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Abstract
Path planning is an important task for robot motion, unmanned aerial vehicle obstacle avoidance, and smart cars. Sampling-
based algorithms have achieved significant success in this task. The rapidly random-exploring tree (RRT) is one of the
representative algorithms. However, it is exceedingly difficult to strike a balance between path quality and search efficiency.
In this paper, we propose an enhanced RRT* with clustering and presearching (ERCP) algorithm to handle this issue. In
the clustering phase, we construct an 8-degree undirected graph according to the neighborhood and obstacles. Then, we
adopt the Markov clustering technique, which is appropriate for spatial data. The clustering process is efficient since the
coarse-grained map considers only points at integer locations. In the presearching phase, we utilize the clustering results to
abstract the intact state space as an undirected graph. We employ Dijkstra’s algorithm to perform a presearch on the graph
to determine the effective sampling area. In the path planning phase, we use RRT* to extend the space-filling tree within
the effective sampling regions. Experiments were conducted on ten maps with different levels of obstacle complexity. The
results reveal that ERCP can achieve a more convincing balance between path quality and search efficiency than the three
state-of-the-art algorithms with little sacrifice.

Keywords Sampling-based path planning · Optimal path planning · Clustering

1 Introduction

Robotics-related technology contributes to the development
of social productivity. It frees humans from repetitive and
uncomplicated labor. Typical tasks include path planning [1]
and manipulator control [2].
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Finding a collision-free path from source to target is
the purpose of robot path planning. Many researchers have
made excellent contributions to this task. Among them are
grid-based methods, for example, Dijkstra’s algorithm [3],
A* [4], and D* [5]. Higher resolution results in a superior
path have a longer or even unendurable runtime. State-
space modeling algorithms include the cell decomposition
method [6] and topology method [7]. After a well-
modeled approach, promising paths can be obtained, but
complex modeling environments may take longer. Bionic
methods include the artificial potential field method (APF)
[8], ant colony optimization algorithm (ACO) [9], and
particle swarm optimization algorithm (PSO) [10]. Among
them, individual algorithms have some drawbacks. Multiple
bionic algorithms are combined to avoid this situation. For
example, the genetic algorithm optimizes the suboptimal
solution obtained by the ACO [11], and the sparrow search
algorithm adds tent chaos mapping to optimize its initial
population [12]. These methods are relatively simple to
implement but suffer from the local minimum problem.

Currently, sampling-based algorithms [13] have become
increasingly popular and accommodate theories such as proba-
bilistic completeness. They explore the state space by prob-
abilistically state sampling and constructing trees/graphs.
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Examples include generalized space trees (ESTs) [14],
probabilistic road maps (PRMs) [15], and random-exploring
tree (RRT) [16]. Specifically, RRT effectively handles
obstacles, differential motion constraints, and even high-
dimensional spaces. However, the path generated by RRT is
significantly different from the optimal solution. RRT* [13]
introduces nearest neighbor search and rewiring to guaran-
tee asymptotic optimality. This means that RRT* will obtain
the optimal solution after several iterations.

Nevertheless, RRT* cannot strike an excellent balance
between path quality and search efficiency. On the one
hand, most of the initial solutions generated by RRT* are
not excellent enough. On the other hand, RRT* iterates to
the optimal solution, which is resource consumptive. The
primary factor is that RRT* utilizes a random sampling
strategy to blindly search the entire state space, resulting in
a significant waste of resources.

To overcome the aforementioned problems, we propose
the ERCP algorithm. Figure 1 illustrates a running example
of the algorithm. In the clustering phase, we do not consider
the source and the target. Figure 1a shows the original
map. The red and blue discs indicate the source and the
target. The black rectangle represents the obstacle region,
and the rest of the space is an obstacle-free area. To
facilitate clustering, we discretize the map. Then, it is
abstracted into an 8-degree undirected graph. We adopt the
Markov clustering algorithm [17] to determine the number
of clusters automatically. The clustering results serve as the
basis for dividing the state space into different parts, as
shown in Fig. 1b.

In the presearching phase, we need to further reduce the
processing difficulty. We abstract the clustering results as
a weighted undirected graph. The geometric center of each
cluster denotes itself and acts as a node of the graph. It is
worth mentioning that the graph created in the clustering
phase is not the same as that created in the presearching
phase. The former is the result of the discretization of
the continuous state space, while the latter represents
the clustering results. We connect the adjacent geometric
centers to form an edge of the graph since neighboring
clustering regions are reachable to each other. The distance
between nearby geometric centers is used as the weight
of the graph. Then, we calculate which regions are most
deserving to be sampled. In this step, the geometric center
of each cluster represents all the elements in that region.
The same applies to the source and the target. We adopt
Dijkstra’s algorithm to compute the shortest path from
target to source on this graph. In Fig. 1c, the bright green
color block indicates the effective sampling area.

