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Abstract
To develop driving automation technologies for humans, a human-centered methodology should be adopted for safety and
satisfactory user experience. Automated lane change decision in dense highway traffic is challenging, especially when
considering different driver preferences. This paper proposes a personalized lane change decision algorithm based on deep
reinforcement learning. Firstly, driving experiments are carried out on a moving-base simulator. Based on the analysis of the
experiment data, three personalization indicators are selected to describe the driver preferences in lane-change decisions.
Then, a deep reinforcement learning (RL) approach is applied to design human-like agents for automated lane change
decisions to capture the driver preferences, with refined rewards using the three personalization indicators. Finally, the
trained RL agents and benchmark agents are tested in a two-lane highway driving scenario. Results show that the proposed
algorithm can achieve higher consistency of lane change decision preferences than the comparison algorithm.

Keywords Reinforcement learning · Deep Q-Network · Automated driving · Lane change decision ·
Driver-in-the-loop experiment · Driving style

1 Introduction

In recent years, automated driving has become a hot topic
in the automotive and transportation industries. Notable
companies, such as Google Waymo, Baidu, and Cruise
Automation, have launched their self-driving cars with
SAE Level 4 automation, most of which are even for
robotaxi ride-hailing services on open roads. On the other
hand, the Advanced Driving Assistance Systems (ADAS)
in production cars, by enhancing safety and comfort, have
been widely recognized by customers, e.g., Lane Keeping
Assist (LKA), and Navigate on Pilot (NOP) by NIO.

Researches on earlier-introduced ADAS functions show
that personalization in driving assistance is crucial to
improve both comfort and safety [1]. Before fully automated
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driving is possible for mass production in the future, there is
no doubt that human drivers are still necessary to sit behind
the wheel to supervise or even handle the daily driving
tasks, though parts of which may be assisted by automation.
Therefore, a well-designed driving automation strategy
should be compatible with or even aligned to human
preferences, to better support human drivers. Regardless
of partial or full levels of driving automation, if the
actual assistance in fulfilling driving tasks is congruent
with personal styles in manual driving mode, the customer
acceptance of assistant functions can be guaranteed.

Lane change is a common but complicated maneuver in
driving, for which various driving assistance systems have
been provided, such as Blind Spot Detection (for warning
only), Lane Change Assist with Turn Assist, or even Auto
Lane Change (ALC). Among them, ALC in particular
needs to be designed in line with drivers’ preferences
or personal styles of maneuvering. Even in hands-free
driving mode, the driver may still experience dynamic and
stressful highway lane-changing scenarios on the edge of
incidents or even accidents. For lane change assistance,
a fundamental motivation behind ADAS personalization
is that different drivers have different standards of safety
perception, e.g. the acceptable gap, relative distance, and
approaching rate. A universal assist design for all drivers

/ Published online: 7 October 2022

Applied Intelligence (2023) 53:13192–13205

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-022-04172-1&domain=pdf
http://orcid.org/0000-0002-6909-0169
mailto: dfli@zju.edu.cn
mailto: ao@zju.edu.cn


Personalized lane change decision algorithm using deep reinforcement learning approach

may cause problems, either too conservative for aggressive
drivers or the other way around [2]. For one thing, this may
prevent the driver from activating the function. Moreover,
if the driver cannot understand the decisions made by the
ADAS function, serious accidents may happen, especially
at high speeds. Therefore, it is crucial to design a safe,
comfortable, and personalized algorithm for automated
lane-change maneuvers.

Personalization is a feasible way to enhance drivers’ trust
in automation. To incorporate certain personalized styles in
driving automation, a straightforward way is to imitate or
even replicate a specific driver’s driving operations in the
addressed scenarios, that is, to model the driver behaviors.
However, a generalized driver model for solving various
driving tasks, though attractive, is not available yet. In
consideration of the radical variation of driving conditions,
driver modeling is usually done in a scenario-by-scenario
fashion, i.e., a holistic driver model is an integration of
several sub-models of driver behaviors, e.g., car following,
lane change, steering, etc. [3].

