8, 10]. However, the
amount of different approaches and different clustering
algorithms makes it difficult to select a suitable method for
a certain task.

The detection of groups in time series can provide
important insights into the data at hand. The application
areas of our toolkits and the methods based on them, such as
outlier detection, are diverse. One conceivable application
of our methods is on medical data, where patients could be
identified who were initially grouped with healthy patients
and whose medical values then slowly move away from this
group. Another area of application is the financial market,
where, for example, companies can be grouped that behave
similarly over time, so that classic company classifications
such as the Standard Industrial Classification (SIC) or the
North American Industry Classification System (NAICS)
can be usefully supplemented. Companies that change
their group more frequently in relation to other companies
may have anomalies that our outlier detection method
would identify. Analyses of the current Corona epidemic
are also conceivable. Using data from the Coronavirus
Government Response Tracker at the University of Oxford1,
the effectiveness of government measures to contain the
epidemic could be analysed. It would also be possible to
identify how good the respective chosen timing of a measure
was. There are countless applications where our methods
can be used. In addition, all our methods are transparent and
provide explainable results.

In this paper we describe two fundamental methods
to evaluate time series clustering according to its over-
time stability. The first algorithm CLOSE (Cluster Over-
Time Stability Evaluation) [51] is designed for multivariate
time series in crisp cluster environments. Hereby we
use an extended definition of evolutionary clustering:
Instead of targeting the similarity of two successive
clusterings we demand the similarity of a clustering to all
previous clusterings. We call this the over-time stability
and introduced it, because small changes between two
timestamps could develop to huge changes over several time
steps. Those changes would be overseen by considering
only two consecutive timestamps. A simple example for this

1https://www.bsg.ox.ac.uk/research/research-projects/
coronavirus-government-response-tracker

problem is the Covid-19 infection rate in different countries:
If one country changes its cluster peers from one point in
time to the other, this may be reasonable. However, if the
country is changing its cluster peers in every time point,
regarding solely the previous timestamp is not sufficient,
since it does not hold the historical changes. Therefore this
country could not be directly compared to other countries,
since among those there might be countries which have
changed its peers as well. Hence, the changes before the
previous timestamp contribute to the overall stability.

In the course of this paper we will show that this
adaptation of the definition is especially handy for certain
applications like outlier detection or parameter selection
for time series clustering. Our methodology is also very
different from other approaches in this field of research. In
contrary to a framework or an adapted clustering algorithm,
CLOSE is a ready-to-use toolkit. It does not require
any customization of the user-chosen clustering algorithm,
instead it analyses the produced clusterings per timestamp
and returns a stability score. This can be used to find the best
parameter setting for the underlying clustering algorithm.

The second algorithm FCSETS (Fuzzy Clustering
Stability Evaluation of Time Series) [30] is a toolkit
developed for fuzzy clustering environments. It makes
use of the relative assignment agreement similar to the
equivalence relation in the Hüllermeier-Rifqi Index [20] and
achieves a stability score by regarding the average weighted
difference between the relative assignment agreements of
one time series to the others. The methodology of FCSETS
is very similar to the one of CLOSE and therefore further
adjustments of the chosen underlying fuzzy clustering
algorithm are not required. Further, we are presenting an
outlier detection algorithm [50] which is an application
of CLOSE. We give two variants [52] of the procedure
which focus on cluster transitions and therefore are capable
to detect a new sort of outliers, which are based on the
behavior of time series in relation to its cluster peers. The
implementation of the approaches as well as the generated
data sets are available on Github2.

In order to present the results of the introduced
algorithms, we use three real world data sets and one
generated data set. We apply CLOSE in combination
with DBSCAN [16] and K-Means [38] and FCSETS in
combination with Fuzzy C-Means [6] to the selected data
sets to get the best parameter settings. We qualitatively
analyse the resulting clusterings and in the case of K-
Means we subsequently use the possibility to compare the
CLOSE score with that of the evolutionary K-Means from
[8]. Further, we apply the outlier detection algorithms to the
data sets and explain the results in detail.

2https://github.com/tatusch/ots-eval

16607

https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker
https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker
https://github.com/tatusch/ots-eval


G. Klassen et al.

2 Related work

Since this work addresses many different problems and
approaches, such as the (over-time) stability evaluation
of (fuzzy) clusters and the detection of anomalous
subsequences, this chapter deals with related works from
various domains, as well.

2.1 Time series clustering

There are various techniques for clustering TS data in
the field of time series analysis. In [56] the approaches
are divided into three categories: raw-data-based, feature-
based andmodel-based clustering algorithms. The first type
describes approaches, which consider the TS data without
any preprocessing. The second one works with feature
vectors extracted from the time series. In the third case,
models are approximated for the representation of the TS
data.

When considering approaches that work with the
unprocessed TS data that is given, a common approach
is clustering subsequences of a time series [3, 22]. As
this is usually done in order to find motifs in time series,
only a single TS is considered at once. This approach
is controversial, since Keogh et al. state in [25] that
the clustering of subsequences of a single time series is
meaningless. Chen, however, argues that it is possible to
obtain meaningful results if the correct distance measure is
used [9]. In our context, the clustering has to be applied to
multiple time series, though. Clustering subsequences has
some disadvantages. First, outlier data points may have a
negative impact on the results. Second, the determination
of a meaningful length for the considered subsequences is
difficult but needed, since the examination of subsequences
of all lengths is usually very time-consuming. In our
approaches, subsequences of any length can selectively
be investigated and therefore provide more insights.
Nevertheless, it has to be noted, that only subsequences
starting at the first existing timestamp are considered. This
is reasoned by the assumption, that the entire time course
from the beginning is relevant for the analysis.

Another raw-data-based approach is the clustering of
entire sequences [15, 17, 41]. Since potential correlations
between subsequences of different TS are not recognized,
this procedure is not suitable for our applications.

In our context, the exact course of time series is not
relevant, but rather the trend they follow. This can e.g.
be achieved by algorithms using Dynamic Time Warping
(DTW) as distance measure [2, 11, 21, 33] or methods of
the second type, where the sequences are transformed to
feature vectors first [19]. By extracting relevant features,
the exact course gets blurred. However, the problem of not
recognizing correlating subsequences still persists.

When considering the third type of TS clustering, a
major approach is the usage of auto-regressive moving-
average models (ARIMA) [42, 57]. Therefore, an ARIMA
model/mixture for every time series is fitted. Those
sequences, whose models are similar to each other, are
grouped to the same cluster. Also, the sequences can be
modeled by the Haar Wavelet decomposition [54], their
approximated seasonality [31] or with the help of Markov
Chains [44]. However, all approaches share the idea of
clustering whole time series. In our application, correlating
subsequences and the movement of sequences with regard
to their neighbors are of interest. Therefore, those methods
are not applicable.

Approaches, which deal with the clustering of streaming
data [18, 40] are also not comparable to our method, as they
deal with other problems such as high memory requirements
and time complexity, and in addition to that usually consider
only one sequence at once.

2.2 Evolutionary clustering

Evolutionary clustering describes the task of clustering
temporal data per timestamp under the consideration of two
criteria: on the one hand, the clustering should be reasonable
for the current data, and on the other the clustering should
not deviate significantly from one timestamp to another
[8]. Different frameworks have been developed, which
meet both criteria regarding streaming data [10], TS data
[58] and dynamic networks [27]. The framework, which is
presented in [8], for instance, is developed for streaming
data and therefore an incremental approach, which for each
timestamp t tries to find a clustering Ct that optimizes the
following formula:

sq(Ct , Mt) − cp · hc(Ct−1, Ct ) , (1)

where sq(Ct , Mt) is the snapshot quality regarding an
object relationship matrix Mt , cp is a change parameter
and hc(Ct−1, Ct ) is the history cost. The snapshot quality
measures the quality of a clustering at a certain time point
with respect to the calculated n × n matrix Mt which
represents the relationship of all n objects to each other.
The history cost is calculated by the comparison of the
clusterings of two consecutive time points, whereby the
comparison may be applied on different data levels. For
example, simply the partitions of both clusterings may
be compared, or the best matching between two sets of
centroids regarding KMeans [38]. The change parameter
cp > 0 is a hyperparameter which trades off between
sq and hc. With this flexible framework a stable over-
time clustering may be achieved, which can be used as the
underlying clustering for our outlier detection algorithm.
Yet, due to the comparison of only consecutive time points,
short-term changes may have a strongly negative impact on
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the result and large long-term changes may occur, which is
not desirable.