In the clustering and presearching phases of ERCP, we
transform the pathfinding problem into a graph shortest
path problem. Thus, the redundant state space is quickly
eliminated. In the path planning phase, the sampling area

of ERCP is different from that of RRT*. We reconsider the
obtained discrete effective sampling region as a continuous
state space. We allow only ERCP to expand the space-
filling tree in the effective sampling region. This mitigates
the drawback that the optimal solution of the grid-based
algorithm depends on the resolution. Figure 1d shows the
initial solution. The bright green line indicates the branches
of the space-filling tree. The red line indicates the initial
solution of ERCP. We successfully excluded the redundant
sampled regions during the sampling process.

We designed ten maps with different complexities and
tested ERCP against three state-of-the-art algorithms. Two
are sampling algorithms (RRT*, IRRT*), and one is an
intelligent algorithm (P-ACO) that combines the advantages
of traditional algorithms. The experimental results show that
our algorithm can effectively balance the initial solution
quality and efficiency.

Our main contributions include the following:

(1) A new path planning algorithm based on clustering
and presearching is proposed.

(2) A generic planner is proposed, consisting of the first
two phases of ERCP. It can predict an unknown envi-
ronment’s effective sampling area without prior knowl-
edge, guiding different path planning algorithms.

(3) ERCP is applied to several case studies to demonstrate
the effectiveness of the proposed method.

The rest of this paper is organized as follows. Section 2
demonstrates some of the concepts covered in this paper.
Section 3 shows the detailed implementation of the ERCP
and its analysis. Section 4 indicates the experimental results
of the ERCP with a variety of popular algorithms. Section 5
presents some improved algorithms for RRT. Finally,
Section 6 describes the advantages and disadvantages of
ERCP and some future work.

2 Preliminaries

In this section, we briefly introduce the related concepts of
path planning, the Markov clustering algorithm, and RRT*.

2.1 Path planning problem

The data model of the path planning problem can be
represented by a 5-tuple:

(χ , χobs, xsou, xtar, r), (1)

where

1. χ ⊂ R
n is the state space, usually n ∈ {2, 3};

2. χobs ⊂ χ is the obstacle state space;
3. xsou ∈ χ \ χobs is the source;
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Fig. 1 Illustration of ERCP. (a)
is the original map. The red and
blue discs indicate the source
and target, respectively. The
black rectangles indicate the
obstacles. (b) is the clustering
result of the clustering phase.
Different color blocks represent
different clusters. (c) is the result
of the presearching phase. The
bright green blocks indicate the
effective sampling regions. (d) is
the result of the path planning
phase. The red line signifies the
initial solution. The green lines
represent the branches of the
space-filling tree of ERCP

4. xtar ∈ χ \ χobs is the target;
5. r is the radius of the target.

Moreover, χ fre = χ\χobs is the obstacle-free state space.
Let χ tar = {x ∈ χ fre|‖x−xtar‖ < r} be the target space. The
path planning problem is to find an obstacle-free feasible
continuous path σ ⊂ χ fre from xsou to any x ∈ χ tar. That
is, we only need to reach the neighborhood of xtar. The path
is defined as a sequence

σ = σ0σ1 . . . σm, (2)

where σ0 = xsou, σm ∈ χ tar, ∀λ ∈ [0, 1], λσi+(1−λ)σi−1 ∈
χ fre(i = 1, 2, . . . , m), and the direct connection between
σi and σi−1 is obstacle-free. In other words, the path is
essentially a polyline in the map.

The cost of the path is defined as the length of the
polyline, i.e.,

c(σ ) =
m∑

i=1

‖σi − σi−1‖, (3)

where ‖·‖ is the l2 norm of a vector.
The path planning problem is to find an optimal path

σ ∗ = argmin
σ

c(σ ). (4)

2.2 Markov clustering algorithm

The Markov clustering algorithm is a grouping technique
for a graph

G = (V,E), (5)

where V = {v1, · · · , vn} is the set of nodes and E ⊆ V×V
is the set of arcs.

