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Abstract
The vanishing gradient problem under nonconvexity is an important issue when training a deep neural network. The problem
becomes prominent in the presence of sigmoid activation. It stops the learning task, which prevents further improvement
in the performance of an algorithm. SGD and ADAM are two popular methods frequently used to train deep networks.
However, their performance deteriorates in the presence of the vanishing gradient problem. In this paper, we present
WSAGrad( An Adaptive Gradient method with Weighted Sine based step size). It uses a trigonometric function over the
exponential moving average of the weight parameters to compute the step size. This is the first work to use a trigonometric
function in the calculation of step size. The trigonometric function combined with weight parameters, has the following
significance: (1) it will not fade away when the gradient vanishes because the moving average carries information from
the past iterations, and (2) as the weight parameters are tuned with each iteration, it approximately shapes the step size
based on the geometric properties of the data. Additionally, two new parameters are incorporated to control the stability
and convergence of the proposed algorithm. Moreover, we provide a convergence rate under mild assumptions. In the
experimental section, we have shown that our proposed step size performs better than the existing baseline on FMNIST ,
CIFAR − 10, and CIFAR − 100 for the classification task.

Keywords Nonconvex problems · SGD · ADAM · Deep network

1 Introduction

The learning efficiency of deep networks [1–3] allowed them
to be developed rapidly, and they have been successfully
used in various applications, such as machine vision [4],
machine translation [5], sound recognition [6], charge pre-
diction in lithium-ion batteries [7, 8] and many more. The
deep network-based approach (FF − LST M) in [8] estab-
lishes the groundwork for long-term state prediction of
lithium-ion batteries with increasing energy management
and safety. The extension of deep networks to such vivid
applications shows their robustness. In addition to its prac-
tical success theoretical findings show its general compe-
tence [9, 10]. However, training deep learning models for
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nonconvex problems is strenuous because finding a global
minimum is intractable. In the early 1990s, the authors of
[11], showed that training a multilayer perceptron(MLP )
is indeed NP-hard, which significantly contributed to the
shrinkage of this field. While recent practical successes have
revived the area, we still need to know the best minima that
can be reached for deep models when trained via different
optimizers.

Despite being proposed in the last century, the stochas-
tic gradient descent (SGD) algorithm remains one of the
most effective algorithms for training deep neural networks
Its simplicity and efficiency make it suitable for almost all
applications. However, SGD has the disadvantage of scal-
ing the gradient uniformly in all directions. This might result
in poor performance and limited training speed when data
are sparse. Several variants of SGD have been proposed
[12–14] to speed up the training process and improve per-
formance. These variants perform well when the momen-
tum parameter is significant. However, a large momentum
induces staleness [15], implying a preference for past gradi-
ents over the current gradient. Consequently, it comes with
a cost of reduced generalization capacity. Authors of [16]
showed the instability of Nesterov’s accelerated method
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with respect to initialization and exponentially fast deterio-
ration in the performance with the number of gradient steps.
SGD’s dependency on the learning rate and the need for
proper initialization for ill-conditioned problems necessitate
a paradigm shift towards adaptive algorithms with provable
guarantees.

A number of adaptive gradient algorithms have been pro-
posed to address these problems. Usually, these algorithms
alter the learning rate for each gradient coordinate based
on the objective function’s current geometry curvature. For
example,Adagrad [17] computes the adaptive learning rate
by dividing gradients by a denominator equal to the root
mean square of the previous gradients. A sparse gradient
was reported to lead to a quicker convergence of Adagrad

compared to the vanilla SGD [17]. However, Adagrad

has a limited ability to generalize on unseen data [18]. In
the presence of a sizeable dense gradient, the mean in the
denominator makes the update small, leading to the failure
of Adagrad.

Some adaptive algorithms have been proposed to address
this issue by replacing the denominator with the square
root of the exponential moving average of the past
gradient squares, i.e., RMSProp [19], AdaDelta [20],
and ADAM [21]. ADAM has become the most popular
among all the variants due to its faster convergence
and computational efficiency. Regardless of its faster
convergence, recent theoretical studies show its instability
and weaker convergence guarantee [18, 22]. Experiments
conducted in [23] show that when the decay rate of the
second moment accumulator is too slow, larger-than-desired
updates might be provided. The generation of extreme
learning rates during training is reported in [24]. The
parameter ε is introduced in the denominator of the update
rule of ADAM [21] to prevent the denominator from
becoming zero. Its influence on the performance of ADAM

was later discovered in [25].
To address the challenges ofADAM and SGD, we intro-

duce An Adaptive Gradient method with Weighted Sine
based step size(WSAGrad). Sine-and cosine-based algo-
rithms are generally used with derivative–free algorithms
[26–28]. This is the first work to use a sine function
to compute the step size for a gradient–based method.
This method captures the geometric properties of the data
through weight parameters. The intuition of using a weight
vector is linked with the primary idea of preserving the
metric structure of the data via a deep network initialized
with random Gaussian weights, as mentioned in [29]. These
structures propagate along the layer, enabling robust recov-
ery of the original data from the features computed by the
network. In other words, training a deep network preserves
the angle between intraclass and interclass points, which
implies that every layer preserves the important informa-
tion about the data [29]. Hence, using the weight vector

to compute the step size of WSAGrad will incorporate
this information, which is further tuned with each set of
iterations. WSAGrad shows a significant improvement in
performance for different deep learning tasks over other
state-of-the-art techniques. A theoretical guarantee is pro-
posed with some mild assumptions. The main highlights of
this paper are as follows:

• The paper contributes by proposing a novel adaptive
step size based gradient descent algorithm that inherits
important capabilities of both approaches such as the
adaptability and generalization ability of ADAM and
SGD.

• The step size is constructed using a trigonometric
function over the exponential moving average of the
norm of the weight parameters. It is designed to operate
on the vanishing gradient problem. Instead of stopping
the learning task, it minutely increases the objective
value so that the coming iteration can reach a better
minimum. Additionally, two controlling parameters are
used to nullify the scope of divergence and assure
stability inside a certain region. To the best of our
knowledge, this is the first work to use a network’s
weight parameters in the step size.

• The step size is computationally efficient due to the
small memory requirement per iteration with only one
extra set of auxiliary variables. Furthermore, it reduces
human intervention and hyperparameter tuning, making
it more robust to different optimization problems.