The problem of identifying so called Moving Clusters
[23] seems to be a closely related topic, but addresses
a slightly different task. In contrast to clustering time
series, this field of research deals with the detection of
already given clusters that remain mostly the same with
regard to their members. In addition, it is assumed that a
cluster remains approximately the same size over time. This
may apply to some tasks, such as herd tracking, which is
examined in [23], but in most cases this requirement can not
be met.

2.3 Internal cluster evaluationmeasures

For the evaluation of clusters and clusterings, various
evaluation measures have been developed over the years.
There are two types of cluster evaluation measures: external
and internal measures. The difference between the two is,
that while the expected result – also known as ground truth
– is known for the external measures, it is missing for
the internal ones. Therefore, external evaluation measures
make a qualitative comparison between the expected and
the real result. Internal measures, however, focus on other
describing characteristics, such as the compactness or
separation of clusters in order to evaluate the quality of the
result.

One common metric is the Sum of Squared Errors (SSE)
that evaluates the compactness of clusters. In case of fuzzy
clusterings this measure can be used by weighting the
membership degrees. The SSE is based on the calculation of
the overall distance between the members and the centroid
of a cluster. The centroid usually describes the mean of
all cluster members. Since this measure only considers
the compactness of clusters, further validity measures have
been developed, which evaluate the compactness as well
as the separation. Common examples are the Silhouette
Coefficient [47], Davies-Bouldin Index [12] or Dunn Index
[14]. When considering fuzzy clusterings, there are for
example validity measures which use only membership
degrees [28, 35] or include the distances between data points
and cluster prototypes [5, 7].

However, all these metrics cannot directly be compared
to our method since they lack a temporal aspect, but they
can be applied in our stability evaluation methods.

2.4 Stability evaluation of clusterings

There are also several approaches addressing the stability
measurement of a clustering algorithm. One example is the
Rand Index [45], which is usually intended for the external

evaluation of a clustering. Given the clustering ζp and the
expected result ζt , it examines on the one hand all object
pairs that are located in the same cluster in ζp as well as
ζt , and on the other hand all pairs that belong to different
clusters in both clusterings. The measure is defined by the
number of corresponding object pairs in relation to the
number of all possible object pairs.

The measurement of the stability of a clustering
algorithm is for instance executed when searching for
the optimal parameter setting. In 2002, Roth et. al [46]
introduced the resampling approach for cluster validation.
Roth et. al put forward the hypothesis, that if multiple
partitionings of a clustering algorithm for the same
parameter setting are similar to each other, the parameter
setting is good. The higher the similarity, the better is the
parameter choice.

The unsupervised cluster stability value s(c) that is used
in Roth et. al’s approach [46] is calculated as the average
pairwise distance between m partitionings:

s(c) =

m−1∑

i=1

m∑

j=i+1
d(Uci, Ucj )

m · (m − 1)/2
, (2)

where Uci and Ucj , 1 ≤ i < j ≤ m, are two
partitionings produced for c clusters and d(Uci, Ucj ) is
an arbitrary similarity index of partitionings. The Rand
Index can be used for stability evaluation by including it
in this formula. Such stability measures pursue a different
objective and obviously do not take a temporal linkage
into consideration [55]. Our stability measure is similar
to the unsupervised cluster stability value but it includes
the temporal dependencies of clusterings. An intuitive idea
for achieving a temporal linkage would be to simply
compare clustering pairs of successive points in time. This
approach would strongly weight variation between two
points in time and neglect long-term changes. An ongoing
change would for instance be punished only slightly, since
consecutive clusterings would be very similar, while short-
term deviations would stand out, although the overall
behavior might be stable. Also, the index would be strongly
negatively affected by separations or merges of clusters of
successive time points. Even when comparing clustering
pairs of all different time points these problems would
persist.

In addition, the referred methods exclusively evaluate
the (over-time) stability of clusterings. As stated in [4, 32],
however, stability alone is not sufficient for a proper
evaluation of a clustering. CLOSE takes both into account,
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the over-time stability as well as the quality of a clustering,
to give an overall rating for an over-time clustering.

2.5 Anomaly detection in time series

When regarding works dealing with outlier detection in
time series, various definitions of the term outlier can be
found. Many approaches consider only single conspicuous
data points such as additive outliers or change points
[24, 37, 43] and focus on a single time series [1, 39].
However, in our context the detection of anomalous
subsequences is considered, so that only algorithms, which
either handle outlier subsequences or analyse the group
behavior of multiple time series over time, are relevant.

For the latter, approaches such as Probabilistic Suffix
Trees (PST) [49], Random Block Coordinate Descents
(RBCD) [59] and various neural networks [26] have been
developed and been shown to achieve convincing results.
However, while these methods examine the deviation of
one time series to all others in the data set, we focus
on the behavior of a time series compared to its steady
neighbors, since the consideration of the whole data set is
only meaningful, if all TS have a similar course. This is
for example the case in sensor data. In order to analyse
the group behavior over time, we first have to identify
continuous peers by clustering the TS data per time point.
Then, the transitions of sequences between different clusters
over time can be analysed. This type of transitions is also
evaluated in cluster evolution methods. Landauer et al. [34]
make use of such a method in order to calculate a prediction-
based anomaly score for a single data point. Similar to
our approach, the TS data is clustered per timestamp.
The cluster transitions of a considered time series are
then analysed by cluster evolution methods in order to
approximate a model which predicts the next data point.
Although groups of time series are identified, the detection
of outliers is therefore based on the prediction of a single
sequence. In contrast to Landauer et al. we refer to several
time series.

Our approach is very different from clustering whole
time series or their subsequences, since in that case the
outlier detection relies on the single fact whether a sequence
is assigned to a cluster or not. Such an approach does
not take the cluster transitions of a sequence into account,
which may be an expressive feature on its own. Hence, our
approach might recognize anomalous subsequences which
in a subsequence clustering would have been assigned to a
cluster and therefore not been marked as outlier.

Apart from clustering subsequences, there are also other
approaches for the detection of conspicuous subsequences
or so called discords [25, 36]. Those often consider only
a single time series at once. Therefore, only anomalous

behavior with regard to the course of one sequence is
recognized. Though, in the context of the whole data set,
this behavior might for example be normal. Such methods
are thus not applicable in our context.

3Methodology

The agglomeration of similar time series is a problem which
arises in many applications. There are various approaches
and a lot of research happened in this field. Since the
definitions differ in related works, we first present our
notations of relevant concepts for our work. Subsequently,
we will describe the principles of our approaches CLOSE
[51] and FCSETS [30].

3.1 Notations

The following definitions are based on our previous works
[30, 50, 51].

Definition 1 (Data Set) A data set D = {T1, ..., Tm} is a set
of m time series of same length n and equivalent points in
time. Equivalent means, that they are either identical or they
can be mapped to a reference timestamp.

Definition 2 (Time Series) A time series T = ot1, ..., otn

is an ordered set of n real valued data points of arbitrary
dimension. The data points are chronologically ordered by
their time of recording, with t1 and tn indicating the first and
last timestamp, respectively.

The vectors of all time series are denoted as the set
O = {ot1,1, ..., otn,m}, with the second index indicating the
time series where this data point originates from. For the
ease of reference, we write Oti for all data points at a certain
point in time.

Definition 3 (Subsequence) A subsequence Tti ,tj ,l =
oti ,l , ..., otj ,l with j > i is an ordered set of successive real
valued data points beginning at time ti and ending at tj from
time series Tl .

Definition 4 (Cluster) A cluster Cti,j ⊆ Oti at time ti , with
j ∈ {1, ..., NC} being a unique identifier (e.g. counter), is a
set of similar data points, identified by a cluster algorithm,
where NC is the number of clusters. This means that all
clusters have distinct labels regardless of time.

Definition 5 (Cluster Member) A data point oti ,l at time
ti , that is assigned to a cluster Cti,j is called a member of
cluster Cti,j .
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Definition 6 (Noise) A data point oti ,l at time ti is
considered as noise, if it is not assigned to any cluster.
A data point that belongs to noise is also called an
outlier. Noise describes the set of noise data points of all
timestamps, i.e. Noise = ⋃

k Noisetk .