The natural clustering in the graph generally has one
property. There are more paths between two nodes in a
cluster than between different clusters. This means that
a random walk from any node on the graph is rarely
transferred from one natural cluster to another.
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The Markov clustering algorithm represents the graph as
a nonnegative probability matrix

M = (mij )n×n, (6)

where mij is the probability of vi being shifted to vj . ∀j ∈
[1, n],
n∑

i=1

mij = 1. (7)

The Markov clustering algorithm alternately performs
Expansion and Inflation on the probability matrix M. The
Expansion operation simulates a random walk in the graph
by performing a matrix product on the probability matrix
M. We provide two numbers p ∈ N

+ and l ∈ N
+. The

Expansion operation is described as

Mp =
(
m

(p)
ij

)

n×n
=

p∏

k=1

M. (8)

The Inflation operation operates on the elements of each
column individually. It can be divided into two steps. First,
we take the l power for each element of column j of the
matrix M, denoted as

M〈l〉 =
(
ml

ij

)

n×n
. (9)

Second, we scale each column to obtain �〈l〉 =
(
γ

〈l〉
ij

)

n×n
,

where

γ
〈l〉
ij = ml

ij∑n
k=1 ml

kj

. (10)

The Expansion operation corresponds to multiple ran-
dom walks for each node in the graph. It associates the
new probabilities with all node pairs. Longer paths are
more common within a cluster than between clusters. Nodes
within the same cluster have a relatively greater probability
of reaching each other. The Inflation operation increases the
probability of randomwalk within a cluster. This is achieved
without any prior knowledge about the cluster structure. It
is just a result of the presence of different clusters in the
natural graph.

Eventually, iterating Expansion and Inflation leads to the
graph being divided into different clusters. There are no
longer any paths between these clusters. Increasing p and
l increases the compactness of the clusters, but a slight
change in p and l does not lead to a drastic change in the
results.

2.3 Dijkstra’s algorithm

Dijkstra’s algorithm is a classical method for computing the
shortest path in a graph; this graph is defined as

G = (V, w), (11)

where V = {v1, · · · , vn} is the set of nodes and w(vi, vj ) is
the weight of arc (vi, vj ).

Without losing generality, we assume that v1 is the
source. The flow of Dijkstra’s algorithm is as follows:

1. W′ = (w′
ij )n×n = −1; //All elements are -1.

2. V′ = V \ {v1}; //Unvisited nodes.
3. V′′ = {v1}; //Visited nodes.
4. while V′ �= ∅:
5. (v∗, v∗) = argmin(vi ,vj )∈V′′×V′ w(vi, vj );
6. V′ = V′ \ {v∗};
7. V′′ = V′′ ∪ {v∗};
8. w′(v∗, v∗) = w(v∗, v∗).

2.4 RRT*

Among the sampling-based algorithms, RRT* is one of
the representative algorithms that are widely used. RRT*
explores the state space by expanding space-filling trees

T = (N, r, p) (12)

where

1) N is the set of all nodes in the tree;
2) r ∈ N is the root node;
3) p : N → N ∪ {φ} is the parent mapping satisfying

a) p(r) = φ;
b) ∀n ∈ N, ∃! i ≥ 0, s.t. p(i)(n) = r;
c) φ represents the empty node.

RRT* uses source as the root node r of T . It randomly
draws xran from χ fre, and xran tries to find the nearest node
xnst in T . If xran and xnst can be successfully connected, then
by steering at a certain angle, we can obtain xnew and add it
to N.

RRT* adds two operations, nearest neighbor search and
rewiring, to ensure progressive optimization. In the nearest
neighbor search process, it searches for nodes around xnew
as Xnea. RRT* treats each node of Xnea as a temporary
parent node of xnew. It will select the node with the minimal
path cost as the parent node of xnew.

In the rewiring process, for each single node of Xnea,
denoted as xnea, xnew is taken as the temporary parent node
of xnea. It checks whether the path cost from r to xnea is
lower than the previous path. If the condition is satisfied, set
p(xnea) = xnew.

If xnew is in χ tar or the maximum number of iterations
is reached, RRT* ends the search. The found path is
then returned from T if it exists. When the number of
iterations tends to infinity, RRT* must be able to give an
optimal path. This guarantees probabilistic completeness
and asymptotic optimality. However, it also requires a
dramatic increase in time and memory. However, RRT*
searches the entire state space. This leads to a relatively
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blind search process. Searching the redundant state space
will consume considerable time and resources.

3 The proposed algorithm

In this section, we first describe the implementation of
ERCP. Then, we prove the probabilistic completeness of
ERCP.

3.1 Algorithm flow

Figure 2 shows the algorithmic flow of ERCP. The image in
the top row shows the output of each stage, and the bottom
row describes each stage.