• Under a minimum assumption of smoothness and level
bound, we prove the convergence of our algorithm.

• We validate the performance of our algorithm through
extensive experiments. We tested the performance of
our algorithm compared to that of the baseline on
the task of image classification on real-world data
FMNIST , CIFAR − 10 and CIFAR − 100. The
experiments span basic to advanced architectures of
different batch sizes with various activations types.

It is worth noting that our algorithm’s performance
significantly improves with the number of iterations when
most of the existing methods saturate. We also show the
stability of our algorithm in all sets of experiments. For
each set of experiments, we have reported the best results,
the mean and the standard deviation of our algorithm’s
performance. The remained of this paper is organized as
follows: we discuss the literature in Section 2. Section 3
outlines the problem definition in detail, followed by
the proposed methodology and a theoretical guarantee
under mild assumptions. Next, we describe the dataset,
experimental setup, and baselines in Section 4, followed
by results and analysis under the same heading. Lastly,
Section 5 concludes the paper with some directions for
related future works.
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2 Background and notation

2.1 Background

Training a deep neural network (DNN) for a large-scale
machine learning problem is a complex task. Recently,
adaptive gradient methods, a class of optimization tools,
have drawn the community’s attention due to their faster
convergence on such tasks. The first popular algorithm in
this line of research is Adagrad [17, 30], which achieves
significantly better performance than the vanilla SGD when
gradients are sparse or generally small. Update equation of
Adagrad is as follows:

xt+1 = xt − ηt

gt√
(vt )

, (1)

where gt = ∇f (xt ; ξ t), and vt = 1
t

∑t
j=1 g2

j , and ηt =
η√
(t)

where η > 0 is the step size. The above equation shows

the learning rate for each dimension. Although Adagrad

works well for sparse settings, its performance has been
observed to degrade in conditions where loss functions are
nonconvex and gradients are dense. The quick decline of the
learning rate in these settings makes it unattractive because
it uses all the previous gradients in the update. This issue is
compounded even more in high-dimensional deep learning
problems.

To mitigate this problem, several variants of Adagrad ,
such as RMSProp [19], ADAM [21], AdaDelta [20],
and NADAM [31] have been proposed to handle the
rapid decay of the learning rate by using the exponential
moving averages of past squared gradients. Essentially,
these strategies limit the update to only the past few
gradients. Of these variants, ADAM is the default method
of choice for training DNNs. The updated equation adopts
the following form:

mt = α1mt−1 + (1 − α1)∇f (xt ; ξ t), m̂t = mt

1 − αt
1

(2)

vt = α2vt−1 + (1 − α2)(∇f (xt ; ξ t))2, v̂t = vt

1 − αt
2
,

xt+1 = xt − ηt m̂t√
(v̂t ) + ε

, ∀t ≥ 1, (3)

where α1, α2 ∈ (0, 1), and ε > 0 and ηt = η√
(t)
,

η > 0. However, to our knowledge, ADAM still has no
convergence proof. The proof in the original paper [17] was
shown wrong in [32, 33]. A counterexample was introduced
in [18], and an improved form of (3) was introduced and
named AMSGrad . It follows:

v̂t = max( ˆvt−1, v̂t ); xt+1 = xt − ηt m̂t√
(v̂t )

. (4)

However, in the experiments, AMSGrad does not show
improvements [34, 35]. In contrast, it sometimes results in a

worse accuracy than ADAM . For ADAM-type optimizers,
convergence is studied in [35] for nonconvex problems, and
the authors reported that a minimum could be achieved
with no guarantee of staying there. Another work [36]
used a dynamical system viewpoint to interpret the ADAM

optimizer. This approach uses a non-autonomous ordinary
differential equation without the Lipschitz condition.
Subsequently, to improve the generalization performance
of ADAM , another variant with a convergence guarantee,
namely, AdamW, was introduced [37]. It is defined as
follows:

gt = ∇f (xt ; ξ t) + λxt , mt = α1mt−1 + (1 − α1)gt , (5)

m̂t = mt

1 − αt
1
, vt = α2vt−1 + (1 − α2)(gt )

2, v̂t = vt

1 − αt
2
,

xt+1 = xt − ηt (αm̂t /(
√

(v̂t ) + ε) + λxt ), (6)
where, α1, α2 ∈ (0, 1), α > 0, λ > 0 and ε > 0. In [38],
under a convex setting, the authors proposed stabilizing
the coordinatewise weighting factors to ensure convergence.
PADAM [39] has been introduced with a partial adaptive
parameter for a better generalization, which changes the
coordinatewise weighting factor. The convergence rates of
the original ADAM and RMSprop under the full-batch
(deterministic) setting are provided in [40, 41]. AdaBelief

[42] has been proposed to obtain a good generalization
by adopting the step size according to the ‘-belief-’ in the
current gradient direction. All the equations are similar to
ADAM except for vt , which is defined as follows:

vt = α2vt−1 + (1 − α2)(∇f (xt ; ξ t) − mt)
2 + ε. (7)

More recently, some accelerated adaptive gradient methods
[43, 44] have been proposed based on variance-reduced
techniques. In particular, the authors of [44], proposed
SUPER−ADAM , a faster and universal adaptive gradient
framework based on a universal adaptive matrix. Recently,
an adaptive variant of Nesterov accelerated gradient descent
was introduced in [45], which replaces the constant
momentum with an adaptive momentum. To assure stability,
the momentum resets to zero according to a scheduler. In
Table 1, we list some of the most recent algorithms and their
convergence rates.

This paper attempts to design an algorithm that works
well with a minimum set of resources and models. Rather
than focusing on the moving average of the gradient as most
of the previous algorithms have done, our work depends on
the weight parameters. The idea is that with each iteration,
we obtain weights that are more tuned than the previous
weights. An adjusted weight with a step size as defined in
[46] works towards decreasing the objective function with
better smoothness. Next, we present the assumptions used
for the theoretical analysis. In the following section we
define the problem and introduce the proposed algorithm
and convergence proof.
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Table 1 Convergence rates of different algorithms: here, T denotes the number of iterations, and b denotes the mini-batch size

Assumptions Methods Convergence rate

Smoothness or component-wise smoothness of the objec-
tive function, Bounded stochastic and true gradient.