Definition 7 (Clustering) A clustering is the overall result
of a clustering algorithm for all timestamps. It is defined by
the set ζ = {Ct1,1, ..., Ctn,NC

} ∪ Noise.

Definition 8 (Time Clustering) A time clustering is the
result of a clustering algorithm at one timestamp. It is
defined by the set ζtk = {Ctk,a, ..., Ctk,b} ∪ Noisetk of all
clusters at time tk .

Definition 9 (Fuzzy Cluster Membership) The membership
degree uCti ,j

(oti ,l) ∈ [0, 1] expresses the relative degree of
belonging of the data object oti ,l of time series Tl to cluster
Cti,j at time ti .

Definition 10 (Fuzzy Time Clustering) A fuzzy time
clustering is the result of a fuzzy clustering algorithm at one
timestamp. It is defined by the membership matrix Uti =
[uCti ,j

(oti ,l)].

Definition 11 (Fuzzy Clustering) A fuzzy clustering of
time series is the overall result of a fuzzy clustering
algorithm for all timestamps. It is defined by the ordered set
U = Ut1 , ..., Utn of all membership matrices.

An example for the above definitions can also be seen in
Figs. 1 and 4. In Fig. 4, five time series of a data set D =

Ta , Tb, Tc, Td , Te are clustered per timestamp for the time
points ti , tj and tk . The data points of a time series Tl are
denoted by the identifier l for simplicity reasons. The shown
clustering consists of six clusters. It can be described by
the set ζ = {Cti,l , Cti ,u, Ctj ,v, Ctj ,f , Ctk,g, Ctk,h} ∪ {oti ,e}.
As oti ,e is not assigned to any cluster in ti , it is marked as
noise for this timestamp. The data points oti ,a, oti ,b of time
series Ta and Tb in ti are cluster members of the yellow
cluster Cti,l . The subsequences Tti ,tj ,a and Tti ,tj ,b from time
series Ta and Tb move both from the yellow (Cti ,l) to the red
(Ctj ,v) cluster. The green (Ctk,h) and pink (Ctk,g) cluster can
be summarized by the time clustering ζtk at time tk .

3.2 Over-time stability evaluation

Since we want to measure the stability of an over-time
clustering, whereby the partitioning may be produced
by an arbitrary (evolutionary) clustering algorithm, we
assume that different clusterings constitute different cluster
connectedness based on the underlying TS members. Time
series, which separate from their clusters’ members often,
indicate a low over-time stability. For this reason, we first
analyse the behaviour of every subsequence of a time series
T = ot1 , ...otk , with tk ≤ tn, starting at the first time-
stamp. In case of a hard clustering, subsequently, every
cluster is rated by a stability function, based on the previous
subsequence analysis of its members and the number of
clusters that merged into the considered cluster. The final
over-time stability score for the whole clustering can then be
calculated with the rating of each cluster. When regarding
fuzzy clusterings, the over-time clustering is directly rated
based on the subsequence scores.

Fig. 1 Illustration of the most important definitions. Lines between objects of a time series represent the development of the sequence [29]
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3.2.1 CLOSE

Given a TS data set D = {Tl |1 ≤ l ≤ m} with n timestamps
and an over-time clustering ζ , let Cti,a and Ctj ,b be two
clusters of ζ , with ti , tj ∈ {t1, ...tn}. The temporal cluster
intersection, which is used for the stability evaluation of a
subsequence, is defined as follows

∩t {Cti,a, Ctj ,b} = {Tl | oti ,l ∈ Cti,a ∧ otj ,l ∈ Ctj ,b} , (3)

with l ∈ {1, ..., m}. The resulting set consists of time series,
which contain data points that are grouped to the same
cluster in ti and tj . The transition of a subsequence from
one cluster Cti,a in ti to another Ctj ,b in tj along with its
group behaviour, which may be interpreted as team spirit,
can now be expressed by the proportion of members of Cti,a

remaining together in tj

p(Cti ,a, Ctj ,b) =
⎧
⎨

⎩

0 if Cti,a = ∅
|Cti ,a

∩t Ctj ,b|
|Cti ,a

| else
(4)

with ti < tj . Regarding the example in Fig. 4 the proportion
for Cti,l and Ctj ,v is defined by

p(Cti ,l , Ctj ,v) = |{a, b}|
|{a, b}| = 2

2
= 1.0 .

This proportion can be used to evaluate the over-time
stability of a subsequence by rating its history with a
subsequence score. In order to address the clusters a data
point is assigned to, we first need to introduce an auxiliary
function, which we call cluster-identity function:

cid(oti ,j ) =
{

∅ if the data point is not assigned to a cluster
Cti ,l else

(5)

For a data point oti ,j at time ti the function returns the
cluster it is assigned to. The subsequence score is then
defined by

subseq score(otk,l) = 1

k
·
k−1∑

i=1

p(cid(oti ,l), cid(otk,l)) , (6)

with l ∈ {1, ..., m} and k being the number of timestamps
where the data point exists. That means, that all time points
in which an object is an outlier, get the worst possible score
of 0. The subsequence score takes into account how many
cluster members of the object from the previous timestamps
have migrated together over time.

In the example of Fig. 4, the score of time series Ta at
time point tk would be:

subseq score(otk,a) = 1

2
· (
2

2
+ 2

3
) = 0.83 .

This value reflects a quite high stability, which can be
explained by the fact that Ta moves with most of its cluster
members over the time period. The time series d, gets a

significantly lower value of subseq score(otk,d ) = 0.5, as
it never moves with any of its cluster members. Note, that
the impact of transitions of single TS becomes significantly
lower when considering larger data sets.

The stability of a cluster can now be evaluated, focussing
on two factors. The first one is the number of different
clusters of previous timestamps, that merged into the
regarded cluster. This can be expressed by

m(Ctk,i ) = |{Ctl ,j | tl < tk ∧ ∃a : otl ,a ∈ Ctl ,j ∧ otk,a ∈ Ctk,i}| , (7)

Furthermore, a cluster’s stability score depends on the
subsequence rating of all its cluster members. The second
factor is therefore the sum of all subsequence scores of
the data points within the considered cluster. Hence, the
over-time stability of a cluster is defined as

ot stability(Ctk,i ) =
1

|Ctk ,i | · ∑
otk ,l∈Ctk ,i

subseq score(otk,l )

1
k−1 · m(Ctk,i )

(8)

for k > 1. For a cluster at time point tk , the entire preceding
time frame [t1, tk−1] is considered. We define clusters at the
first timestamp to be stable and set ot stability(Ct1,i ) =
1.0. In order to make clusters comparable, the sum of
subseq score is averaged by the number of data points in
the viewed cluster, while the number of merged clusters is
averaged by the number of timestamps before the regarded
cluster. There are clustering algorithms which do not assign
a cluster to every data point. Those data points are usually
denoted as outliers. It is important to mention, that the
number of merged clusters does not take these outliers into
account.

Regarding the example of Fig. 4, the stability of the
cluster Ctk,g is given by:

ot stability(Ctk,g) =
1
3 · (0.83 + 0.58 + 0.25)

1
2 · 4 = 0.28 .

This low score can be explained by the fact that the cluster
under consideration contains only three data points. One
of those (Te) has a completely independent course of its
clusters’ members, and the remaining two are not perfectly
stable either.

Finally, the over-time stability of a clustering ζ can be
calculated by

CLOSE(ζ ) = 1

NC

·
(
1 −

( n

NC

)2) ·
( ∑

C∈ζ

ot stability(C)

·(1 − quality(C))
)

, (9)

with NC being the number of clusters of the over-time
clustering ζ , n being the number of timestamps and
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quality being an arbitrary cluster evaluation measure. When
working with normalised data ∈ [0, 1]d , we suggest the
mean squared error (MSE), but any other rating function can
also be used. Please make sure of using a function, whose
results lie in the interval of [0, 1] in order to get appropriate
results. When using a function for evaluating the quality
instead of the deficiency of a clustering – that means, higher
values indicate a higher quality – the term (1−quality(C))

may e.g. be replaced by (1− quality(C)−1) or quality(C)

depending on the quality measure.
As long as the output of the quality function is between

0 and 1 and there exists at least one cluster per timestamp,
CLOSE as well returns a score between 0 and 1, with 1
indicating a good over-time clustering.