For lane change decision modeling, there are two popular
methods, mechanism-based and learning-based models [4–
6]. As for mechanism-based models, Gipps’ model [7]
summarized the lane change decision-making process as
a flowchart, in which any factors that affect lane change
decision-making can be added or replaced. Although there
is no consideration of drivers’ variational behavior, it still
has a profound influence on the subsequent research. In [8],
lane change behaviors are classified into three categories.
Although several factors, such as motivation, advantage, and
urgency, are considered, the final execution still depends on
the availability of the gap between the preceding and the
following vehicles in the target lane. Models applied in the
FRESIM [9] and NETSIM [10] are similar but only different
in the ways of calculating the acceptable gap. Kesting [11]
proposed a general lane change decision-making model,
MOBIL, in which the IDM model [12] is used to compare
the total deceleration of all surrounding vehicles before
and after lane change, and then the decision is made. A
parameter called “policy factor” is considered in MOBIL
to reflect the cooperation between drivers. Additionally, in
the case of merging and congested scenarios, game theory
is used to model the lane change decision considering the
interaction with other vehicles [13, 14]. However, these
approaches may not be easily applied to scenarios with
several surrounding cars.

Recently, many learning-based approaches have been
proposed for unmanned vehicles, e.g., road vehicles [15],
surface vehicles [16], and aerial vehicles [17, 18]. In
terms of the lane change decision modeling of automated
driving, Vallon et al. [19] propose a data-driven approach
to capture the lane change decision behavior of the human
driver with the help of Support Vector Machine (SVM)

classifiers. The results show that the personalized algorithm
can reproduce the behaviors of different drivers without
explicit initiation. Mirchevska et al. [20] design an RL
agent using a Deep Q-Network, which can drive as closely
as possible to the desired velocity. Hoel et al. [21] train
a Deep Q-Network agent for a truck-trailer combination
in highway driving scenarios, which can finish overtaking
maneuvers better than the commonly-used reference model
consisting of IDM and MOBIL. Learning-based approaches
can include more influential factors in lane change decision
modeling, but to consider the driver preferences, a lot
more lane change data for a particular driver is required.
These approaches are inherently data-hungry, while the
data size, coverage, and details, will determine the model
scope and the potential application domains. There are
already some public datasets of driving study, e.g., the
Next Generation SIMulation (NGSIM) program launched
by the Federal Highway Administration (FHWA) [22] and
the highD dataset published by RWTH Aachen University
[23]. Regardless of whether the data collection is via
cameras mounted in hovering drones or cameras fixed on
traffic sign poles, for a specifically investigated vehicle-
driver combination, only a very limited range of driving
trajectories are available. Based on these data, most previous
researches only consider the basic problem in lane change
decision modeling, i.e. the general behaviors for safety and
efficiency. Due to the lack of data at the driver-specific level,
the personalized preferences of in-vehicle drivers have not
been well studied.

To overcome these limits, this work focuses on personal-
ized automated lane change decision-making in a two-lane
highway scenario. Figure 1 shows how the personalized
decision algorithm is achieved from raw data collection,
analysis, reinforcement learning (RL) algorithm design, to
validation. More specifically, the RL agents are designed
to make lane change decisions based on environmental per-
ception and the personalized reward function. The main
contributions of this paper are two-fold.

(1) By analyzing the simulator driving data, three effective
indicators of driver lane change decision preferences
are determined, i.e., time to collision with the front car
in the current lane (tf ), time to collision with the front
car in the target lane (tnf ), and the relative speed with
the rear car in the target lane (dvnb).

(2) Based on the three indicators of driver preferences,
a personalized decision-making algorithm is proposed
using Deep Q-Network. The comparative results show
that the proposed algorithm can perform better than the
benchmark algorithm with a commonly-used policy.

The rest of the paper is organized as follows. Section 2
formulates the lane change decision problem and introduces
the basics of reinforcement learning. Section 3 presents
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Fig. 1 The proposed algorithm structure of personalized lane change decision

the driver-in-the-loop experiments and driver preference
analysis. The RL-based lane change decision design is
detailed in Section 4, while the results are summarized in
Section 5. Finally, the conclusion and some potential future
work are given in Section 6.

2 RL formulation of decision problem

For ADAS or automated driving, it is a complex task to
make a lane change decision with multiple surrounding cars,
especially considering driving personalization. As shown
in Fig. 1, there are three steps to tackle the problem. Step
1 is to obtain the human driving data and personalization
indicators through driver-in-the-loop experiments. Steps 2
and 3 are to design and validate the personalized RL
agents. Here, the various personalization indicators need to
be considered simultaneously, which can reflect different
decision preferences by different trade-off strategies. On
the other hand, the algorithm should have adaptability in
practical applications due to environmental conditions and
driver data. Therefore, the RL approach is adopted to model
the driver preferences in lane change decisions.

