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Abstract
Active learning iteratively constructs a refined training set to train an effective classifier with as few labeled instances as
possible. In areas where labeling is expensive, active learning plays an important and irreplaceable role. The main challenge
of active learning is to correctly identify critical samples. One of the current mainstream methods is to mine the potential
data structure based on clustering and then identify key instances. However, the existing methods all adopt deterministic
strategies, and the number of key samples is only related to the number of samples to be classified. The internal structure
information of the sample clusters to be classified is not used. After analysis and verification, this deterministic key sample
selection strategy has serious label waste. This is a serious problem that urgently needs to be solved in active learning. To
this end, we propose an adaptive active learning algorithm based on density clustering (AAKC). Firstly, we introduce k-
nearest neighbor information to redefine the local density of the instance. The new sample density can clearly express the
local structural information of the sample. Secondly, we developed an adaptive key instance selection strategy based on the
k-nearest neighbor sample density, which can adaptively select the necessary number of instance queries according to the
structural information of the instance clusters to be classified, avoiding label waste. The experimental results of comparison
with other algorithms show that our algorithm uses fewer labels to achieve better classification accuracy and has excellent
stability.

Keywords Active learning · K-nearest neighbor · Density peak clustering · Adaptive instance selection

1 Introduction

Machine learning studies the generation of “models” from
data, but the necessary prerequisite for generating effective
models is sufficient high-quality data. However, in many
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practical applications, obtaining enough labeled instances is
very time-consuming and expensive. Therefore, learning an
effective model from a large quantity of data with few labels
is significant. Active learning is the most popular method for
solving this problem, which actively selects some samples
that are “valued” for the model to be added to the training
set, aiming to train the expected model with as little data
labeling cost as possible. In recent years, active learning
has been widely applied in object categorization [1], image
retrieval and classification [2–4], speech recognition [5],
multilabel annotation [6], and feature representation [7]
fields.

The core of active learning is the sample selection strat-
egy, and reasonable sample selection can effectively reduce
the data labeling cost. Cluster-based sample selection is one
of the most popular methods. McCallum and Nigam [8] pro-
posed a general schema of cluster-based active learning by
constructing hierarchical cluster trees where each leaf cor-
responds to a sample and each inner node corresponds to
a cluster. The process of active learning involves pruning
the main tree and randomly selecting samples from each
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cluster. Dasgupta and Hsu [9] proposed a method based on
hierarchical clustering. Wang [10] proposed a method based
on density peak clustering. Cluster-based approaches do not
require additional classifiers and make full use of unlabeled
data, avoiding the problem of sampling bias.

However, the performance of cluster-based active learn-
ing algorithms is very dependent on the quality of the
clustering results. The density peak clustering algorithm cal-
culates the local density by the number of samples within
the cutoff distance, and the appropriate cutoff distance can
greatly improve the clustering results quality. However, it
is difficult to set a cutoff distance that is appropriate for
all samples, especially if the dataset is unbalanced [11].
In addition, most of the existing cluster-based methods use
a determined sample selection strategy to select the same
number of key samples in different sample clusters to be
classified. This strategy ignores the distribution information
of the sample clusters to be classified, and inevitably selects
some redundant samples that have little improvement in
model performance.

To solve the above problems, an adaptive active
learning algorithm based on optimized density clustering is
proposed in this paper. Firstly, we introduce the k-neighbor
information of the instance to redefine the local density
of the instance. This method improves the stability of
the clustering results. More importantly, it better describes
the local data structure, which is convenient for finding
the most representative samples. Secondly, we propose an
adaptive instance selection strategy. This strategy adaptively
determines the number of samples that need to be selected
in each cluster, avoiding the choice of redundant data.
Finally, we compare the algorithms presented in this paper
with ten commonly used supervised learning algorithms and
eight of the most popular active learning algorithms. The
results of the comparative experiments show that AAKC
achieves higher classification accuracy and good stability by
using fewer labels on the datasets with different instances,
dimensions and clusters.