Generalized ADAM[35] O
(√

log(T )

T 1/4

)

ADAM/ YOGI [25] O
(

1√
T

+ 1√
b

)

PADAM [39] O
(

1√
T

+ 1√
T 1/4

)

AdaBelief [42] O
(√

log(T )

T 1/4

)

Smoothness of the objective function and true gradient Ada-Norm-SGD[47] O
(

1
T 2/7

)

STORM [43] O
(

(ln(T )3/4)√
T

+
√

(ln(T ))

T 1/3

)

Lipschitz continuous and Smooth objective Adaptive SGD [48] O
(√

ln(T )√
T

+
√

(ln(T ))

T 1/4

)

Smooth objective and Bounded gradient AdaGrad-Norm [49] O
(√

log(T )

T 1/4

)

Smooth or Component wise smooth SUPER-ADAM [44] O
(√

ln(T )√
T

+
√

(ln(T ))

T 1/4

)

Lipschitz continuous, Smooth objective and bounded gradient WSAGrad (Our method) O
(

1√
T

)

2.2 Assumptions and notations

In general, we consider a finite sum problem of the
following form:

minx∈Rd f (x) = 1

n

n∑

i=1

mi(x), (8)

where each mi : R
d → R is a smooth and nonconvex

function. Prior to the analysis, we state the mild assumptions
and notations required for the proof. We work with the
Euclidean spaces, Rn and R

d , which are equipped with
the standard inner product 〈.〉 and Euclidean norm ‖ . ‖.
For any function f , dom(f ) := {x ∈ R

d |f (x) < +∞}
denotes the effective domain of f . If f is continuously
differentiable, then ∇f denotes its gradient. Furthermore,
if f is twice continuously differentiable, then ∇2f denotes
its Hessian. Bold upper-case letters represent matrices A,B,
normal upper-case letters represent scalars X, Y , and lower-
case letters denote vectors x, y. xt represents the value of x

at time step t .

Assumption 1 A function f (x) is at least once differen-
tiable and is L-smooth, i.e., for any x, y ∈ R

d we have the
following:

f (x) ≤ f (y)+〈∇f (y), x−y〉+ L

2
‖ x−y ‖2, ∀x, y ∈ R

d .

(9)

Assumption 2 The level set S0 is bounded as follows:

S0 = {x ∈ R
d |f (x) ≤ f (x0)}, (10)

i.e., there exists a constant R > 0 such that, ‖ x ‖≤ R,∀x ∈
S0, where R << d .

Assumption 3 An obvious conclusion of the above two
assumptions is that the gradient of the function and the
stochastic gradient are bounded, i.e., as follows:

‖ ∇mi(x) ‖<= C, ‖ ∇mi(x : ξ) ‖<= C, (11)

where ξ is a random variable, which implies, the following:

‖ ∇f (x) ‖<= 1

n

n∑

i=1

‖ ∇mi(x) ‖<= C. (12)

Definition 1 A point x is said to be ε- First order
stationary point (FSP ) for a function f : Rd → R, if

‖ ∇f (x) ‖≤ ε. (13)

3Methodology

Let f (x) be a noisy objective function, i.e., a differentiable
stochastic scalar function with respect to parameters x.
We are interested in minimizing the expected value
of this function, E[f (x)] w.r.t. its parameters x. Let,
f1(x), . . . , , fT (x) denote the realizations of the stochastic
function at subsequent time steps 1, ..., T . The stochasticity
may result from the assessment of the data points in random
subsamples (minibatches) or from intrinsic function noise.
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Let, ∇xft (x) denote the gradient, i.e., the vector of partial
derivatives of ft , w.r.t x evaluated at timestep t

3.1 Proposedmethod

Algorithm 1 WSAGrad(x0, β, γ1, γ2).

Our proposed Algorithm 1 inherits the qualities of both
the paradigms of the first order method. The equation

xt+1 ← xt − (γ1 ∗ sin(
π ∗ gt

2 ∗ gt + 1
) + γ2)∇ft (xt ), (14)

relies on the following four important parameters: xt

(weight parameter), gt (exponential moving average over
xt ), β, which lies in an interval (0, 1) that decides the rate
of the moving average, and γ1, which represents the weights
given to the calculated step size. γ2 is an additive lower
limit, which prevents zero in the step size. To understand
its connection with the existing algorithm and the overall
improvement in the proposed algorithm, we simplified (14)
by assigning different values to the parameters. Let us
consider that the value of γ1 equals zero; thus, (14) can be
written as follows:

xt+1 ← xt − γ2∇ft (xt ). (15)

The above equation is equivalent to the equation of SGD,
which signifies how the inherent quality from SGD affects
the generalization capability of our algorithm. To check its
connection with the adaptive method, we consider γ2 equal
to zero. Thus, (14) can be written as follows:

xt+1 ← xt −
(

γ1 ∗ sin

(
π ∗ gt

2 ∗ gt + 1

))

∇ft (xt ). (16)

We can observe the value of the sine function, which
depends on gt , and as gt is tuned with every iteration,
the value of the sine function changes for each iteration.
The adaptability of our algorithm helps to obtain quicker
convergence to better minima. Using a weight vector in the
calculation of the step size gives significant advantages over
gradient information, as it includes more stable information
about the geometry of data. Random Gaussian weights
with a deep neural network preserve local structures in
the manifold, as proven in [29]. Weight parameters learn
decision boundaries for the given data through extensive

training. The best decision boundaries have an optimal
distance from the points that need to be classified or
predicted. In addition, the angle between intraclass points
and interclass points is preserved while training the
network. Thus, it was observed in [29], that every layer
keeps the important information about the data, which
is a characteristic very desirable for the classification
task. Hence, weigh parameters represent the geometric
information of the data across the loss landscape. However,
the gradient alone is insufficient to carry such information
because it is dependent on the loss surface, which makes
it fluctuate heavily. Hence, we consider a weighted average
of the weight parameters’ magnitude to compute our step
size. Through experiments, we find that it outperforms
the baselines. Moreover, for the proposed algorithm, we
observed that the values of γ1, γ2 depend greatly on the
architecture we use for our tasks.

3.2 Step size analysis

The proposed step size consists of the following three
important components: the values of γ1, γ2 and the
sine function used over the first moment of the weight
parameters. The values of γ1 and γ2 determine the range of
fluctuation for the step size. These parameters depend on
the model architecture. An architecture that smooths out the
complex loss landscape requires a smaller value, while the
value is high for the opposite case.