2.1 Lane change decision problem

In this RL problem of lane change decision task, Deep-
Q-Network is used to learn the state-action value function
in describing the personalized reward, Q(s, a). As a
typical example, a two-lane highway scenario with three
surrounding cars at random speeds is considered, as shown
in Fig. 2. The notations of surrounding cars are as follow:
the ego car (Cego), the front car in the current lane (Cf ), the
front car in the target lane (Cnf ), and the rear car in the target
lane (Cnb). Considering the influences of the surrounding

cars, the ego car’s task is to decide whether or when to
change from the current lane to the target lane.

2.2 Reinforcement learning

In an RL problem, an agent selects an action a depending
on the current state of the environment s and the policy π ,
then the environment will change to a new state s′ and return
a reward r . The goal is to find an optimal policy π∗ that
maximizes the cumulative reward Rt , defined as

Rt =
∞∑

k=0

γ krt+k, (1)

where rt+k is the reward returned at step t + k, and γ is a
discount factor, γ ∈ [0, 1].

State-action value functionQ(s, a) is used to evaluate the
expected cumulative reward of agent when selecting action
a in state s, that is

Q(s, a) = E[Rt |st = s, at = a]. (2)

Q-learning is a classical algorithm for the problem with
limited states and actions, the state-action values are saved
in a Q-table. The optimal state-action value function in
Q-learning is

Q∗(s, a) = E[r + γ max
a′ Q∗(s′, a′)|st = s, at = a]. (3)

When Q∗(s′, a′) is known, the optimal policy is to select an
action a′ that maximizes Q∗(s′, a′).

However, if the state space is continuous, it is impractical
to remember all the state-action values with a table. To
handle this, the Deep Q-Network (DQN) [24] is adopted,
which can approximate the optimal state-action value
Q∗(s, a) with a nonlinear estimator Q(s, a; θ). Network
weights θ will be updated during the training process to

Fig. 2 Lane change decision
scheme in a two-lane driving
scenario
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minimize the following loss function

L(θ) = E[(r + γ max
a′ Q(s′, a′, θ) − Q(s, a, θ))2]. (4)

To avoid unstable training caused by the same network
weight, the weight of target network is set to θ− and
replaced by the prediction network weights θ at every
fixed-step. Then the final loss function is defined as

L(θ) = E[(r + γ max
a′ Q(s′, a′, θ−) − Q(s, a, θ))2]. (5)

3 Driver preferences analysis

To model driver preferences, an ideal dataset should be
from several different drivers’ naturalistic driving on public
roads. However, considering lane change as one kind of
highly dynamic and time-critical process, if the lane change
decision timing matters, it is difficult to record the exact
decision processes. As one improved way of data collection,
experimental driving on test roads may better assure the
realistic driving conditions and the drivers can almost
maneuver the vehicle as they usually do, but only if the
surrounding cars (usually 2 to 3 additional cars) can be
coordinated well by human or robot drivers. However,
experimental driving, if with only limited time and/or
limited financial budget, is still impossible to collect enough
data on lane change decision strategies, not to mention that
the experiment safety risk is extremely high due to the
involvement of multiple vehicles at high speeds. Therefore,
to analyze the driver preferences in lane change decisions,
a moving-base driving simulator is adopted for the original
data collection.

3.1 Driver-in-the-loop experiments

A driver-in-the-loop (DIL) experiment environment is
designed based on a 6-Degrees-of-Freedom (6DoF) driving
simulator, which can provide a realistic driving experience,
as shown in Fig. 3. The two-lane highway driving scenario
is constructed in the simulation software, TASS Prescan,
while the surrounding cars with random constant speeds are

controlled by the MATLAB/Simulink model. The ego car is
controlled by the human driver with a real steering wheel
and gas/brake pedal. A specific button on the steering wheel
is set to record the timestamp of every lane change initiation,
while the other recorded data include the position and speed
of all vehicles during the whole process.

Ten drivers, aged between 20 and 26, are invited to
participate in the DIL experiments. Each driver is asked to
make the lane change maneuvers 50 times on four sections
with different speed limits, i.e., 60kph, 70kph, 80kph, and
90kph. Since not all drivers can exactly follow the speed
limits, a maximum 5kph speed error over limits is still
considered acceptable.