2 Related work

2.1 The density peak clustering algorithm

Rodriguez and Liao [12] proposed a density peak clustering
algorithm (DPC), which can automatically find cluster
centers to achieve efficient clustering of arbitrary shape
data. It is based on the straightforward idea about clustering
centers: 1) its local density is greater than the local density
of its neighbors; 2) the distance between the centers of
different clusters is relatively large. The DPC algorithm uses
a decision graph to select cluster centers. The decision graph
is generated based on two fundamental attributes of each

instance: ρi and δi . For an instance xi , local density ρi is
defined as follows:

ρi =
|U |∑

j=1

χ(dij − dc). (1)

where dij is the distance between instances xi and xj , and
dc is the cutoff distance. dc is usually empirically selected
so that the average number of neighbors of the sample is
approximately 1 ∼ 2% of the total number of instances.
When (·) <0, χ(·) = 1, otherwise χ(·) = 0. δi is calculated
as follows:

δi = min
j :ρj >ρi

(dij ). (2)

δi denotes the distance between xi and its nearest neighbor
with a higher ρi . In addition, for xi with the most significant
local density ρi , we conventionally take

δi = max
j

(dij ). (3)

The decision graph uses ρi as the x-axis and δi as the y-
axis. According to the decision graph, instances with larger
ρi and δi are selected as cluster centers, and the remaining
instances are clustered.

The clustering performance of the DPC algorithm is
excellent, but it still has its limitations. Firstly, it is difficult
for the DPC algorithm to find a cutoff distance dc that fits
all samples, especially for unbalanced datasets. Secondly,
the clustering result of the DPC algorithm is susceptible to
the value of dc. If dc changes slightly, the clustering results
may be completely different [11]. These shortcomings of
the DPC algorithm will naturally be passed on to the active
learning algorithm based on it.

3 The proposedmethod

Currently, most active learning algorithms based on
clustering adopt a deterministic sample selection strategy,
which inevitably leads to waste of labels. In this paper, we
propose a novel adaptive active learning algorithm based
on optimized density clustering. Figure 1 illustrates the
algorithm overview, and the pseudocode is summarized in
Algorithm 1.

3.1 Initialization

Given a dataset U = {xi}ni=1, n and m are the numbers of
instances and features, respectively. In the initialization, we
search k nearest neighbors for each sample, introduce the k
nearest neighbor information, and use an exponential kernel
function with a width of θ = 1 to redefine the local density.
This method can better represent the local structure of the
data and avoid the detrimental effect of cutoff distance on
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Algorithm 1 Adaptive active learning through k-nearest neighbor
optimized local density clustering.

clustering and active learning. The k-nearest neighbor based
local density ρknn(i) of xi is defined as follows:

ρknn(i) =
∑

j∈knn(i)

exp(−dij ). (4)

where dij is the Euclidean distance between xi and xj , and
knn(i) is the set of k-nearest neighbor instances of xi . The
smaller the sum of the distance between sample xi and the
sample in set knn(i), the greater the local density of the

sample xi , and vice versa. We also compute the minimum
distance between xi and the nearest instance with a higher
local density δi as (2) and (3).

In cluster-based active learning, if only the local density
of the sample is considered, the algorithm usually selects
only the samples that are close to the center of the cluster.
Although these samples are generally highly representative,
they also have greater similarities between them. Selecting
too many such samples does not greatly improve the
performance of active learning and wastes limited labeled
data, which is unacceptable for active learning tasks with
limited budgets for data labeling. To solve this problem, we
define an index to measure the influence of a sample within
a sample cluster, which is calculated as follows:

γi = ρknn(i) × δi (5)

This makes each cluster structure center area have only
one sample with large intracluster influence, which ensures
the representativeness and diversity of the training set and
avoids the waste of labels.

3.2 Adaptive instance selection

The core of active learning is the instance selection strategy.
The instance selection strategy contains two basic questions,
what kind of samples to choose? And how many samples to
choose? The determined instance selection strategy usually
selects the same number of samples in different clusters.
This strategy ignores the different requirements between
clusters. As a result, too many instances are selected in
some clusters, which wastes the limited label budget and
reduces the number of queryable clusters, but cannot greatly
improve the algorithm performance.