The first pre-factor results from averaging by the number
of clusters. The second factor 1 − ( n

NC
)2 is intended to

counteract one large cluster to get a high score. Since such
a clustering automatically exhibits a very high over-time
stability, the CLOSE score rises. Note, that the clusters of
the first point in time are also included in the evaluation
measure. Since they are assumed to have a stability of 1.0,
the score is in general slightly increased and for the first
timestamp only influenced by the quality of the clusters.

Remark 1 (Time Point Comparison) In contrast to the
evaluation function integrated in evolutionary clustering
[8, 27, 58], where only consecutive points in time are com-
pared, CLOSE compares clusterings of all preceding time
points with the last timestamp of the considered subse-
quence. This has multiple effects. First, the stability score
is robust against outliers. Second, short-term transitions
between clusters are weighted more lightly. Simultaneously,
long-term changes that develop slowly over time are pun-
ished more severely, which forms the third effect. Note: The
formula cannot be transformed to simply iterate over all
cluster pairs. Since the over-time stability is weighted with
the quality of the cluster, the results would differ.

Remark 2 (Handling Outliers) Our calculations are suitable
for both cleaned data and data with noise. Currently, outliers
have only a minor impact on the score. That is, because
they are solely considered in the subsequence score and
not in the cluster stability. However, apart from decreasing
the subsequence score, they have an additional indirect
influence on the clustering score. Since the pre-factor in
Formula (9) favours a large number of clusters, it may be
more advantageous for the clustering algorithm to assign
data points to smaller clusters than to interpret them as noise
and recognize only a few large clusters.

This weak treatment of outliers is reasoned considering
the idea, that the over-time clustering might be used for

outlier detection. In this case, the algorithm should not
be pushed into assigning every data object to a cluster.
Nevertheless, different strategies for treating outliers might
be investigated in future work.

One way to penalize noise more strongly would be, to
insert an exploitation term which represents the number of
data points that are assigned to a cluster Nco in relation to
the number of all existing data pointsNo. In order to achieve
high CLOSE scores, this term should be maximized then.
The formula including the exploitation term is given by

CLOSE(ζ ) = 1

NC

·
(
1 −

( n

NC

)2) ·
( ∑

C∈ζ

ot stability(C)

·(1 − quality(C))
)

· Nco

No

, (10)

Remark 3 (Merge & Split of Clusters) Considering the
subsequence score (Formula (6)), a merge of clusters do not
have a negative impact on the score. On the contrary: if two
clusters fuse entirely, the score is actually increased, as all
objects move together with all their cluster members and
therefore show a good team spirit. This is intended, since the
focus lies primarily on the cohesion of time series. A good
team spirit is rewarded in every case.

When considering cluster splits, though, the subsequence
score is lowered. Since a split indicates that time series
which have been members of the same cluster at some point
in time separate from each other, this behaviour is also
wanted. Note, that in the case, where smaller clusters have
previously merged together and then separated again in the
same way as before, the influence on the score is not high
and vanishes over time.

However, in some applications the punishment of cluster
merges might be desired. As we will show in Section 4
regarding our proposed outlier detection algorithm, the
Jaccard Index can be used in the proportion calculation, in
order to penalize merges and splits in the same way.

Remark 4 (Additional Remarks) As Ben et al. stated, the
sample size has a high impact on the stability evaluation
of a clustering [4]. This is not only the case, when
considering constant data points. When examining the over-
time stability of a clustering, a small sample size also leads
to a high sensitivity to transitions between clusters. The
greater the considered data set, the easier a statement about
the (over-time) stability can be made. In order to extend the
method for a broader field of quality measures, the formula
of CLOSE can be modified, so that quality measures for
clusterings instead of clusters can be used. Therefore, the
average cluster stability avg stab per time clustering ζti
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must be considered. The score is then normalised using the
number of timestamps n:

CLOSE(ζ ) = 1

n
·
(
1−

( n

NC

)2) ·
( ∑

ζti
⊂ζ

avg stab(ζti ) · (1− quality(ζti ))
)
.

(11)

Figure 2 summarises the calculation process and explains
the most important formulas.

3.2.2 FCSETS

Given a TS data set D = {Ti |1 ≤ i ≤ m} with n timestamps
and a fuzzy over-time clustering U . Let Uti ⊂ U be a fuzzy
partitioning of the data objects Oti of all times series at time
ti in kti clusters. The relative assignment agreement of two
data objects oti ,l and oti ,s from time series Tl and Ts to all
clusters in the partitioning Uti at time ti can be calculated
using the equivalence relation from Hüllermeier-Rifqi Index
(HRI) [20]:

EUti
(oti ,l , oti ,s) = 1 − 1

2

kti∑

j=1

|uCti ,j
(oti ,l) − uCti ,j

(oti ,s)| ,

(12)

with uCti ,j
(oti ,l) being the membership degree of the

data point oti ,l regarding the cluster Cti,j (see Definition
9). In order to measure the relation of two time series
Tl and Ts , we calculate the difference between their
relative assignment agreements by subtracting the relative
assignment agreement values:

Dti,tr (Tl, Ts) = |EUti
(oti ,l , oti ,s) − EUtr

(otr ,l , otr ,s)| . (13)

Leaning on the Hüllermeier-Rifqi Index [20] – which
deals with a slightly different task by calculating the
normalised degree of concordance between two partitions
– we define the over-time stability of a time series Tl

as the average weighted difference between the relative
assignment agreements to all other time series:

stability(Tl) = 1 − 2

n(n − 1)

n−1∑

i=1

n∑

r=i+1

m∑

s=1
EUti

(oti ,l , oti ,s )
mDti ,tr (Tl , Ts )

2

m∑

s=1
EUti

(oti ,l , oti ,s )
m

.

(14)

The difference between the assignment agreements
Dti,tr (Tl, Ts) is weighted by the assignment agreement
between pairs of TS at a previous time point in order to
damp large differences for stable time series caused by
supervention of new peers. On the other hand, time series
that leave their cluster peers when changing their cluster
membership are penalized.

The over-time stability of a fuzzy clustering U can now
be expressed by the average over-time stability of all time
series in the data set:

FCSET S(U) = 1

m

m∑

l=1

stability(Tl). (15)

A more efficient approach as a substitute for the HRI
proposed by Runkler [48] is the Subset Similarity Index
(SSI). The efficiency gain is reasoned by the similarity
calculation, which in SSI considers cluster pairs while HRI
concentrates on the assignment agreement of data point
pairs. In our context, where the clustering should be used
for further analysis such as outlier detection, we aim to
describe the over-time stability of clustering by the team
spirit of the considered time series. Therefore, we believe,
that the degree of the assignment agreement between TS
pairs to clusters at different timestamps provide a greater
information gain than the similarity between cluster pairs.
For this reason, the SSI is not suitable for our over-stability
evaluation. Figure 3 summarises the calculation process and
explains the most important formulas.

4 Applications

Our evaluation measures can not only be used for the over-
time stability evaluation of clusterings, but also for further
analyses such as parameter selection or outlier detection
[50, 52, 53]. Therefore, for example the part of CLOSE,
where subsequences are evaluated, can be used.

In [50], we present an approach called DOOTS
(Detecting Outliers regarding their Over-Time Stability)
for finding conspicuous subsequences of all lengths with
an underlying over-time clustering regarding the following
definition:

Definition 12 (Anomalous Subsequence) A subsequence
Tti ,tj ,l is called anomalous, if it is significantly more
unstable than its cluster members at time tj .

For this, the subsequence score from Formula (6) has
to be reformulated in order to handle subsequences with
arbitrary starting points. The subsequence score of a
subsequence Tti ,tj ,l of time series Tl starting at ti and ending
at tj is defined as

subsequence score(Tti ,tj ,l ) = 1

k
·

j−1∑

v=i

p(cid(otv,l ), cid(otj ,l )) (16)

with l ∈ {1, ..., m}, k ∈ [1, j − i] being the number
of timestamps between ti and tj where the time series
exists [50].
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Fig. 2 Detailed step-by-step explanation of CLOSE

One noteworthy aspect is that the score is always 0, if
the last data point of the considered subsequence is marked

as noise. In most cases, this does not lead to any handicaps
regarding the analysis, since all partial sequences of these
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Fig. 3 Detailed step-by-step explanation of FCSETS

subsequences are treated normally, though. Nevertheless, a
more detailed discussion of such situations will be provided
in the further course of this work.