According to the existing research on natural driving
data [25, 26], there are many factors affecting drivers’ lane
change decisions, such as relative velocity, time to collision
(TTC), and relative distance. For safe lane change, a driver
should try to avoid collisions with surrounding cars. For
the front cars in the current and target lanes, drivers mainly
judge whether a collision will occur by sensing the relative
speed and distance, which can be described by the value of
TTCs, tf , and tnf , respectively. As for the rear car in the
target lane, the approaching rate is adopted as a judgment
indicator, which is included in the form of relative speed,
dvnb. Therefore, a different driver style in lane change
decision corresponds to a different combination of values of
these three personalization indicators, i.e., tf , tnf and dvnb.

Based on the simulator driving data, Fig. 4 shows the
statistical results of three indicators in different speed
ranges. It is found that these three indicators are positively
correlated with the velocity of ego car, ve. This phenomenon
is understandable due to driver’s risk perception at different
speeds. Further, correlation analysis is used to check
these indicators’ relationships, while the detailed analysis
results for each specific driver are given in Table 1. The
results reveal that there is a linear correlation between
ve and three indicators (p < 0.05) in 80% of the
drivers. Therefore, the driver personalization in lane change
decisions can be defined using these three indicators. Then
the personalization indicator set is

Idp = [tf , tnf , dvnb]T . (6)

Fig. 3 (a) The 6-DoF driving
simulator. (b) Lane change
scenario in Prescan
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Fig. 4 The statistical results of
lane change decision data in DIL
experiment in different speed
ranges. (blue lines represent
median values of indicators in
different speed ranges; red
triangles represent mean values.)

These decision points are fitted with linear regression as

Idp = Ave + b, (7)

which will be used as reference lines in the reward function
design of Section 4.

To justify the effectiveness and rationality of (7), a
naturalistic driving dataset, HighD, is adopted to illustrate
the universality of the experimental samples. The HighD is
the abbreviation of the Highway Drone dataset, which is a
large-scale naturalistic vehicle trajectories dataset recorded
at German highways and covers over 110 thousand vehicles,
44.5 driven kilometers, and 147 driven hours [23]. A total
of 1,469 lane change maneuvers are extracted, of which
297 cases that match the scenario in Fig. 2 are finally
selected. The scatter diagram and statistical summary of
ego speed and three personalization indicators are given in
Fig. 5, in which the correlation analyses are also indicated,

respectively. Similar to Fig. 4, the linear correlation between
indicators and ego speed, with all significance levels p <

0.05, justifies that (7) also holds true in naturalistic driving
cases.

3.2 Drivers with typical preferences

Based on the DIL experiments data, the driver lane change
decisions are clustered into three groups, i.e., Defensive,
Normal, and Aggressive, as shown in Fig. 6. When
initiating a lane change maneuver, a more aggressive driver
corresponds to the smaller TTCs (tf , tnf ) and relative
speed(dvnb).

According to the clustering results, three drivers with
obvious differences are selected as typical examples, as
shown in Fig. 7. For each driver, the indicators, tf , tnf and
dvnb increase linearly with the speed of ego car, ve. Then,

Table 1 Correlation analysis for all drivers (tf / tnf / dvnb)

Driver Coefficient of determination(R2) F -value p-value

0 0.126 / 0.220 / 0.789 6.898 / 13.528 / 179.937 0.0115 / 0.0006 / 0.0000

1 0.005 / 0.132 / 0.867 0.176 / 5.757 / 247.336 0.6769 / 0.0214 / 0.0000

2 0.594 / 0.621 / 0.806 55.688 / 62.226 / 157.907 0.0000 / 0.0000 / 0.0000

3 0.510 / 0.584 / 0.807 49.960 / 67.304 / 200.265 0.0000 / 0.0000 / 0.0000

4 0.072 / 0.068 / 0.734 4.132 / 3.847 / 145.940 0.0471 / 0.0551 / 0.0000

5 0.157 / 0.170 / 0.756 7.097 / 7.802 / 118.038 0.0113 / 0.0081 / 0.0000

6 0.298 / 0.383 / 0.692 19.496 / 28.581 / 103.316 0.0000 / 0.0000 / 0.0000

7 0.097 / 0.124 / 0.591 3.338 / 4.371 / 44.740 0.0773 / 0.0449 / 0.0000

8 0.084 / 0.089 / 0.822 4.383 / 4.682 / 222.194 0.0416 / 0.0355 / 0.0000

9 0.004 / 0.084 / 0.574 0.153 / 3.469 / 51.286 0.6978 / 0.0703 / 0.0000
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Fig. 5 The statistical results of
lane change data extracted from
HighD dataset. (a) The scattered
points and regression curves via
ordinary least square (OLS). (b)
The statistical results in
different speed ranges. (blue
lines represent median values of
indicators in different speed
ranges; red triangles represent
mean values.)

the curve parameters, A and b are obtained via the ordinary
least square (OLS) method and presented in Table 2.