To solve this problem, we propose an adaptive instance
selection strategy. Firstly, we perform an optimized local
density clustering algorithm to divide the entire dataset into

Fig. 1 The Overview of the AAKC algorithm
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b clusters. The initial value of b is two, and its value is
increased by one for each iteration.

Secondly, we build a decision graph for each cluster and
use the sliding window algorithm to adaptively find turning
points, and the detailed process is shown in Algorithm 2.
The y-axis of the decision graph represents the γi value
of the instance and the x-axis represents the instances
ordered descending by the γ value. From the decision
graph, we find that the value of γ decreases significantly
before the turning point, and decreases flat after the turning
point. This indicates that the sample’s representativeness
after the turning point is relatively weak, we don’t have
to spend expensive time and cost to query these instance
labels. To find the turning point in the dosicion graph, we
design a sliding window algorithm. In the silding window
algorithm, we use the variance of γ within a sliding
window of to measure the flatness of the decline in sample
representativeness. The larger the variance in the sliding
window, the more rapidly the sample representativeness
declines. We sort the samples in bli by γ descending order
to get the subscript array s, and let p start from 0 to
s.length − w, where w is the width of the sliding window.
The turning point is defined as the minimum point where the
variance within the sliding window is less than λ, as follows:

tp=min
p

[var(γs[p] , ..., γs[p+w−1])<λ], p∈[0, s.length−w].
(6)

Finally, we selected tp samples with largest γ to be labeled.

Algorithm 2 Sliding window algorithm.

3.3 Clasify

After selecting and querying the labels of these critical
samples, we classify other instances in the cluster based on
the existing labels. If the labeled sample set is pure (i.e., the
labels of the samples in pi are all the same, where pi is the
label set in the sample cluster bli), this cluster is considered
pure. The remaining unlabeled instances are classified with

the same label. Otherwise, we choose critical instances
based on the current information in the next iteration until
the cluster is divided into pure or the label budget N is
exhausted. Assume there are still impure and unlabeled data
after N labels are used up. We use the standard voting
methods to assign the label with the most instances in the
cluster to the remaining samples. Assume that a cluster to
be classified contains 20 samples, including 5 samples to be
classified, 10 samples of class A, 2 samples of class B, and
3 samples of class C. The class A samples in the cluster are
the most abundant, so the standard voting method classifies
the remaining 5 samples as class A.

3.4 Illustrative example

To illustrate our algorithm, we analyze a running example
on the Aggregation dataset. The Aggregation dataset is a
two-dimensional dataset from the UCI machine learning
repository [18], with 7 clusters of 788 samples. The
experimental parameters were set to k = 5, w = 5, and
λ = 0.001, respectively. The label budget for AAKC is
N = 78, accounting for10% of the total number of samples.
Table 1 shows the size information of each cluster, the
current label information, and the number of newly selected
samples. Figures 2 and 3 show the decision graph of bl1
and bl2, respectively. To facilitate showing the turning point
location, we marked its location with a red dotted line.

We can see that the AAKC algorithm clusters the dataset
into two instance clusters after initialization, and generates
decision graphs, respectively. The turning point in the two
decision graphs are the eleventh point and the seventh
point. At this time, there are no labeled instances in bl1
and bl2, so we need to select 11 and 7 instances in bl1
and bl2 respectively. After labeling, the label set in bl1
and bl2 are p1 = {4, 1, 3, 6, 3, 1, 1, 3, 1, 3, 1} and p2 =
{5, 0, 2, 2, 5, 2, 5}, respectively. Since none of them are pure
clusters, we also make them wait for the next iteration. The
number of labels used is 11+7 = 18, which is less than
78, so AAKC performs the next iteration. In the second
iteration, the AAKC algorithm first divides the entire dataset
into bl1, bl2, and bl3 and builds a decision graph for each
cluster. The turning points in the three decision graphs are
the 7th, 7th, and 6th points. There are 6 labeled instances
in bl1, 7 labeled instances in bl2, and 5 labeled instances in
bl3, so we select 1 instance in bl1 and bl3. After labeling,
the label set in bl1 and bl2 are p1 = {4, 3, 6, 3, 3, 3, 3}
and p2 = {5, 0, 2, 2, 5, 2, 5}, respectively. Since none of
them are pure clusters, we also made them wait for the next
iteration. The label set in bl3 is p3 = {1, 1, 1, 1, 1, 1}, and
all the labels in the cluster are the same, so it is a pure
cluster. We directly put the remaining instances in bl3 into
one category. The number of labels used after the second
iteration is 18+1+1 = 20, less than 78, so the iteration
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Table 1 Active learning process information of AAKC where “AS”
represents the number of samples that have been selected, “NS”
represents the number of newly selected samples, and the total number
of selected instances is 32