We know that −1 ≤ sin(x) ≤ 1. For the proposed step
size, the parameter satisfies 0 ≤ gt

2gt+1 ≤ 1. Therefore,

0 ≤ gtπ
2gt+1 ≤ π . Thus,

0 ≤ sin

(
gtπ

2gt + 1

)

≤ 1, (17)

0 ≤
T∑

k=0

sin

(
gkπ

2gk + 1

)

≤ T + 1. (18)

The maximum value for the above sine function after the
T iteration will be T + 1 and the minimum will be zero.
Moreover, the sine function is non-monotone. To understand
the behavior of the proposed step size, we categorize the
value of ‖ xt ‖ into the following ranges: when the value of
‖ xT ‖≤ 1 and when the value of ‖ xT ‖≥ 1. Let us assume
for consecutive T iterations, that the value of 0 ≤‖ xT ‖≤ 1;
then, gT

2gT +1 lies near to zero. This implies

sin(‖ xT ‖) < sin

(
gT π

2gT + 1

)

. (19)

This means that if the minima lie very near zero for a
nonconvex problem, and initialization of weights is done
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within a unit circle, then gradient information of the loss
function with respect to weights will quickly vanish when
the network size becomes large, as the initial layer of the
network suffers from the vanishing gradient problem. The
stated problem can be easily addressed by our proposed
step size. The above equation always assures that the value
of sine over the expected xt is greater or equivalent to
the sine over the original xt . To control the stability of
the sine function, we provide weight through γ1. When the
sine function becomes zero, then the variable γ2 assures a
decrease in the objective function. Now, when ‖ xt ‖≥ 1,
then gT

2gT +1 lies near 1, which implies

sin(‖ xT ‖) ≥ sin

(
gT π

2gT + 1

)

. (20)

We can reasonably assume from the existing works that
∇f (xt ) is large when x is far from the minima of the loss
function. Thus, the magnitude of the resultant vector will
also be large. Therefore, the value of the step size will be
closer to 1, which implies, that it provides an opportunity to
reduce the value of the objective function more significantly
in the initial iterations. In the initial iterations, the step
size increases when the value of g is not very large and
significantly reduces the objective value. However, when
x is close to the minima of the loss function, ∇f (x)

becomes small. Consequently, the value of g is close to the
moving average of all the resultant vectors. The parameters
{ β, (1−β)} give weights to the present and past magnitudes
of the resultant vector. Therefore, the step length will not
be minimal but will decrease and can help the optimizer
surpass the suboptimal points.

3.3 Convergence analysis in a deterministic setting

Lemma 4 (Necessary condition for convergence) For a
positive series

∑∞
n=1 an, with any natural number k , if the

partial sum Sk = ∑k
n=1 an has a constant upper bound C

that is independent of k, then we have

limn→∞an = 0. (21)

Theorem 5 [50] Let {xn} ∞
n = 1 and{ yn} ∞

n = 1 be two

convergent sequences of real numbers; then,

if limn→∞xn =x, and limn→∞yn =y, then limn→∞xnyn =xy.

(22)

Lemma 6 For time sequence t = 0, . . . , T − 1, the
recurrence relation is bounded as

gt = β ∗ gt−1 + (1 − β)∗ ‖ xt ‖≤ T . (23)

Proof By iterating and expanding the above recurrence and
then simplifying altogether and using assumptions (2), we
have,

gT = (1 − β)

T −1∑

i=0

βn−1−i ‖ xi ‖≤ R(1 − βT ). (24)

As the value of β < 1, for a large T ,

R(1 − βT ) ≈ R ≤ T . (25)

Theorem 7 Suppose f (x) satisfy assumptions (1), (2), (3),
and WSAGrad runs under batch setting with a positive step
size sequence and, f ∗ = infxf (x) ≥ −∞, then

limT →∞mint=0:T ‖ ∇f (xt ) ‖= 0. (26)

Proof From (9) , we have the following:

f (xt+1) ≤ f (xt )+〈∇f (xt ), xt+1−xt 〉+ L

2
‖ xt+1−xt ‖2 .

(27)

Using the update equation given in Algorithm 1, we have
the following:

f (xt+1) ≤ f (xt ) +
(

L

2
ηt − 1

)

ηt ‖ ∇f (xt ) ‖2 . (28)

Rearranging the above equation, we obtain the following:
(

L

2
ηt − 1

)

ηt ‖ ∇f (xt ) ‖2≤ f (xt+1) − f (xt ). (29)

After summing the values from t = 0 to T − 1, using
telescopic sum, we obtain

T −1∑

t=0

(

1 − L

2
ηt

)

ηt ‖ ∇f (xt ) ‖2≤ f (x0) − f (x∗). (30)

Thus,

mint=0:T ‖ ∇f (xt ) ‖2
T −1∑

t=0

(

1 − L

2
ηt

)

ηt ≤
T −1∑

t=0

(

1 − L

2
ηt

)

ηt ‖ ∇f (xt ) ‖2

≤ f (x0) − f (x∗), (31)

which is equivalent to the following:

mint=0:T ‖ ∇f (xt ) ‖2≤ f (x0) − f (x∗)
∑T −1

t=0 (1 − L
2 ηt )ηt

. (32)

We can obtain an upper bound of the denominator of

T −1∑

t=0

(

1 − L

2
ηt

)

ηt ≤ T

(

1 − L

2
ηz

)

ηz, (33)

where ηz = maxt (ηt ),maxt (ηt ) = (γ1 + γ2). Rewriting the
above equation provides a bound for the minimum square
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norm of the gradient in T steps. Upon taking the limit on
both sides of the above equation, we obtain

mint=0:T ‖ ∇f (xt ) ‖2≤ f (x0) − f (x∗)
T (1 − L

2 ηz)ηz

. (34)

4 Empirical study

We study the performance of our algorithm on the problems
of multiclass classification. The proposed algorithm spans
different architectures, and the complexity varies from
basics to advance. We use SGD, SGD − Nesterov and
ADAM as baselines on the FMNIST , CIFAR − 10
and CIFAR − 100 datasets. Each method’s performance
is evaluated with the best setting of manually tuned
hyperparameters, and the performance is stated under
multiple restarts.