4 RL-based lane change decison

Figure 8 schemes the RL-based decision process. The
action space, state space, reward function, and the Deep Q-
Network are defined first. The RL environment provides
information about the ego car and the surrounding cars
to the decision module, in which the information is
transitioned to the state vector as an input of the Deep Q-
Network. Then the network outputs the state-action value
for each action, and the best action is selected as the final
decision.

Fig. 6 The clustering result of three driver styles

4.1 Action space

Here, the left or right lane change decisions are treated
as the same. There are two discrete actions in the lane
change decision-making problem, i.e., a1:TO CHANGE to
the target lane, and a2: NOT TO CHANGE lane (to stay in
the current lane). Then, the action space A is defined as

A = {a1, a2}. (8)

4.2 State space

Based on the analysis in Section 3, the personalization
indicators, i.e., tf , tnf and dvnb, need to be obtained from
the state of environment. To facilitate real car applications,
the variables in state space should be directly measurable via
the onboard sensors. The state consists of two parts, the ego
car information and the surrounding car information. Each
car’s information includes its longitudinal velocity v and
longitudinal position x. For better performances in training,
v and x are normalized to (0, 1], respectively. Therefore, the
state can be described as a vector of eight normalized values,

s = [ve, xe, vf , xf , vnf , xnf , vnb, xnb]. (9)

4.3 Reward functions

To train the human-like RL agents, the personalization
indicators are used as the reference to design the reward
functions. To help the agent trade-off the benefits between
different decisions and learn to make a better choice, the
sum of two actions’ rewards is kept as a constant at
every decision step. Therefore, the reward function for each
indicator is designed as follows. If the decision is TO
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Fig. 7 The relations of three
personalization indicators with
ego speed at the lane change
decision point. The red lines are
the regression curves obtained
by OLS. (a) Defensive, (b)
Normal, (c) Aggressive

CHANGE lane, i.e. action = a1,

r =
⎧
⎨

⎩

1 , ei ∈ [0, m]
1

m−n
∗ei − n

m−n
, ei ∈ (m, n)

0 , ei ∈ [n, +∞)

(10)

If the decision is NOT TO CHANGE lane, i.e. action = a2,

r =
⎧
⎨

⎩

1 , ei ∈ [0, m]
1

n−m
∗ei − m

n−m
, ei ∈ (m, n)

0 , ei ∈ [n, +∞)

(11)

For each indicator i ∈ Idp in (6), ei is the absolute error of
actual value iact , and reference value iref ,

ei = |iact − iref |. (12)

The smaller ei means the indicator i is more suitable for
a personalized lane change. If the agent chooses to change
lanes with a smaller ei , it will receive a greater reward.
Instead, if ei is large enough, the agent needs to keep in the
current lane for a greater reward.

m and n are two preset parameters, which represent
the maximum acceptable error and the maximum effective
error, respectively. If ei ≤ m, it means the current

value of this indicator is exactly matched with the driver,
while ei ≥ n means this indicator does not match the
driver at all. However, the extreme pursuit of all indicators
will lead to the non-convergence of training and get an
unsatisfactory result eventually, so, it is necessary to choose
the appropriate m and n. Here, considering the range and
precision of each indicator, we have m = 0.2, n = 2 for tf ,
tnf and m = 0.5, n = 5 for dvnb.