Iteration ID Size TP AS NS

One bl1 510 11 0 11

bl2 277 7 0 7

Two bl1 341 7 6 1

bl2 277 7 7 0

bl3 169 6 5 1

Three bl1 34 3 1 2

bl2 277 7 7 0

bl3 169 6 6 0

bl4 307 6 6 0

Four bl1 34 3 3 0

bl2 232 6 6 0

bl3 169 6 6 0

bl4 307 6 6 0

bl5 45 2 1 1

Five bl1 34 3 3 0

bl2 127 7 3 4

bl3 169 6 6 0

bl4 307 6 6 0

bl5 45 2 2 0

bl6 105 7 3 4

Six bl1 34 3 3 0

bl2 127 7 7 0

bl3 169 6 6 0

bl4 273 6 5 1

bl5 45 2 2 0

bl6 105 7 7 0

bl7 34 2 1 1

continues. The remaining iterations are performed in the
same way, and finally, the AAKC algorithm uses 32 labels,
iterates six times dividing the dataset into seven clusters, and
completes the classification of all instances.

For comparison, we also run the ALEC algorithm on the
Aggregation data. Table 2 shows the size information of
each cluster, the current label information, and the number
of newly selected samples. In the first iteration, ALEC
divides the master tree into two clusters bl1 and bl2 through
clustering. Since N = 78, ALEC selects

√
N = 8 instances

in bl1 and bl2. At this time, the number of labels used is 8+8
= 16, which is less than 78. Therefore ALEC performs the
next iteration. In the second iteration, ALEC first divides
the entire dataset into bl1, bl2, and bl3. Then, ALEC selects
8 instances for all the clusters. After the second iteration,
the number of labels used is 16+8+8+8 = 40 less than
78, so ALEC performs the next iteration. The remaining

Fig. 2 The decision graph of bl1

iteration runs in the same manner. Finally, the ALEC
algorithm runs out of budget in the fourth iteration and then
uses the standard voting method to classify the remaining
unclassified instances. The ALEC algorithm tends to select
more instances in the earlier generated clusters, which
causes ALEC to run out of labels and exit the loop quickly.
For example, ALEC chooses a total of 24 instances in
the bl2 cluster. The remaining instances can only use the
standard voting method classification. AAKC selects only
truly representative samples in each cluster, making AAKC
iterate more times and finally complete the category of all
instances. The result of this example is that ALEC uses
all 78 labels with a classification accuracy of 0.9506, and
AAKC uses only 32 labels with a classification accuracy of
0.9972.

Fig. 3 The decision graph of bl2
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Table 2 Active learning process information of ALEC where “AS”
represents the number of samples that have been selected, “NS”
represents the number of newly selected samples, and the total number
of selected instances is 78