As already mentioned, the used proportion from Formula
(4) is asymmetric and punishes splits while ignoring merges.
In order to counteract this circumstance, the jaccard index
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Fig. 4 Example for cluster transitions of time series Ta, .., Te over time
[52]

can be used, as proposed in [52]. Therefore, the temporal
cluster union of two clustersCti,a, Ctj ,b has to be introduced
first:

∪t {Cti,a, Ctj ,b} = {Tl | oti ,l ∈ Cti,a ∨ otj ,l ∈ Ctj ,b} (17)

with l ∈ {1, ..., m}. The proportion p̂ can then be expressed
by the jaccard index of two clusters:

p̂(Cti ,a, Ctj ,b) =
⎧
⎨

⎩

0 if Cti,a = ∅ ∧ Ctj ,b = ∅
|Cti ,a

∩t Ctj ,b|
|Cti ,a

∪t Ctj ,b| else

(18)

with ti < tj . In contrast to the proportion from Formula (4)
regarding the example in Fig. 4 the jaccard proportion is

p̂(Cti ,l , Ctj ,v) = |{a, b}|
|{a, b, c}| = 2

3
= 0.67

since the merge of (parts of) the yellow (Cti,l) and turquoise
(Cti,u) cluster gets punished.

Another characteristic of the subsequence score from
CLOSE (Formula (6)) is the equal impact of all considered
timestamps regarding the over-time stability of a subse-
quence. When considering longer sequences, however, this
may lead to a tendency towards a worse rating, since slow
changes in cluster memberships might influence the score
considerably. Assuming that the nearer past is more signifi-
cant than the more distant past, a weighting function can be
integrated in the subsequence score.

Using the Gauss’ Formula, the weighting of the
proportion at time ti regarding the time interval [t1, tk] can
be calculated by

i
∑k

a=1 a
= i

k(k+1)
2

= 2 · i

k(k + 1)
. (19)

Adjusting this weighting function to a time interval with
arbitrary starting point ts ≥ t1, the subsequence score is then
defined by

weighted subseq score(Tti ,tj ,l )=
j−1∑

v=i

2 · (v−i+1)

k(k+1)
p(cid(otv ,l ), cid(otj ,l )) .

(20)

with k ∈ [1, j − i] again being the number of timestamps
between ti and tj where the considered time series exists
[52]. There is no need to normalize the score to an interval
of [0, 1] by averaging it, as the sum of all weightings of a
subsequence’s timestamps is always 1 due the division by
the Gauss’s Formula.

In contrast to the subsequence score, regarding the
example in Fig. 4 the weighted subsequence score is given
by

subseq score(otk,a) = 1

3
· 1
2

+ 2

3
· 2
3

= 0.61

which is a bit higher, since the immediately preceding
(higher) score gets a greater weighting than the more distant
one.

In summary, four options can be used: (i) the ordinary
subsequence score (DOOTS), (ii) the weighted subsequence
score (wDOOTS), (iii) the ordinary subsequence score
using the jaccard proportion (jDOOTS) and (iv) the
weighted subsequence score using the jaccard proportion
(jwDOOTS).

With this score, a subsequence can now be compared
with its cluster members, in order to determine, if its over-
time stability stands out. In this respect we consider the
following assumptions:

Assumption 1 If the score of a subsequence is significantly
lower than those of its cluster members, its over-time
behavior is conspicuous.

Assumption 2 If the score of a subsequence is low, but so
are those of its cluster members, its over-time behavior is
not conspicuous, since this low over-time stability shows a
pattern of regularity.

In order to find outlier sequences of all lengths, every
possible subsequence receives an outlier score indicating the
probability of being anomalous. The outlier score describes
the deviation of a subsequence’s stability from the best
subsequence score of its cluster. Figuratively, one can
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imagine that the time series with the highest subsequence
score represents a kind of leader and that a large deviation
from this leader is to be considered conspicuous. The best
subsequence score of a cluster Ctj ,a regarding subsequences
starting at time ti is expressed by the following formula:

best score(ti , Ctj ,a)=max({subsequence score(Tti ,tj ,l ) | cid(otj ,l )=Ctj ,a})
(21)

The outlier score can then be calculated by

outlier score(Tti ,tj ,l ) = best score(ti , cid(otj ,l ))

−subsequence score(Tti ,tj ,l ) . (22)

With respect to Assumptions 1 and 2, the outlier score
depends on the best score of a cluster’s members. Therefore,
an outlier score of 100% can only be achieved in clusters
consisting exclusively of completely stable subsequences.
On the other hand, a cluster with small stabilities only, can
lead to a situation where no subsequence score is considered
conspicuous, no matter how low it is. As mentioned in
Assumption 2, this behavior is desired.

Using the outlier score and a threshold parameter τ , a
more precise definition of an outlier can now be given.

Definition 13 (Outlier) Given a threshold τ ∈ [0, 1], a
subsequence Tti ,tj ,l is called an outlier, if its probability of
being an outlier is greater than or equal τ . That means, if

outlier score(Tti ,tj ,l) ≥ τ .

Even though the parameter τ is constant, it can be
considered as a dynamic threshold, since the greatest
possible deviation from the best subsequence score – and
simultaneously the greatest outlier score – is dependent
on the best score of the considered cluster. Leaning on
Assumption 2, clusters which show a low stability have a
lower probability of containing an outlier than stable ones,
because all their cluster members exhibit irregularities,
which represents a pattern of instability. Thus, in this case,
a small subsequence score is not conspicuous.

Subsequences that consist entirely of noise data points
are automatically identified as outliers and are called
intuitive outliers. This special treatment is needed, since
subsequences whose last data point is labeled as noise
do not have any cluster members which the best score
can be calculated from. Therefore, no outlier score can be
determined for them. Hence, in our outlier detection we
consider three types of outliers: anomalous subsequences
regarding Definition 13, intuitive outliers and data points
marked as noise by a clustering algorithm.

Imagine examining a subsequence Tti ,tj ,l whose last data
point at time tj is marked as noise. In addition suppose
its subsequence Tti ,tj−1,l getting a high outlier score and
therefore being detected as an outlier. Intuitively, one would
expect the subsequence under consideration Tti ,tj ,l being
identified as an outlier as well. In our approach, this would
only be the case, if the sequence was recognized as an
intuitive outlier i.e. the previous data point was categorized
as noise, too. Anyway, the subsequence Tti ,tk,l with k > j ,
which for the first time is assigned to a cluster again at its
last time point tk , would be detected as an outlier. Thus, in
the end Tti ,tj ,l would be covered.

Still, in the marginal case where a data point is labeled as
noise at the last time of the entire time series, a subsequence
with end time tm would never be detected as an outlier, if
it is not marked as noise in tm−1. This drawback should be
investigated in future works.

Remark 5 (Modifications) As DOOTS is leaned on the
presented evaluation measure, the modification of the
proportion calculation using the Jaccard index as well as the
weighting function for the subsequence scoremay naturally
also be applied to CLOSE, if desired.

5 Evaluation

In this section, we present several experiments. First, we
describe the different data sets, which we use in order to
illustrate our results. Then we present clusterings calculated
with K-Means [38] and DBSCAN [16]. In order to create
those clusterings, we use common methods to identify good
parameters per timestamp. Afterwards, we compare the
results with clusterings whose parameters were identified
with the help of CLOSE. These results are then compared
to those of the evolutionary clustering presented in [8].
We also evaluate clusterings retrieved by Fuzzy C-Means
[6] and focus on the achieved FCSETS scores. Finally, the
comparison of clusterings is followed by applications to
the outlier detection algorithm. We finish the section with
qualitative analyses of the results.

5.1 Data sets

In the following, we present the three data sets our analyses
are based on.