4.1 Synthetic Experiment

To compare the performance of WSAGrad with that of
ADAM , we consider a simple convex function from [18].

ft (x) =
{
1010x with probability 0.01

−10x otherwise,
(35)

with constraint set F = [−1, 1]. The optimal solution stated
in [18] is, at x = −1. Thus, for convergence, we expect
the algorithms to converge at x = −1. For this sequence of
functions, we investigate the average regret calculated as in
(36) and the value of iterate xt for ADAM and WSAGrad .

R(T ) = 1

T

T∑

t=1

[ft (xt ) − ft (x
∗)] (36)

To enable a fair comparison, we set β1 = 0.9, and β2 =
0.99, which are typical settings in ADAM . For WSAGrad,
we consider β = 0.99. Figure 1 shows the average regret
and value of xt at the t iteration. From the two plots in Fig. 1,

we can conclude that WSAGrad converges at xt = −1,
which is the optimal value for the parameter, and ADAM

converges near zero. Therefore , the average regret for
WSAGrad is lower than that for ADAM .

4.2 Neural network

With nonconvex objective functions, multilayer neural net-
works, CNN , V GG, and ResNet some powerful deep
learning models. Although our convergence analysis may
not be applicable up to a certain extent to nonconvex prob-
lems, we empirically observe that WSAGrad outperforms
other methods for the task of classification. We use MLP ,
CNN , V GG, and ResNet for the classification task on
three different datasets. An overview of our experiments is
presented in Table 2.

4.2.1 Multilayer perceptron

We use two configurations for our experiments: one with
sigmoid in all the layers and another with Sof tMax in
the last layer and sigmoid in all the rest. To measure the
performance of our algorithm, we prefer sigmoid over any
other activation type. The reason behind using sigmoid in
all layers is that it creates a vanishing and exploding gradient
problem in the initial and final layers, respectively, which
can stop the learning task for all the algorithms.

FMNIST Fashion-MNIST(FMNIST ) [51] is a dataset
consisting of a training set of 60000 examples images and a
test set of 10000 examples. Each image is 28 pixels in height
and 28 pixels in width, for a total of 784 pixels. This pixel-
value is an integer between 0 and 255. For our experiments,
we normalize the values. Our neural network contains two
hidden layers of sizes 256 and 128 and an output layer of
size 10. We use the cross-entropy function as a loss function
with l2 regularization and an accuracy metric to measure the
performances of different algorithms.

We repeat the experiment multiple times with a batch
size of 256 for Sof tMax and a size of 64 for all sigmoids

Fig. 1 (a) Average regret w.r.t.
iterations of ADAM and
WSAGrad. (b) Value of xt

w.r.t. iterations of ADAM and
WSAGrad
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Table 2 Overview of experiments: our experiments span across classic datasets along with traditional and modern architectures

Dataset Architecture Batch size Lr for ADAM Lr for SGD, SGD-Nesterov Value of γ1, γ2

FMNIST 3-Layer MLP [256,64] 0.001 [0.8,0.8] [0.9, 0.01]

FMNIST ConvNet [128] 0.001 [0.1,0.1] [0.95, 0.01]

CIFAR-10 3-Layer MLP [256] 0.001 [0.1,0.1] [0.95, 0.01]

CIFAR-10 ConvNet [128] 0.001 [0.1,0.1] [0.95, 0.01]

CIFAR-10 ResNet18 [128,32] Table 9 Table 9 [0.5,0.01]

CIFAR-10 VGG11 [128,32] Table 7 Table 7 [0.3,0.1/0.01]

CIFAR-100 3-Layer MLP [256] 0.001 [0.1,0.1] [0.95, 0.01]

CIFAR-100 ConvNet [128] 0.001 [0.1,0.1] [0.95, 0.01]

The optimal learning rates for the baselines vary. A detailed explanation of the parameters is presented in the corresponding tables, e.g., TB-9
represents Table 9. The value of γ1 in WSAGrad varies for different architectures. The results are based on the optimal value of hyper-parameters
tuned over multiple restarts with consistent configuration. Here, Lr stands for learning rate, and TB stands for table

with different seeds. For all the experiments, we decay the
learning rate after every 1000th iteration with a decay factor
of 0.7. Then we plot the best results for all the algorithms
under the consistent configuration. For SGD and its variant,
we consider 0.1 as the suitable learning rate; for ADAM

and its variant, the suitable learning rate is 0.001. β1 = 0.9
and β2 are chosen from {0.99, 0.999}. We manually tune
parameter β for our algorithm to obtain the best set of results
for the defined models. WSAGrad provides the best result
for the value of β = 0.5.

CIFAR-10 The CIFAR − 10 [52, 53] dataset consists of
60000 of 32x32 color images in 10 classes, with 6000
images per class. There are 50000 training images and
10000 test images. The dataset is divided into five training
batches and one test batch, each with 10000 images. The
test batch contains exactly 1000 randomly selected images
from each class. The training batches contain the remaining
images in random order, but some training batches may
contain more images from one class than another. Among
them, the training batches contain exactly 5000 images from
each class. The classes are completely mutually exclusive.
For the experiments, normalization was performed. We use
a neural network with hidden layers, of size 655, 256, and
an output layer of size 10. We use the cross-entropy function
as a loss function with l2 regularization and accuracy metric
to measure the performance of the different algorithms. We
repeat the experiments multiple times with a batch size
of 128 for both configurations with different seeds. The
rest of the configurations are the same as those of the
previous dataset FMNIST , and the best results are plotted.
WSAGrad gives the best result for the value of β = 0.6.

CIFAR-100 This dataset [52] is similar to CIFAR − 10,
except it has 100 classes containing 600 images each. There
are 500 training images and 100 testing images per class.
The reason for using CIFAR − 100 is the increasing

complexity since limited data are available per class to
train. To test the authenticity of our algorithm, we use both
the sigmoid and Sof tMax configurations. The dataset is
difficult, and using sigmoid makes learning difficult. For
this specific dataset, we use a dropout of 0.2 just after
the first layer and 0.5 after the second layer. The rest of
the configuration and preprocessing are similar to those of
CIFAR − 10.WSAGrad gives the best result for the value
of β = 0.6.

The average accuracy of MLP for different optimizers on
the above dataset is shown in Table 3.