Finally, the reward functions for all three indicators, rf ,
rnf and rnb, are obtained and the total reward function R is
defined as

R = rf + rnf + rnb. (13)

4.4 Neural network design and training details

Convolutional neural networks (CNN) are usually used in
the architecture design with image matrix inputs. Here, the
network input is a vector consisting of a series of vehicle
states, i.e., the state space. Therefore, a fully connected
neural network (FCNN) architecture [27] is designed for

Table 2 Parameter matrices for
different driver styles via OLS Style A b

Defensive [0.446, 0.237, 1.012]T [−3.258, 0.418, −9.015]T
Normal [0.226, 0.162, 0.898]T [−0.753, 1.105, −6.180]T
Aggressive [0.140, 0.118, 1.012]T [−0.249, 0.858, −9.251]T
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Fig. 8 The process of RL lane change decision making

the target network and the prediction network mentioned
in Section 2. As shown in Fig. 9, there are three hidden
layers, while each layer has 128 neurons, and the activation
function of rectified linear units (ReLUs) is used. The input
is a state vector of 8×1 size, and the output is a state-action
value vector of 2 × 1 size. At time t , the neural network
gets an environment state input st and outputs the estimation
state-action values Q(s, a) for each action ai in action space
A.

The neural network is trained with a learning rate η by
using the DQN algorithm. The ε-greedy policy is applied in
training, and along with the training process, the value of ε

will decrease from εs to εe linearly. The factor γ is used to
consider the discount of future rewards. The replay memory
with a size of Mr is set. The training begins after the initial
minimal memory size Mi , and the random sample mini-
batch size is set toMm. The weights of the target network θ−
are replaced by the prediction network’s weights θ every Nu

episode, and they are both initialized with a standard normal
distribution denoted as N(0, 1). Every episode starts with a
random environment state and stops with a TO CHANGE
lane decision or maximal episode step Ns . The maximal
training episode is set to Ne.

Based on the commonly-used setting in DQN, here the
hyper parameters are adjusted and determined according

to our pre-defined lane change environment. Specifically,
the sample time in the RL environment is 0.05s and the
agent needs to finish the lane change maneuver in 10s,
so the maximal episode step (Ns) should be 200. The
maximal training episode (Ne) is set to 10,000, which is
large enough to allow the full convergence of training. The
initial minimal memory size (Mi) and the replay memory
size (Mr) are set relatively small because of the action
space design and the short episode step. As for the discount

factor (γ ), it can be determined with γ ≈ 0.01
1
200 , which

means the 200th step reward accounts for 0.01 of the total
reward. And the rest hyper parameters, i.e., learning rate
(η), initial exploration (εs), final exploration (εe) and target
network update frequency (Nu), are determined by the grid
search method. The hyper parameters used in training are
summarized in Table 3.

5 Results and discussion

In this paper, three kinds of personalized RL agents are
designed and trained for lane change decision-making to
reproduce the typical drivers’ preferences. In the lane
change scenario, agents experience different states and learn
to make decisions themselves by repeating the lane change

Fig. 9 The designed FCNN
architecture
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Table 3 Hyper parameters
setting Symbol Parameters Value

η Learning rate 0.005

εs Initial exploration 0.8

εe Final exploration 0.1

γ Discount factor 0.98

Mr Replay memory size 10000

Mi Initial minimal memory size 2000

Mm Mini-batch size 32

Nu Target network update frequency 20

Ns Maximal episode step 200

Ne Maximal training episode 10000

interactions. Finally, a stable policy for any state can be
learned.

5.1 Training results

Figure 10 shows the training results of three RL agents with
different lane change decision preferences. The horizontal
axis is the training episode, the training losses defined in (5)
are in the left column, and the step rewards defined in (13)
are in the right column. It is obvious that the loss curve has a
quick downtrend in the first 1,500 training episodes and then
flattens out, which means the neural network converges. The
average step reward is increased in every episode during the
training process, implying that the RL agents have learned
to select the actions with a higher reward in a series of lane
change maneuvers. Both the loss and step reward stabilize
eventually. Due to the random training environment, the
curve of the step reward is not very smooth, but its mean
value reaches stable at around 1.4.

5.2 Benchmark algorithm

This paper focuses on the personalization decisions, and the
ability of RL agents to make optimal decisions during lane
change needs to be proved, especially when considering
three indicators at the same time. Therefore, a benchmark
algorithm is set, to show the advantage of the proposed
algorithm. With the designed reward function and the
selected typical drivers, the benchmark algorithm directly
compares the rewards of two actions at every step, and then
makes the decision with a higher reward. This is a kind
of greedy strategy commonly used, and it will be deployed
on three benchmark agents with Defensive, Normal and
Aggressive styles. Further, they will be tested in the same
simulation environment together with the trained RL agents.