Iteration ID Size AS NS

One bl1 510 0 8

bl2 277 0 8

Two bl1 510 8 8

bl2 177 6 8

bl3 100 2 8

Three bl1 510 16 8

bl2 45 9 8

bl3 100 10 8

bl4 132 5 8

Four bl1 169 7 6

bl2 45 17 0

bl3 100 18 0

bl4 132 13 0

bl5 341 17 0

3.5 Complexity analysis

The time complexity of the AAKC algorithm consists of two
parts. Initialization. Firstly, we need to calculate γ , ρknn(i),
and δ for each sample, and the time complexity is O(mn2).
Adaptive instance selection. This stage usually involves
several iterations. In each iteration, we take O(nlogn) time
to sort γi and select centers and take O(n) time to assign
the cluster index to non-center instances. We obtain several
sample clusters to be classified. Asumme that the cluster
size is n′, we take O(nlogn) to sort and take O(n′) to
calculate the variance. Since the size of a cluster is less than
n, this part takes O(nlogn). Now we classify pure clusters,
the number of instances in the pure cluster is n′ − |pi |,
and classification takes O(n′ − |pi |) time. Since n′ − |pi |
is less than n, this part takes O(n). The algorithm usually
iterates k′ times, so the total time complexity of AAKC is
O(mn2) + O(k′(nlogn + nlogn + n)). Since k′ is much
smaller than n, the total time complexity of the AAKC
algorithm is O(mn2).

4 Experiment

To verify the AAKC algorithm’s effectiveness, we compare
the AAKC algorithm with the mainstream supervised
classification algorithm and the latest active learning
algorithm. The parameter settings of the AAKC algorithm
are as follows, w = 5 and λ = 0.001. We use four synthetic
datasets [12] and five UCI benchmark datasets [18], and
Table 3 shows information about these datasets.

Table 3 Dataset information where “n” represents the number of
samples, “c” represents the number of categories, and “m” represents
the number of features

Dataset n c m

Aggregation 788 7 2

Spiral 312 2 2

Flame 240 3 2

R15 600 15 2

Iris 150 3 4

Seeds 210 3 7

Heart-statlog 270 2 12

DCCC 3000 2 23

Ionosphere 351 2 34

The experiment is conducted under Windows 10 64-
bit 32GB operating memory and an Intel(R) Core(TM)
i5-7500 CPU @ 3.40GHz processor environment. We use
the accuracy index to evaluate the algorithm performance,
which is calculated as follows:

Acc = |Ut | − e

|Ut | . (7)

|Ut | is the size of the testing set, and e is the number
of misclassified instances. If the active learner queries N

labels, |Ut | = n − N . Otherwise, |Ut | ≥ n − N , indicating
that the active learner chooses to predict more labels than
expected.

4.1 Comparison with supervised classifiers

The AAKC algorithm is an active learning algorithm for
classification, we compare it with 10 supervised learning
algorithms on nine datasets. (K Nearest Neighbors (KNN)
[19], C4.5 [20], Naive Bayes (NB) [21], Random Forest
(RF) [22], AdaBoostM1 (ABM) [23], Classification Via
Regression (CVR) [24], Logit Boost (LB) [25], Bagging
[26], Multi Class Classifier (MCC) [27], and Filtered
Classifier (FC) [28]) These algorithms are implemented in
the Weka platform [29]. All datasets are normalized, and the
number of labels N and the training set size are both 0.1|U |.

Table 4 lists the experimental results, with the best results
obtained in bold. Among the ten algorithms, AAKC has the
highest accuracy in six datasets, with the highest average
precision of 0.9227 and the lowest average ranking of
2.11. It is worth noting that AAKC achieved an accuracy
of 1.000 on Spiral and Flame datasets that the other
nine algorithms cannot achieve. AAKC is superior to the
classical supervised classification algorithm.

We select three classical supervised learning algorithms
(KNN, C4.5, and NB) for further experimental analysis
of label number N . During the experiment, the number
of labels N and the size of the training set range from
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Table 4 Classification accuracy of the supervised learning algorithm

Dataset KNN C4.5 NB RF ABM CVR LB Bagging MCC FC AAKC

Aggregation 0.9985 0.9732 0.9957 0.9957 0.5133 0.9774 0.9605 0.9971 0.9449 0.9704 0.9972

Spiral 0.8106 0.4510 0.3735 0.6267 0.3646 0.3842 0.6367 0.4502 0.3453 0.3442 1.0000

Flame 0.9722 0.8657 0.9583 0.8935 0.8796 0.8703 0.8889 0.8657 0.8657 0.8703 1.0000

R15 0.9814 0.7389 0.8944 0.8833 0.1203 0.7129 0.7500 0.7389 0.6352 0.8296 0.9982

Iris 0.9037 0.9185 0.8963 0.8889 0.9259 0.7037 0.9259 0.4974 0.8593 0.8889 0.9710