4.2.2 Deep networks

CNN Our CNN architecture has two alternating stages
of 5 × 5 convolutional filters and 3 × 3 max pooling
with stride two followed by a fully connected layer of
128 sigmoid units. The channel sizes are 32, and 16
respectively. The batch size is 128. Cross entropy with l2
regularization is used for loss. For CIFAR − 10, we use
the same configuration but with a few changes. For a set of
experiments, we replace the last layer sigmoid units with
Sof tMax, and in another set, we keep sigmoid units in the
last layer. In the third set, we use ReLU for fully connected
layers. For CIFAR − 100, we use the architecture with all
sigmoids.

VGG on CIFAR-10 V GGNet [54] is another advanced
architecture in the field of computer vision after CNN . The
structure captures the depth of CNNs. We use the V GG −
11 architecture for our experiment, as shown in Fig. 6. It
consists of 11 weighted layers. The weights represent the
strength of connections between units in adjacent network
layers, and weights close to zero mean that changing the
input will not change the output, or the change will be
negligible. The primary reason for using V GG − 11 in our
experiments is the vanishing gradient problem that occurs
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Table 3 Mean accuracy with standard deviation of the different optimizer’s for MLP on different datasets

Data set MLP with sigmoid MLP with Sof tMax Methods

FMNIST 0.88± 0.008 0.88± 0.01 WSAGrad

CIFAR-10 0.47± 0.03 0.51± 0.01 WSAGrad

CIFAR-100 0.20± 0.01 0.07 ± 0.01 WSAGrad

FMNIST 0.83± 0.08 0.87± 0.01 ADAM

CIFAR-10 0.44± 0.01 0.51± 0.01 ADAM

CIFAR-100 0.15± 0.01 0.08± 0.01 ADAM

FMNIST 0.86± 0.05 0.87± 0.01 SGD Nesterov

CIFAR-10 0.36± 0.01 0.49±0.01 SGD Nesterov

CIFAR-100 0.12± 0.1 0.01 ± 0.01 SGD Nesterov

FMNIST 0.47± 0.07 0.75± 0.01 SGD

CIFAR-10 0.25± 0.01 0.35± 0.01 SGD

CIFAR-100 0.08± 0.009 0.01 ± 0.01 SGD

Bold fonts represents best mean accuracy

when the weights substantially reduce to zero, significantly
impacting the learning task. The normal distribution is used
to initialize the weights. An overview of the architecture is
given below.

We conduct our experiments for the above architecture
set with different variations tested on different batch sizes
with fine-tuned learning rates. The variations in the archi-
tecture were created by replacing the activation function of
the fully connected last layers. The reason for testing on
different batch sizes is that a large batch induces smooth-
ness, while a smaller batch does not. Therefore, it is more
difficult to train on small batches than on larger batches.

ResNet18 on CIFAR-10 ResNet [55] is an advanced archi-
tecture compared to V GG. It allows residual connection
between layers, which helps it overcome the vanishing gra-
dient problem. We modify the architecture by replacing the
activation type of the last layer. The network in Table 8 is
tested on CIFAR −10 with different batch sizes and finely
tuned hyperparameters. Cross entropy with l2 regulariza-
tion is used for loss. The hyperparameters for the baselines
and proposed method are shown in Table 2. The value of
γ1 is selected based on the stability and low error rate. It
is determined through multiple sets of experiments on dif-
ferent values of γ1, as shown in Fig. 8. The most suitable
choice for γ1 for the mentioned architecture was {0.3, 0.5},
which can be observed from Fig. 8. We select 0.5 over 0.3
due to its better stability and accuracy.

4.3 Results and discussion

For each set of experiments, we plot the best results
and report the mean and the standard deviation of the

algorithms’ performances in Tables 3, 4, 5, 6, 7, 8 and 9.
For MLP , the performance of WSAGrad is equivalent to
greater than existing state-of-the-art techniques.

From Figs. 2, and 3, we find that the performance of
WSAGrad is better than that of ADAM and AdamW .
Additionally, from Fig. 2 we observe that ADAM ,
AdamW , and SGD − Nesterov converge in a nearby
neighbourhood; nevertheless, the generalization capability
of SGD − Nesterov suffers. This is due to the continu-
ous addition of bias in the update rule when the momentum
parameter is large. A large momentum parameter prefers
past updates instead of the current one. In theory, the perfor-
mance of SGD−Nesterov is independent of initialization,
but in practice, we observe that the performance of SGD

and SGD − Nesterov heavily depend on the initializa-
tion and complexity of the model. Furthermore, we observe
that the performance of WSAGrad increases smoothly as
reflected in Figs. 2 and 3, with successive iterations without
affecting the model’s generalization capability. We observe
a similar performance of our algorithm for all the models
and datasets used for empirical validation.

It is worth noting from Table 3, that the mean accuracy of
our algorithm is higher than that of the top baselines, except
for MLP with Sof tMax, where ADAM is equivalent
to or greater than WSAGrad . A possible reason is that
MLP with Sof tMax forces the structure of one winner,
even when it has access to a limited set of features. For
example, training a neural network creates a set of groups
across the different layers and within the layers, as proved
in [29]. Each set of groups carries information about a set
of features; using Sof tMax in the last layer induces a
one-winner relationship between groups. This relationship
improves the generalization capability when the dataset
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Table 4 Mean accuracy with standard deviation of the different optimizer’s on Convolution net with sigmoid and Sof tMax functions as the
activation on different datasets

Data set CNN with sigmoid CNN with Sof tMax Methods

FMNIST 0.88±0.007 0.88± 0.01 WSAGrad

CIFAR-10 0.66±0.04 0.63±0.017 WSAGrad

CIFAR-100 0.27±0.01 0.12±0.01 WSAGrad

FMNIST 0.80±0.005 0.83±0.007 ADAM

CIFAR-10 0.52±0.01 0.55±0.01 ADAM

CIFAR-100 0.16±0.01 0.096 ± 0.01 ADAM

FMNIST 0.80±0.006 0.84±0.001 SGD Nesterov

CIFAR-10 0.53±0.01 0.58±0.01 SGD Nesterov

CIFAR-100 0.14±0.004 0.04 ± 0.01 SGD Nesterov

FMNIST 0.69±0.01 0.74±0.01 SGD

CIFAR-10 0.52±0.01 0.55±0.02 SGD

CIFAR-100 0.06±0.01 0.04 ± 0.01 SGD

Bold fonts represents best mean accuracy

Table 5 Mean accuracy with standard deviation of different optimizer’s on Convolution net with ReLU and Sof tMax functions as the activation
function, on different dataset