5.1.1 COVID-19 data set

The COVID-19 pandemic is currently affecting the whole
world. In this context, the hashtag #FlattenTheCurve is
intended to encourage people all over the world to behave
in a way that prevents the distribution of infections over
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time and thus counteracts overloading of the health care
systems. Although the hashtag is used in an inflationary
way, few people realise that the curve is actually a time
series. Because of the current relevance of the data set,
it is an excellent candidate for applying our methods.
We obtained the data from the official GitHub repository
of Johns Hopkins University3. Specifically, we used the
daily reports on worldwide COVID-19 infections for our
analyses. Depending on the country, the data set contains
data on the individual regions (such as federal states) of
the country concerned. We have aggregated these data
so that for each available country, only one entry per
point in time has been created. Over time, other features
such as incidence were added. In order to provide the
incidence for all points in time, we calculated the incidence
using population data for the countries. For this purpose,
we have obtained the population data for the respective
countries from theglobaleconomy.com4. We then calculated
the seven-day incidence for the countries. The incidence
reflects the number of infections in the last seven days
per 100,000 inhabitants. Due to the low infection figures
at the beginning of the pandemic, the incidence value is
particularly low at some times. For this reason, we give
the number of infections per 10,000,000 inhabitants. In
addition, we do not consider directly consecutive days,
because the fluctuation in these is relatively small. Instead,
we look at every seventh day, reflecting the development
within a week.

5.1.2 ElectricityLoadDiagrams20112014 data set

The ElectricityLoadDiagrams20112014 dataset is from
the UCI Machine Learning Repository [13]. It contains
data on the electricity consumption of 370 customers at
quarter-hourly intervals. We have summarised the electricity
consumption into monthly intervals and selected the first 30
customers for a better overview. Summarising on a monthly
basis also has the advantage that the resulting dataset has
no missing values. For better comparability, we have also
applied a min-max scaling to the data.

5.1.3 TheGlobalEconomy.com data set

We extracted this data set from theglobaleconomy.com2.
The website offers over 400 indicators on 200 countries
for over 80 years. The indicators include data such as
GDP, inflation, population data, employment rates and
many more. All available data have been obtained from
reliable official sources. From the large number of available
indicators, we selected two for illustration purposes, namely

3https://github.com/CSSEGISandData/COVID-19
4https://www.theglobaleconomy.com

the unemployment rate and the education spending. The two
features are on the one hand the educational expenditure and
on the other hand the unemployment rate. In addition, we
have only considered twenty countries for the purpose of the
overview.

5.1.4 Generated data set

In order to show specific characteristics of CLOSE and our
outlier detection algorithm, we generated two artificial data
sets. The first contains 40 time series with 6 time points
and two-dimensional feature vectors in [0, 1]2. For every
timestamp, four cluster centroids have been set, which 10
time series were assigned to with a maximal distance of 0.1
each. The cluster members remain the same for the whole
time period, but the clusters merge and split over time. More
precisely, at any time point only three clusters are visible,
since at the moment where one cluster splits (t4), two others
merge into one.

For the evaluation of our outlier detection algorithm,
three transition-based outliers have been inserted in the data
set. For each timestamp, the outlier sequences have been
randomly assigned to a cluster centroid with a maximal
distance of 0.1.

5.2 Density-based clustering

Since to the best of our knowledge there are no other evalu-
ation measures for the over-time stability of clusterings-per-
timestamp, a quantitative evaluation against other measures
is not possible. The comparison to other common stability
measures is not meaningful either, as the targeted stability
definition differs. Nevertheless, the evaluation of clusterings
retrieved with parameter settings determined by CLOSE
against those of evolutionary clustering algorithms, may
surrogate such an analysis as the objective function which
is optimized in evolutionary clustering includes a similar
definition of over-time stability. Apart from the compar-
ison with evolutionary clusterings, our evaluation section
deals with different experiments on real world and arti-
ficially generated data sets in order to discuss different
characteristics of CLOSE and its applications.

In the first experiment we investigate the behavior of
the CLOSE score depending on the parameter setting of
DBSCAN regarding the GlobalEconomy data set. In Fig. 6
this behavior is illustrated. For each minP ts a colored line
is drawn, which shows the CLOSE score depending on ε.
We tested all minP ts ∈ [2, 6] and ε ∈ [0.1, 0.4] with a step
size of 0.01. The best result was achieved with minP ts = 2
and ε = 0.2 and is shown in Fig. 5.

As can be seen, the resulting clustering is quiet stable
although the data set is rather dispersed and some of its data
objects have irregular movements. For example, Jamaica
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Fig. 5 Best resulting clustering with DBSCAN (ε = 0.2, minP ts = 2) achieving a CLOSE score of 0.514 on the GlobalEconomy data set

(JAM) and Ireland (IRL) are completely stable over time as
they are always together in one cluster. Such a stability can
only be achieved with minP ts = 2 since bigger clusters
would lead to more cluster transitions. This characteristic
can also be read off the diagram in Fig. 6, where the curve
of minP ts = 2 reaches higher CLOSE scores than the
others in most cases. Obviously, regarding this data set, it
is difficult to determine one optimal ε since the groups of
objects move towards each other. The choice of one fix
parameter setting leads for example to the creation of a
single cluster in the last considered timestamp. Although
it is not desired to have only one cluster, since it does not
lead to a high information gain, it is an intuitive result in
this case, though. When choosing a smaller ε in order to
counteract this circumstance, the over-time stability would
be significantly decreased.

Fig. 6 Resulting CLOSE score for different minP ts depending on ε

When considering the line of minP ts = 6 in Fig. 6, the
results might seem unintuitive since the CLOSE score is 0
for most of the time and it gets higher with ε > 0.3 although
it already reached a score of 0 before. The first characteristic
can be explained by the high minP ts value since ε has to be
chosen relatively high in order to reach enough data points
to put together in one cluster. The second characteristic is
caused by the pre-factor of CLOSE which sets the score
to 0, if there are not at least k clusters, where k is the
number of timestamps. For ε = 0.3 only one cluster per
timestamp is found which causes a high amount of outliers.
By increasing ε new clusters are created, whose members
have been marked as noise for lower ε. This applies in
particular to the years 2012 and 2013.

Fig. 7 Resulting CLOSE score, stability and quality for minP ts = 2
depending on ε
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In Fig. 7 the behavior of the ot stability, quality and the
CLOSE score (see Formula (9)) depending on ε can be
compared. minP ts was set to 2, as it proved to be the best
choice on the GlobalEconomy data set. The quality was
measured by the amount of objects that are assigned to a
cluster in relation to all objects at the considered time point.
The usage of such a simple measure can be justified by
the fact that the density of the resulting clusters is already
indirectly evaluated by the clustering algorithm DBSCAN.
Also, evaluation measures addressing the separation and
compactness of clusters are not suitable for density-based
clustering algorithms. Therefore, the aim is to minimize the
amount of outliers as they are not caught in the formula of
CLOSE. The diagram shows that, as long as the quality is
lower than the stability (ε ≤ 0.13), it has a high impact on
the CLOSE score. Afterwards, the curve of CLOSE is very
similar to the stability. For ε > 0.26 the CLOSE score gets
worse, although the quality as well as the stability increases.
The CLOSE score decreases rapidly to 0, which is caused by
the fact, that the number of clusters falls below the number
of timestamps. In other cases the score would highly depend
on the number of clusters as long as they exceed the number
of timestamps, if the quality and stability remain almost the
same.

5.3 K-Means

In this paragraph we compare the achievable CLOSE score
of K-Means with those of the evolutionary K-Means of
[8]. For this, we first used the one-dimensional COVID-
19 data set. The evolutionary clustering approach from
[8] softens the definition of partitioning clustering: At a
point in time, the space is classically partitioned into k

regions, but the assignment of individual elements to a
cluster is also based on the partitionings of the previous
points in time. The assignment function is therefore based
on two components, the so-called history costs and the
distance to the cluster centre. The user must specify a
weighting for these two components in advance. In addition,
this approach requires an unknown function f that maps
clusters from two points in time to each other. Although
this function seems intuitive at first glance, it constitutes a
separate field of research. Despite the problems mentioned
above, evolutionary clustering has a decisive advantage
that becomes more relevant when calculating stability. The
assignment function of evolutionary clustering from [8] can
assign objects to a cluster even if they lie in a different
cluster from the point of view of a classical partitioning
method. This can positively influence the stability of time
series, clusters and thus also clusterings.