Seeds 0.8824 0.8122 0.8366 0.8425 0.8212 0.8138 0.8532 0.8076 0.8750 0.8255 0.9275

Heart-statlog 0.7477 0.7329 0.7865 0.7860 0.7572 0.7292 0.7514 0.7269 0.7329 0.7205 0.8015

DCCC 0.7125 0.7639 0.5479 0.7931 0.7929 0.7821 0.7879 0.7948 0.7803 0.7957 0.7663

Ionosphere 0.7930 0.8288 0.8047 0.8820 0.8253 0.8094 0.8499 0.7999 0.7848 0.8336 0.8430

Mean Acc 0.8669 0.7872 0.7882 0.8435 0.6667 0.7537 0.8227 0.7421 0.7581 0.7865 0.9227

Mean Rank 4.33 6.67 5.56 3.78 6.56 7.33 4.44 7.22 8.00 6.56 2.11

0.01|U | to 0.1|U |. Figure 4 presents the experimental results
in the form of a broken line graph. The x-axis represents
the number of labeled samples or the size of the training
set, and the y-axis represents the classification accuracy
of the algorithm. The AAKC algorithm has the following
advantages over the other algorithms. Firstly, AAKC is
the fastest to peak accuracy in seven data sets. It is only
slightly slower than NB and KNN algorithms on flame
and ionosphere datasets. AAKC only queries the labels of
0.01|U | samples on the six datasets, and the accuracy almost
reaches the peak. Secondly, on all data sets, the accuracy of
the AAKC algorithm increases steadily with increasing N ,
while the accuracy of the other three algorithms fluctuates.
For example, on the DCCC dataset, when the training set
size increases from 0.01|U | to 0.02|U |, the performance of
the NB algorithm decreases by 0.0848. In the Spiral dataset,
when the training set size increases from 0.05|U | to 0.06|U |,
the prediction accuracy of the C4.5 algorithm decreases by
0.2279. In the Seeds dataset, when the training set size
increases from 0.06|U | to 0.07|U |, the prediction accuracy
of the C4.5 algorithm decreases by 0.0791.

4.2 Comparison with active learning classifiers

In this section, we verify the effectiveness of the adap-
tive instance selection strategy. We compare the AAKC
algorithm with eight state-of-the-art active learning algo-
rithms, including the committee-based algorithms QBC [14]
and KQBC [15], the uncertain sampling algorithm MAED
[30], and the cluster-based algorithms QUIRE [13], ABD
[31], ALEC [10], TASC [16], and ALTA [17]. They are the
most popular approaches for active learning. code and opti-
mal parameters of all comparison algorithms are from the
author.

Table 5 shows the experimental results of the AAKC and
the other eight active learning algorithms when the number
of labels is 0.1|U |, and the bold numbers indicate the best
results obtained. The AAKC algorithm achieves the highest
accuracy on seven data sets. On the DCCC and Ionosphere
datasets, it is only slightly lower than the QBC algorithm
on DCCC and Ionosphere datasets. The mean accuracy of
AAKC is 0.9227, and the mean rank is 1.44. Compared with
ALEC, the mean accuracy and the mean rank are increased
by 0.0393 and 2.56, respectively.

Figure 5 compares the accuracy of the AAKC algorithm
with eight state-of-the-art active learning algorithms. For
all datasets, the proportion of queries ranges from 0.01|U |
to 0.1|U |. We observed that in nine datasets, the AAKC
algorithm has the following advantages over the other
algorithms. Firstly, the AAKC algorithm achieves peak
accuracy using fewer labels than other active learning
algorithms.