Data set CNN ReLU with SoftMax CNN ReLU Methods learning rate

FMNIST 0.89 ± 0.13 0.90±0.01 WSAGrad -

CIFAR-10 0.66± 0.15 0.71±0.01 WSAGrad -

CIFAR-100 0.10± 0.01 0.33± 0.01 WSAGrad -

FMNIST 0.87 ± 0.13 0.83±0.01 ADAM 0.001

CIFAR-10 0.53± 0.10 0.57±0.01 ADAM 0.0008

CIFAR-100 0.11± 0.01 0.22 ± 0.01 ADAM 0.0008

FMNIST 0.89 ±0.09 0.89 ± 0.01 SGD Nesterov 0.1

CIFAR-10 0.63±0.01 0.71±0.014 SGD Nesterov 0.08

CIFAR-100 0.09±0.01 0.33±0.01 SGD Nesterov 0.08

FMNIST 0.88 ±0.01 0.89 ± 0.001 SGD [0.8.0.1]

CIFAR-10 0.61± 0.01 0.64±0.01 SGD 0.8

CIFAR-100 0.10±0.01 0.31±0.01 SGD [0.08,0.8]

The value of {γ1, γ2} = {0.07, 0.01}, and β = 0.1. The batch size is similar to those of the previous experiments. Learning rate is not required for
WSAGrad

Bold fonts represents best mean accuracy

Table 6 Mean accuracy with standard deviation and execution time on VGG-11 for CIFAR-10: the accuracy is averaged over multiple restarts
with linear activation in the last layer and a batch size of 128

Method Accuracy Method Time in seconds

SGD 0.66 ± 0.01 SGD 1344.342

SGD -Nesterov 0.77 ± 0.01 SGD-Nesterov 1378.271

ADAM 0.74 ± 0.016 ADAM 1417.314

WSAGrad 0.78 ± 0.01 WSAGrad 1988.764

The execution time represents the time to finish the total number of epochs

Bold fonts represents best mean accuracy
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Table 7 Mean accuracy with
standard deviation on VGG-11
for CIFAR-10: The accuracy is
averaged over multiple restarts
with different batch sizes and
activation types; for Sof tMax

with batch size 32, we consider
the value of {γ1, γ2}=
{0.05,0.01}; for batch size 128,
{γ1, γ2}= {0.1,0.01} and
β = 0.1

Activation Batch size Method Learning-rate Accuracy

SoftMax 32 ADAM 0.0001 0.59 ± 0.01

SoftMax 32 SGD 0.2 0.62 ± 0.01

SoftMax 32 SGD- Nesterov 0.02 0.64 ± 0.01
SoftMax 32 WSAGrad - 0.69 ± 0.01

SoftMax 128 ADAM 0.0009 0.58 ± 0.01

SoftMax 128 SGD 0.8 0.61 ± 0.01
SoftMax 128 SGD- Nesterov 0.1 0.66 ± 0.01
SoftMax 128 WSAGrad - 0.76 ± 0.01

WSAGrad does not require a learning rate
Bold fonts represents best mean accuracy

Table 8 Architectures of
ResNet-18 on CIFAR-10 Layer ResNet − 18

Output size Layer parameters

conv-1 32×32×64 3×3,64,stride 1

conv-2 32×32×64

[
3 × 3, 64, stride1

3 × 3, 64, stride1

]

× 2

conv-3 16×16×128

[
3 × 3, 128, stride2

3 × 3, 128, stride2

]

,

[
3 × 3, 128, stride1

3 × 3, 128, stride1

]

conv-4 8×8×256

[
3 × 3, 256, stride2

3 × 3, 256, stride2

]

,

[
3 × 3, 256, stride1

3 × 3, 256, stride1

]

conv-5 4×4×512

[
3 × 3, 512, stride2

3 × 3, 512, stride2

]

,

[
3 × 3, 512, stride1

3 × 3, 512, stride1

]

Average pooling 1× 1 × 512 4 × 4

Fully connected 10 512×10

Linear 10

Table 9 Mean accuracy with
standard deviation of
ResNet-18 on CIFAR-10: the
accuracy is averaged over
multiple restarts with different
batch sizes and activation types

Activation Batch size Method Learning-rate Accuracy

SoftMax 32 ADAM 0.008 0.57 ± 0.01

SoftMax 32 SGD 0.1 0.65 ± 0.01

SoftMax 32 SGD- Nesterov 0.01 0.74 ± 0.01

SoftMax 32 WSAGrad - 0.81 ± 0.01

SoftMax 128 ADAM 0.008 0.70 ± 0.01

SoftMax 128 SGD 0.8 0.40 ± 0.01

SoftMax 128 SGD- Nesterov 0.8 0.75 ± 0.01

SoftMax 128 WSAGrad - 0.83 ± 0.01

ReLU 32 ADAM 0.001 0.86 ± 0.01

ReLU 32 SGD 0.1 0.84 ± 0.01

ReLU 32 SGD- Nesterov 0.8 0.85 ± 0.01

ReLU 32 WSAGrad - 0.82 ± 0.01

ReLU 128 ADAM 0.001 0.86 ± 0.01

ReLU 128 SGD 0.1 0.82 ± 0.01

ReLU 128 SGD- Nesterov 0.1 0.83 ± 0.01

ReLU 128 WSAGrad - 0.85 ± 0.01

Bold fonts represents best mean accuracy
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Fig. 2 Results for the FMNIST MLP sigmoid configuration: (a) Training Loss w.r.t. epoch for baselines and WSAGrad. (b) Testing Loss w.r.t.
epoch for baselines and WSAGrad. (c) Testing Accuracy w.r.t. epoch for baselines and WSAGrad