ERCP is divided into three phases in total: the clustering
phase, presearching phase, and path planning phase. For
each algorithm phase, the previous phase’s output is the
next phase’s input. The clustering phase discretizes the
input state space, whose primary purpose is to divide the
state space into different parts and provide credentials for
the presearching phase. The presearching phase finds the
effective sampling region in the clustered state space. The
path planning phase performs path planning within the
best sampling region obtained from the presearching phase.
Finally, the path planning phase outputs the viable paths
from the source to the target.

The clustering phase applies the Markov clustering
algorithm to partition the state space into different sections.
This algorithm is a fast and scalable unsupervised clustering
algorithm. It divides the graph into multiple clusters based
on the simulation of random flows in the graph. The
advantage is that it uses few parameters, does not require
a priori knowledge, and does not require specifying the
number of clusters. Dijkstra’s algorithm is applied in the

presearching phase and is one of the classical and excellent
algorithms for finding the shortest path. Its drawback is that
it cannot find the shortest path if negatively weighted edges
are in the graph. However, this problem does not exist in this
paper.

3.2 Algorithm description

Algorithm 1 describes the clustering phase and presearch-
ing phase of ERCP. Algorithm 2 depicts the path planning
phase of ERCP. The inputs include the 5-tuple specified in
(1), and two numbers p and l are used for Markov cluster-
ing. The output is the optimal path found by the ERCP from
xsou to χ tar.

We automatically divide the state space into different
parts by an unsupervised clustering algorithm. In algorithm
1, Line 1 calculates the accessibility space χ fre. Line 2
discretizes χ fre by Discretize to obtain V1. For example,
in a two-dimensional map, the discretization operation is
to keep only those parts of the continuous χ fre for which
the coordinate points are integers and store them to V1.
In the third line, the set of edges E1 of G1 is initialized.
Each node needs to add edges that reach itself, which is
determined by the nature of theMarkov clustering algorithm
itself. In Lines 4 to 5, the number of nodes n of V1 is
computed, and subsequently, the adjacency matrix (mij )n×n

of G1 is initialized. In Lines 6 to 10, each node v in V1 can
reach its surrounding neighbor nodes in eight directions if
neighbors exist. Mutually reachable pairs of nodes are added
to E1, and the corresponding values in the adjacency matrix
(mij )n×n are updated. In the eleventh line of the algorithm,
G1 consists of V1,E1.

In Lines 12 to 13, each column of the adjacency
matrix (mij )n×n is normalized. Then, each column of the
adjacency matrix sums to 1. The normalized matrix is the

Fig. 2 The algorithm flow of ERCP. The top image shows the output results of each stage, and the bottom shows the description of each phase
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probability matrix, which stores the probability of each
node reaching the other nodes. In Lines 14 to 19, the
procedure of the Markov clustering algorithm is shown. The
detailed implementation of Expansion and Inf lation is in
Section 2.2. In Line 20, the clustering results are stored in
C via GetClusters. The matrix calculated by the Markov
clustering algorithm stores the probability of each node
reaching the other nodes. Nodes that can reach each other
are grouped into a cluster.

We eliminate the redundant state space by evaluating the
shortest path. The clustering results are first streamlined
in the presearching phase. The geometric centroid of each
cluster represents itself and acts as a node of V2. In Line 21,
the geometric centroids of each cluster are computed. For
example, in the two-dimensional state space, only cluster
C ∈ C contains a total of s elements, and the ith element
is denoted as (xi, yi). The geometric center of cluster C is
denoted as (xcen, ycen) and is calculated as

(xcen, ycen) =
(∑s

i=1 xi

s
,

∑s
i=1 yi

s

)
. (13)

In Lines 22 to 23, the weight matrix W of G2 is
initialized. In Lines 24 to 27, for v, the geometric centers
of its neighboring clusters are obtained by the function
GetAdjacentClusters. For v, v′ ∈ V2, if they are adjacent
to each other, the distance between v and v′ is used as the
weight of (v, v′). In Line 28, it is declared that G2 consists
of (V2, W). In Lines 29 to 30, the geometric center of a
cluster can represent all its elements. xsou is represented by
the geometric center of the cluster it is in, and the same is
true for xtar. In G2, the shortest path from source to target
and the corresponding cluster centroid V′′ is determined
by FindShortestP ath. It employs Dijkstra’s algorithm;
refer to Section 2.3 for detailed implementation. Each
clustering centroid uniquely corresponds to a clustering
region. V′′ is converted to the corresponding clustering area
by ConvertT oArea. It is an effective sampling area.