In addition, AAKC performs exceptionally well on the
Aggregation, Spiral, Seeds, Heart-stat log, and Ionosphere
datasets. When the proportion of queries is 0.02|U |, the
accuracy is almost at the peak. From the perspective of
minimizing query costs, there is no need to continue to
query instances. Secondly, the accuracy of AAKCmaintains
a steady increase as N increases. In contrast, the accuracy of
QUIRE and MAED fluctuates. For example, on the DCCC
dataset, the accuracy of the QUIRE algorithm fluctuates
constantly. When the roportion of queries is 0.02|U |, the
accuracy rate reaches the maximum value, and then the
accuracy rate decreases slightly as the number of tags
increases. On the Heart-stat log and Seeds datasets, when
the number of labels increases from 0.04|U | to 0.05|U |, the
accuracy of the MAED algorithm decreases by 0.0774 and
0.0656, respectively. AAKC is consistently more accurate
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Fig. 4 Comparison of classification accuracy with supervised learning algorithm

Table 5 Classification accuracy of the active learning algorithm

Dataset ABD QBC KQBC MADE QUIRE ALEC TACS ALTA AAKC

Aggregation 0.9964 0.8922 0.7023 0.9944 0.9971 0.9506 0.9872 0.9855 0.9972

Spiral 0.9326 0.7918 0.3309 0.7393 0.7295 1.0000 0.8089 0.6093 1.0000

Flame 0.9791 0.9513 0.7383 0.9861 0.9537 1.0000 0.9704 0.9191 1.0000

R15 0.9812 0.3583 0.7674 0.9907 0.9778 0.9962 0.9787 0.9808 0.9982

Iris 0.9600 0.9666 0.9462 0.9185 0.9407 0.9629 0.9096 0.8000 0.9710

Seeds 0.8928 0.9206 0.9027 0.8571 0.8624 0.8835 0.8545 0.9045 0.9275

Heart 0.7292 0.7514 0.7269 0.7329 0.7205 0.7654 0.7564 0.7373 0.8015

DCCC 0.7770 0.7977 0.7761 0.7030 0.7415 0.7577 0.7044 0.6729 0.7663

Ionosphere 0.8094 0.8499 0.7999 0.7848 0.8336 0.6347 0.8127 0.7464 0.8430

Mean acc 0.8953 0.8089 0.7434 0.8563 0.8619 0.8834 0.8647 0.8173 0.9227

Mean rank 3.89 4.11 6.56 5.56 5.67 4.00 5.44 6.56 1.44
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Fig. 5 Comparison of classification accuracy with active learning algorithm

and more consistent than ALEC. In conclusion, the AAKC
algorithm is superior to other active learning algorithms in
general.

4.3 Effects of parameters

The critical parameter in AAKC is k, which determines
the neighbors of each instance. To evaluate the effect of k

and the stability of our algorithm, we set k from 3 to 10.
Figure 6 presents the results of the experiment, and Table 6
shows the statistics of the experimental results. We observe
that AAKC is very robust concerning the parameter k.
Additionally, although the value of k is not always the same
when the AAKC algorithm obtains the highest accuracy on
different datasets, it is always in the range of 3 to 6. This
proves the stability of our algorithm with respect to the
parameter k. Fig. 6 The experimental results of AAKC on different k
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Table 6 The effects of k on
nine datasets, where k ranges
from 3 to 10, and the “k”
column represents the k value
for maximum accuracy

Dataset Max Min Mean Var k

Aggregation 0.9972 0.8331 0.9955 0.003368 5

Spiral 1.0000 0.6063 0.9508 0.019378 5

Flame 1.0000 0.9910 0.9617 0.000023 5

R15 0.9982 0.9946 0.9975 0.000002 5

Iris 0.9710 0.6522 0.8786 0.009868 4

Seeds 0.9275 0.8964 0.9145 0.000115 5

Heart-statlog 0.8015 0.7871 0.7928 0.000037 4

DCCC 0.7663 0.7612 0.7640 0.000003 5

Ionosphere 0.8430 0.6366 0.8172 0.005325 5

5 Conclusion

This paper proposed the AAKC algorithm, which uses the k-
nearest neighbor information to redefine the local density of
instances and adopts an adaptive instance selection strategy
to select samples automatically. Experimental results on
nine datasets confirm that our algorithm is better than
the classic supervised learning algorithm and the latest
active learning algorithm. The time complexity of AAKC
is O(mn2), which is the same as that of DPC algorithms.
However, it is not efficient enough when facing high-
dimensional and large datasets. In future research, we plan
to further improve the efficiency of the algorithm.
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