Fig. 3 Results for CIFAR-100
with the MLP sigmoid

configuration: (a) Training Loss
w.r.t. epoch for baselines and
WSAGrad. (b) Testing Loss
w.r.t. epoch for baselines and
WSAGrad. (c) Testing
Accuracy w.r.t. epoch for
baselines and WSAGrad
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Fig. 4 Results for CIFAR-100
with the CNN sigmoid

configuration: (a) Training Loss
w.r.t. epoch for baselines and
WSAGrad. (b) Testing Loss
w.r.t. epoch for baselines and
WSAGrad. (c) Testing
Accuracy w.r.t. epoch for
baselines and WSAGrad

either has a higher number of variables or a lower number
of instances. However, when we run WSAGrad on MLP

with Sof tMax, there is a lack of a deep relation between
the groups and the geometric information of the data carried
by the neural network. This is not true when MLP is called
with sigmoid, as it imbibes multiple winner structures
over the neural network that carries enough geometric
information forWSAGrad . For deep networks, we perform
multiple sets of experiments with different architectures.
The baselines and proposed method are tested with these
architectures, and the results are reported here. For CNN ,

the results are stated in Tables 4 and 5. From the results, we
conclude that WSAGrad performs better for all activations
types. The best performance of our proposed method is
given under the variation of ReLU . Under this variation,
for CIFAR − 10 and CIFAR − 100, the performance
of SGD − Nesterov is equivalent to ours, followed by
SGD and ADAM . Apart from the best performer, we
can observe that WSAGrad is more robust to a model
change compared to the baselines. This property makes
it more reliable, as we can achieve significantly better
accuracy under a basic set of models and activations. In

Fig. 5 Results for CIFAR-10 with CNN: the top figures show the eval-
uation of training loss, testing loss and testing accuracy with Sof tMax

in the last layer on WSAGrad with different baselines. The bottom

figures show the evaluation of training loss, testing loss and testing
accuracy with sigmoid configuration on WSAGrad with different
baselines
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Fig. 6 Architecture of
VGG-11 on CIFAR-10

other words, we can always trust WSAGrad in regard to
the challenging aspect of designing a better model, a loss
function or a better optimizer. Figures 4 and 5 validate
its ability to outperform other state-of-the-art methods. For
advanced architectures such as V GG − 11 (Fig. 6) and
ResNet −18, we create different variations of architectures
with different activations and test them on different batch
sizes. We use the V GG − 11 architecture with Sof tMax

or a linear function as an activation function in the last layer.
We can observe from Table 7 that WSAGrad performs best
under different variations and batch sizes. Moreover, we
observe that V GG − 11 with a small batch size is difficult
to train, as it quickly leads to overfitting. For larger batch
sizes, the performance depends on the activation type and
hyperparameters. WSAGrad is worth using for training,

as the performance does not fluctuate much under different
settings. The results and execution times are reported in
Table 6. Figure 7 depicts our findings. It shows that the
behavior of WSAGrad is nonmonotonic as it oscillates
within a certain range. This type of oscillation is required
to find a better minimum. WSAGrad forces the value of
the objective function to increase so that it can reach better
minima in near iterations. The minima of a loss landscape
lie just below suboptimal points [56], and most of the
minima are on the same level. The absence of a gradient in
such a region stagnates the performance of the optimizers
and leads it to a minimum that is near initialization point
[57]. With WSAGrad , the exponential moving average of
the weight parameters will not decrease quickly, even under
small updates. Therefore, the value of the sine function will

Fig. 7 Results for CIFAR-10 with VGG11: (a) Training Loss w.r.t. epoch for baselines and WSAGrad. (b) Testing Loss w.r.t. epoch for baselines
and WSAGrad. (c) Testing Accuracy w.r.t. epoch for baselines and WSAGrad
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Fig. 8 Sensitivity of the
hyperparameter for ResNet18:
(a) Testing loss w.r.t. epoch and
(b) testing accuracy w.r.t. epoch
for different values of the
hyperparameter

not be small, and it will maintain a moderate step size. A
moderate step size increases the objective value to a certain
extent such that for coming iterations, it can be decreased
as needed. In addition, our step size is dependent on weight
parameters, which are tuned at every iteration. Thus, with
each iteration, the chance of reaching a better minimum
increases. ResNet is designed to handle the problems of
V GG − 11. The sensitivity of hyperparameters for ResNet-
18 are tested and shown in Fig. 8, and results for different
variations and batch sizes are reported in Table 9. Best
results are shown in Fig. 9. We observe that WSAGrad

performs well when Sof tMax used in the final layer. When

we switch to ReLU , ADAM dominates over WSAGrad .
From Fig. 9 we noted its nonmonotone behavior.

Overall, we observe that WSAGrad outperforms the
other algorithms in the classification task on different sets
of architectures with varying batch sizes and activation
types. SGD − Nesterov performs better or equivalent to
ADAM for FMNIST and CIFAR − 10. Additionally,
we emphasize that the test accuracy across the models and
dataset for all the algorithms is relatively low compared
to the accuracy achieved through different architectures.
We restrict ourselves from using any other methods that
can smooth out the loss landscape and undermine the

Fig. 9 Results for CIFAR-10 with ResNet18: (a) Training Loss w.r.t. epoch for baselines and WSAGrad. (b) Testing Loss w.r.t. epoch for
baselines and WSAGrad. (c) Testing Accuracy w.r.t. epoch for baselines and WSAGrad
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algorithms’ actual performance. However, we still assert
that WSAGrad outperforms under proper initialization of
the parameters. On CIFAR − 10, the accuracy achieved by
WSAGrad is better than all the baselines under the settings
of different activation types.

5 Conclusion and future work

The present work introduces a novel step size to operate
on the vanishing gradient problem under extreme noncon-
vexity, to train deep neural networks. The experimental
findings under various conditions show that the proposed
model is considerably better than the existing baselines for
the classification task. Even for a simple convex problem,
we have shown its preeminence. The beauty of our algo-
rithm lies in its relationship with the geometry of the data
and loss function. The proposed step size carries the geo-
metric information and maps it as required, nullifying the
divergence scope. The effectiveness of the proposed model
can be observed, with an overall average performance gain
of 3 − 4% achieved on the standard metric (Accuracy) for
the classification task.With respect to sigmoid activation the
average performance gain ofWSAGrad for the basic archi-
tecture i.e., MLP and CNN is nearly 5−6%. For advanced
architectures such as V GG and ResNet , we obtained an
average performance gain of 1−2% for SoftMax activation.
Nevertheless, the proposed model is expected to perform
well on similar objective tasks such as language model-
ing, neural translation, image reconstruction and many other
applications in various domains. We plan to conduct the
experiments on many diversified datasets in those domains
as our future work. Additionally, it is essential to rigorously
understand the behavior and be aware of potential pitfalls
while using these methods in practice. We believe this paper
is the first step in this direction and suggests a good design
for faster and better optimization.
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