An adaptation of the classical K-Means to previous
points in time can be realised with the help of varying ks.
A search for the most stable clustering with varying ks is

also possible with CLOSE, but we consider this scenario
impractical because the number of configurations to be
tested would increase considerably: For 10 time points and
a k ∈ [2, 5], this would already be 410 = 1048576
combinations. A corresponding evaluation of the stability
for time-dependent k would therefore be difficult to realise.
For this reason, we search for one k that fits best for all
time points. The clustering that achieves the highest CLOSE
score is then compared with evolutionary clustering. In the
following evaluations, the asymmetric proportion and the
mean squared error as quality measure were used.

5.3.1 K-means and evolutionary K-means applied
to the COVID-19 data set

The results of the two clustering algorithms applied to the
COVID-19 data set are very different. First, the best k was
identified for both approaches using CLOSE. Here, all ks in
the interval of [2, 10] were examined. For both algorithms,
k = 4 was identified as the k that leads to the most stable
clustering.

For the evolutionary approach, the change parameter
was set to 0.5. The results can be viewed in Fig. 8.
The differences are particularly striking at times five to
seven. These can be explained by the previously extended
assignment function of the evolutionary approach. In this
specific case, however, the evolutionary approach does not
lead to a higher CLOSE score than the classical approach.
Specifically, the standard approach produces a clustering
that is 0.04 more stable than the evolutionary approach.
This may not be a big difference, but it shows that the
adjustments from [8] made for the evolutionary approach do
not necessarily lead to better CLOSE score.

5.3.2 K-means and evolutionary K-means applied to the
generated data set

In contrast to the results with the COVID-19 data set, the
clusterings of the classical K-Means and the evolutionary
K-Means [8] are identical. The result can be seen in Fig. 9.
This is mainly due to the nature of the generated data set. As
mentioned earlier, the generated data set actually contains
four clusters at each time point, two of which split off from
each other and merge in t4 respectively. Although intuitively
one would identify three clusters at each time point, both
algorithms identified only two clusters each. This result
shows that both methods recognise that categorisation
into three clusters would lead to more changes within
the clusters and thus to less cluster stability. The only
clustering that could compete with this clustering in terms
of stability would be one in which all four original clusters
were identified. However, this result is not achievable due
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Fig. 8 K-Means and evolutionary K-Means applied to the COVID-19 Data Set

to the partitioning property of K-Means. The relatively
large distance between the clusters does not prevent the
evolutionary algorithm from recognising only two clusters.
This can be explained by the high influence of history
costs. In this case, we have set the weighting of the change
parameter to 0.5 again; it can be assumed that the result
will be different with a lower weight. In fact, a much lower
weight leads to the detection of three clusters. We identified
the k that leads to a clustering with the highest stability for
both approaches with CLOSE (k = 2). Here we examined
all k in the interval [2, 6]. In Fig. 10 one can see the
development of the CLOSE score as a function of the chosen
k for the classical K-Means. In this data set, the highest
CLOSE score is reached at k = 2. Higher ks lead to lower
CLOSE scores. Figure 9 gives the impression that three
clusters would be more intuitive at any point in time, but the
problem is that such a setup would lead to more data points
changing their cluster peers over time. This circumstance
then leads to less stability of the individual time series,

clusters and thus the entire clustering. More clusters lead
to distributions in which objects have even more changing
cluster peers. It should be noted that in a scenario with more
clusters, quality increases but stability decreases. Together
with the stability, the pre-factor then has a higher influence
than the quality.

5.4 Fuzzy C-means

In this section we discuss the results of FCSETS on the
COVID-19 data set. The clusterings evaluated here were
created using fuzzy C-Means, a fuzzy variant of K-Means.
Figure 11b) shows the development of the FCSETS score as
a function of the number of clusters.

It is noticeable that the FCSETS scores achieved are
significantly higher than the CLOSE scores. This is mainly
due to the fact that there is no function for evaluating
the cluster quality. While the highest CLOSE score was
achieved with four clusters, the highest FCSETS score

Fig. 9 K-Means and evolutionary K-Means from [8] applied to the Generated Data Set
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Fig. 10 Resulting CLOSE score for standard K-Means with different
ks

was reached with two clusters (0.941). The fact that both
methods evaluate different numbers of clusters with the best
score is expected due to the different approaches of the
underlying clustering algorithms. This also means that other
clustering algorithms could achieve better or worse results
in the crisp but also fuzzy case. The decisive factor for the
evaluation of an over-time clustering in the fuzzy case is
the change in the degrees of membership over time. Fuzzy
C-Means achieves the smallest change in these with two
clusters per timestamp, which also reflects the most stable
result in this case. The main reason for this is the rate
of change of membership degrees from one time point to
another. In the case of the COVID-19 data set, a higher
number of clusters provides a higher rate of change, so
that the cluster membership is less stable over time. This
is especially the case when the movement of objects within
clusters is high. However, usually the movement has only
little influence on the highest degree of membership of an
object to a cluster, but the other degrees of membership
change strongly. In the case of the COVID-19 data set,
this change is strongest with five clusters per timestamp. In

Fig. 11a) we have visualised the clustering with the highest
FCSETS score. We have assigned the objects to the cluster
to which they have the highest membership degree.

5.5 Outlier detection

In this part of the paper, we present a qualitative analysis of
the presented outlier detection and its variants. In particular,
we address the effects of the different proportions and
weightings chosen and illustrate this using the COVID-
19 data set and the generated data set. In all the analyses
presented, to identify the most stable clustering, we applied
CLOSE to determine the parameters.

5.5.1 COVID-19 data set

In this section we compare the effect of asymmetric
proportion and symmetric (jaccard) proportion on outlier
detection. For this purpose we use the one-dimensional
COVID-19 data set because it is particularly suitable
for illustration. We clustered the data with K-Means,
identifying the most stable clustering (k = 4) with
CLOSE. In Fig. 12 we can see the results obtained.
The black graphs correspond to the outliers found. At
first glance, it is immediately apparent that the outlier
detection method with the symmetric jaccard proportion
detects significantly fewer outliers than its asymmetric
counterpart. This is due to the different evaluation of
merged clusters. While merges of clusters have no influence
with the asymmetrical proportion, the symmetrical jaccard
proportion evaluates them negatively. This has a direct
impact on the subsequence scores, in the sense that
they all become smaller in our example. This is reflected
accordingly in the best score, which corresponds to the
maximum subsequence score of a cluster. Overall smaller
subsequence scores also lead to smaller outlier scores,
because the difference between the best score and the
individual subsequence scores also becomes smaller. With

Fig. 11 Fuzzy C-Means applied to the COVID-19 data set
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Fig. 12 Detected outliers on the COVID-19 data set with τ = 0.6. black lines represent outliers. Clustering identified with CLOSE (K-Means,
k = 4)

constant τ , as in this example, this leads to a smaller outlier
detection rate. So in the case of the COVID-19 data set, we
would prefer the outlie detection method with asymmetric
proportion. The one-dimensional example also illustrates
the type of outliers detected. In particular, we notice a time
series that was detected as a whole by the system and has
the highest incidence rate at the end. This time series is the
incidence value of Luxembourg. There, on 31 May 2020,
the highest incidence value of the European countries we
looked at was reported. The high number of changes in
the cluster environment is particularly striking. The first
change occurs from week four to week five, followed by the
change in week seven to week eight and finally the change
from week nine to week ten. The constant change of cluster
members leads to a relatively small subsequence score,
which then shows a high difference to the best scores of
the individual clusters.

Another rather inconspicuous time series detected by
outlier detection has an incidence rate just above 0.2 at the
last time point. This time series reflects the development of
the pandemic in Romania. It is detected mainly because it
completely changes its cluster members twice. Firstly, the
incidence rate in Romania at time one does not develop
like that of its cluster members at time zero: In contrast to
Romania’s cluster members at time zero, the incidence rate
in Romania does not continue to rise but remains at about
the same level. The other change occurs from time ten to
time eleven: Here, Romania’s incidence rate jumps within
one week, so that it is now in a cluster with countries of a
higher infection level.

In this example, the difference between the two applied
proportions is not only that the asymmetric proportion
detects more outliers. The jaccard proportion also detects
other outliers. Exemplary for this is the sequence of the top
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orange-colored time series. This is detected by the outlier
detection with jaccard proportion, since a merge of clusters
takes place in the last time point and this is penalised
by the symmetrical proportion. This is not the case with
the asymmetric proportion, the merge has no effect on the
subsequence score of the time series.