5.3 Test and validation

The trained RL and benchmark agents are tested in a random
simulation environment. They make lane change decisions
considering the environment states, and then the values of
personalization indicators are recorded. Then three sets of
lane-change points are obtained. The reference lines and the
lane-change points are compared, then the similarities are
calculated by the Mean Absolute Error (MAE). To further
illustrate the agent’s personalized preferences, the statistical
results of decision-making accuracy are presented through
the comparisons among the typical drivers, the trained RL
agents, and the benchmark agents.

Figure 11 shows the test results of three personalized
RL agents and benchmark agents compared to the typical
drivers with different driving styles, i.e., Defensive, Normal,
and Aggressive. When the agents decide to make a lane
change, the points in sub-plots represent the value of
personalization indicators at different speeds of the ego car,
while the blue and orange points are generated by RL agents
and benchmark agents, respectively.

To describe how closely the agents and the correspond-
ing drivers decide in lane change maneuvers, the similarities
between reference lines and lane-change points are repre-
sented by the MAE, which is defined as

MAE = 1

n

n∑

i=0

|yai
− yri |, (14)

where yai
is the actual value of indicators, and yri is the

reference value obtained from the reference line with the
same speed as yai

. As can be seen in Fig. 11, for all three
personalized RL agents, their lane-change points are close
to the reference lines. As for the benchmark agents, only
the values of dvnb are close to the references, while the

13200



Personalized lane change decision algorithm using deep reinforcement learning approach

Fig. 10 Training losses (left column) and step rewards (right column) for personalized RL agents. The dark blue curves are obtained by smoothing
the real values in light blue color. (a) Defensive, (b) Normal agent, (c) Aggressive

performance of the other two indicators, tf , tnf , are worse
than that of the RL agents. Specifically, at the initiation of
lane change decision, the RL agents’ MAEs of tf , tnf are
obviously less than that of the benchmark agents.

Furthermore, the decision results of typical drivers,
trained RL agents, and benchmark agents in a series of

the same states are compared, with the statistical results
shown in Fig. 12. The blue circle points represent that the
human drivers and the agents make the same decisions,
while the red triangles, in contrast, represent their opposite
decisions. For RL agents, we have 95.9% accuracy for
Defensive agent, 100% accuracy for Normal agent, and
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Fig. 11 Test results of personalization indicators in lane change decision at different ego speeds. (a) Defensive agents. (b) Normal agents. (c)
Aggressive agents

98.6% accuracy for Aggressive agent. In contrast, the values
of accuracy for benchmark agents are only 83.7%, 87%,
and 86.5%, respectively. For Defensive and Aggressive RL
agents, there are totally three opposite cases marked in
Fig. 11, compared with original lane change data generated
by typical drivers. To be specific, in cases 1 and 2, the
relative distance (dnb) between the ego car (Cego) and the
car behind in the target lane (Cnb) is too large, 142.36 meters
and 126.11 meters, respectively. However, in this training
environment, if Vnb is too far away from the Cego(dnb >

100), it can be considered that Cnb has no effect on the lane
change decision making of Cego. As for case 3, there is no
leading car (Cnf ) in the target lane (the related indicator tnf
is recorded as -1), which contributes to a false result of the
decision. All these failed cases’ environment states are not
involved in the training environment, so the agent cannot
handle them.

To sum up, with the similarity comparisons, the decision
accuracies, and the failed case analysis, it is proved that the
personalized RL agents can make the lane change decision

13202



Personalized lane change decision algorithm using deep reinforcement learning approach

Fig. 12 The comparisons of lane
change decision making results
between human drivers, trained
RL agents and benchmark
agents with three different
personalized preferences. (a) RL
agents. (b) Benchmark agents

more like human drivers with three different styles than the
benchmark agents.

6 Conclusion

Due to the stressful dynamics, lane change is a common
but difficult decision task in dense traffic, especially in
highway scenarios. For better user experience, automated
driving requires further consideration of driver personalized
preferences.

This paper proposes a personalized decision algorithm
for lane change based on RL. The RL agent can successfully
reproduce the driver’s preferences for lane change decisions,
which is promising for further applications in the human-
centered design of automated driving.

This work is a part of ongoing research on personalized
driving automation considering user experience. There are
some limits to overcome in future studies. For example,
only three personalization indicators are selected, while

there may exist some other indicators that affect lane
change decisions, e.g., more variables of the traffic and
road conditions. For applications, the algorithm may be
further extended by enriching the state space design
with the driver’s high-level preferences according to the
driver’s current status, e.g., based on driver state monitoring
systems.
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