Overall, relatively many outliers are found in this
example. This is mainly due to the choice of the parameter
τ and the relatively over-time stable composition of the time
series. The clustering has many time series that remain in
a cluster over time with comparatively many time series.
This leads to high subsequence scores and thus to high
best scores. Time series that change their cluster members
only once have a comparatively low subsequence score,
which also leads directly to classification as outliers due to
the selected τ . This example also shows how to deal with
missing data: A time series only begins in the sixth week, its
sequence from week six to week eight is recognised as an
outlier. On the one hand, this can be explained by the change
in the cluster composition from week seven to week eight
and, on the other hand, by the shortness of the time series.

5.6 ElectricityLoadDiagrams20112014 data set

We clustered the one-dimensional data set with DBSCAN
and determined the best parameters with CLOSE. The
highest CLOSE score of 0.323 was achieved with ε =
0.11 and minpts = 2. The aim of this experiment is
to show the influence of the outlier parameter τ of the
DOOTS algorithm, therefore we applied four different τ

to the clustered data set. The low CLOSE score is due to
the large differences in the consumption data, which make
clustering fundamentally difficult. As shown in Fig. 13,
one or two clusters were identified at each time point. As
expected, electricity consumption is highest in the winter
months for most time series. It is also interesting to note
that most time series show a local maximum in July (time
7). The expected outliers are the time series that either move
completely independently of other time series or those that
move with other time series at some points but then diverge
from them. Figure 13a shows the result with τ = 0.3 and
has the highest number of outliers in the four figures in
Fig. 13. For example, an interesting outlier in this figure
is the top time series at time 3, which was detected as
an outlier from time 2 to time 6. This has to do with the
comparatively low subsequence score of the time series at
these times. The subsequence score of the time series is
obviously even significantly worse than the subsequence
score of the time series in the same cluster at time point 4.
This other time series was classified as an intuitive outlier
in the first two time points, so that these time points fall
out of the calculation for the subsequence score. The top
time series at time 3 is no longer recognised as an outlier

from tau = 0.4. The difference in the subsequence score
to the time series with which it was clustered is therefore
obviously greater than or equal to 0.3 but less than 0.4. The
differently detected outliers with the different tau differ not
only in number but also in length. For example, the top
sequence at time 7 with τ = 0.4 is detected as an outlier
from time 6 to time 10, while the same time series with
τ = 0.6 is only detected as an outlier from time 6 to time 9.

This indicates that the subsequence score diverges from
the other time series even before the actual detection. The τ

thus determines, among other things, how early an outlier is
already classified as such.

5.6.1 Generated data set

For the evaluation of DOOTS on the generated data set,
the clustering setting achieving the best CLOSE score was
chosen as underlying clustering. Therefore, K-Means with
k = 4 was used. Figure 14 shows the detected outlier
sequences on the bivariate data set. All four proposed
derivatives of our algorithm have been tested: the original
method (DOOTS), the one using the jaccard index in
the proportion calculation (jDOOTS), the one using a
weighting in the subsequence score (wDOOTS) and the
method combining the weighting and the jaccard index
(jwDOOTS).

As can be seen, both approaches using the weighting
function got the same results (Fig. 14b). The same applies to
the remaining two (Fig. 14a). Both results are very similar
to each other, as they differ only at one timestamp and that is
the last one. Each method detects all three outlier sequences
(42, 43, 44) in the first four timestamps. At time 5, all
approaches are in agreement that there are only two outliers:
42 and 43. But at the last timestamp the weighted methods
mark only one sequence (42) as an outlier, while the other
ones additionally detect the time series 43.

In the first three timestamps, the detection of 42 and 44
are intuitive as they have transitions between the blue (left)
and the yellow (right) cluster. In order to understand, why
the sequence 43 has been marked as outlier, however, the
fourth timestamp has to be inspected. Here, the sequence
moves from the blue to the yellow cluster. Since both
clusters have many members, which move stably over time,
one transition can suffice for a high outlier score. Since all
pairs of timestamps (ti , tj ) with i < j are considered in the
calculation of the subsequence score of a sequence ending
at tj , the stable behavior of 43 from time 4 to 6 decreases
the subsequence score even more after the transition. The
subsequences Tt1,t3,43 and Tt4,t6,43 get high scores, since
those sequences have a perfectly stable behavior. In context
of the whole sequence, however, the score is very low,
as half of the time there are completely different cluster
members near the sequence than the rest of the time span.
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In contrast to that, the sequence 44 is not marked as
an outlier in the last two timestamps although it has more
transitions than 43. This can be explained by the fact,
that for 5 of 6 timestamps it is assigned to the blue
cluster. Therefore, only the transition to the yellow cluster
at timestamp 3 is suspicious. As already explained before,
this transition has a high impact on the outlier score caused
by the high stability of the other cluster members.

The impact of the weighting function gets clear
considering the sequence 43 in the last timestamp. While
it is marked as an outlier in Fig. 14a), it does not get a
high outlier score in the weighted approaches (b). Since
the impact of the timestamps of the nearer past is weighted
higher than this of the more distant one, the stability of
43 after its transition at timestamp 4 is rewarded. Due to
the stable behavior in the later timestamps the negative
influence of the transition is compensated.

6 Conclusion & future work

In this paper, we gave a short overview for a tool set
specialised on time series analysis for databases containing
multiple multivariate time series. The presented over-
time stability evaluation measures CLOSE and FCSETS
are useful tools for the evaluation of fuzzy and hard

clusterings retrieved by evolutionary or time-independent
clustering algorithms. With the help of CLOSE/FCSETS
fitting hyperparameters for a stable over-time clustering
using common clustering algorithms like K-Means [38]
or DBSCAN [16] and evolutionary clustering algorithms
such as evolutionary K-Means [8] may be determined.
The considered definition of over-time stability varies
slightly from the one usually used e.g. in evolutionary
clustering. Instead of rating the actual movement of a
sequence or cluster in the feature space, the behavior of
a sequence is analysed in comparison to its peers. The
stability of a cluster is thereby driven by its members.
Also, not only the immediately preceding timestamp is
considered, but the whole history of a sequence. Based
on CLOSE various further TS analyses may be derived.
In this paper, we e.g. propounded an outlier detection
algorithm, called DOOTS, for the detection of transition-
based outliers, which were firstly introduced in [50]. Two
application-based modifications regarding the calculation of
the proportion and the subsequence score are shown, which
may be applied to DOOTS as well as CLOSE. Because of
that, the presented methods are quite flexible which makes
them applicable to a broad field of applications.

The discussed experiments showed, that all depicted
methods fulfill the desired intention. With the help of

Fig. 13 DOOTS applied to the ElectricityLoadDiagrams20112014 data set. Outliers are marked with black lines. Intuitive outliers are marked
with black dashed lines
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Fig. 14 Detected outliers on the generated data set with τ = 0.5. Red data points represent outliers

CLOSE common clustering algorithms are able to compete
against evolutionary clusterings regarding a stable over-
time clustering. In addition, CLOSE can be helpful when
using evolutionary clustering algorithms in order to find the
optimal parameter setting. Due to the variable components
in CLOSE, such as the quality measure, it can be adapted
for different types of clusterings, e.g. partition-based and
density-based clusterings, in order to ensure a high quality
apart from the over-time stability. This has been shown by
experiments on different artificial and real-world data sets,
and various clustering algorithms. Also, the influence of
different parameter settings on the CLOSE score may be
discovered by plotting a diagram similar to our experiment,
which allows a further analysis of the underlying data.

With an underlying over-time stable clustering, the
outlier detection algorithm can be applied. Our experiments
showed that the desired outlier type has been detected.
On lucid data sets with one or two features, those outliers
may be easy to recognize with the human eye, but
considering multivariate time series with higher dimension,
the problem gets quite complex. Therefore, an outlier
detection algorithm addressing this type of outliers might be
helpful.

Apart from the presented ones, further methods based
on CLOSE may be developed, e.g. an over-time clustering
algorithm [29] or the prediction of the further course of

sequences or clusters. Similar subsequences and patterns
may already be identified by investigating the resulting
clusters. Of course, an automation might easily be
implemented. Since CLOSE only considers the past history
of a sequence, it also may be adapted for streaming data.
This could e.g. be realised by using a sliding window, which
also could be included in order to speed up the run time.
Generally, future work might focus on run time optimization
leading to the usage of CLOSE becoming more attractive.
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