Algorithm 2 documents the detailed implementation of
the path planning phase. It adopts RRT* for sampling.
However, the sampling strategy of ERCP is different from
RRT*. ERCP samples in χopt, while RRT* samples in the
whole state space. In Line 1, initialize T = (N, r, p), where
N records the information of all nodes in T , r denotes
the root node of tree T , and p records the information
of each node’s father. χ tar denotes the region of radius r

centered at xtar. That is, it is enough to reach the vicinity
of xtar. In Line 4, xran is determined by random sampling
from χopt using SampleF rom. The subsequent process
is identical to RRT*, and its detailed implementation is
shown in Section 2.4. The state xnst in the tree T that
is closest to xran is found using Nearest . Then, Steer is

used to find the new state xnew. Go further in the direction
of connecting xran to xnst. If the connection between xnst
and xnew is collision-free, xnew will be added to the tree.
NearestNeighborSearch and Rewiring will be executed
to optimize the path. The space-filling tree T is expanded in
χopt until a feasible path is found or the number of iterations
reaches a maximum.

Algorithm 1 Enhanced RRT* with Clustering and Presearching
(ERCP).
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Algorithm 2 Enhanced RRT* with Clustering and Presearching
(ERCP).

3.3 Algorithm analysis

ERCP has the property of probabilistic completeness, i.e.,

lim
n→∞P{(T ∩ χ tar) �= ∅} = 1. (14)

We divide the obstacle-free region in the state space into
different parts by clustering. Then, the clustering results are
abstracted into an undirected graph. The source is located
in one of the clusters. We use the cluster geometric center
to represent itself. The same is true for the target. In the
extreme case, one cluster can be obtained from the entire
state space. The effective sampling area is the whole state
space. The optimal path obtained by ERCP is the same
as RRT*. In the more general case, the state space will
be clustered into several clusters. Then, the clusters are
abstracted into an undirected weighted graph. Both the
source and the target are located at a node in the graph. The
shortest path is calculated by Dijkstra’s algorithm. Then, it
is transformed into the corresponding region, which is the
effective sampling region χopt. The adjacent nodes in the
graph correspond to the adjacent clustering regions. That is,
χopt is a continuous area. Both the source and the target are
within χopt. When the number of iterations tends to infinity,
the space-filling tree will be filled with χopt. There must be
a feasible path σ from xsou to χ tar. As χopt ∈ χ fre, ERCP
does not need to explore the entire state space. It can also
prove the effectiveness of ERCP.

4 Experiments

4.1 Experimental configuration

To evaluate the performance of ERCP, we compare it
with three state-of-the-art algorithms (RRT*, IRRT*, P-
ACO) in ten different complex environments. We employed
Windows 10 as the running platform, Python 3.8 as the
programming language, and an AMD Ryzen-7 4800H as
the central processor, and the memory size was 16 GB. The
parameters in the simulation experiments are set as follows
(unit: m): map size 50 × 50. In particular, the sizes of Map-
9 and Map-10 are 20 × 20 and 70 × 70, respectively. The
step size of the space-filling tree is 1, the radius of xtar is 3,
and the steering angle is 20 degrees. For Markov clustering,
both p and l are 2. The parameter settings for ERCP, RRT*,
and IRRT* are the same.

To evaluate the actual performance of ERCP, numerical
experiments with three metrics were undertaken in ten
environments of different complexities. The major metrics
include the quality of the initial solution, the corresponding
time, and the number of nodes. It was also compared with
two other state-of-the-art path planning algorithms (RRT*
and IRRT*) to verify the effectiveness of ERCP.

ACO is a heuristic global optimization algorithm with
distributed computation, positive information feedback,
and heuristic search. Therefore, many scholars have used
the ACO algorithm for robot path planning and have
achieved good results. The ACO algorithm for robot path
planning consists of three parts: ant colony initialization,
solution construction, and pheromone update. However, it
suffers from slow convergence, quickly falling into a local
optimum, and premature convergence. P-ACO adopts the
potential field to guide ACO to alleviate the above problems,
i.e., the current path pheromone spreads in the direction of
the potential field during the ant search. As a result, the ants
tend to search for more adaptive subspaces. This is similar
to ERCP and is one of the reasons for choosing it as the
comparison algorithm.

To thoroughly verify the robustness and superiority of the
model, we chose P-ACO, which combines the advantages of
traditional and intelligent algorithms, for comparison with
ERCP. P-ACO uses a potential field to guide the ant colony
for pheromone diffusion to alleviate the problems of the
ACO algorithm.

Regarding the parameter settings, considering the size
of the map, the number of ants is 100, the volatility of
pheromones is 0.5, and the number of iterations is 40 to
ensure that the optimal solution is found. Finally, different
combinations of the radius of xtar and step size were tested
to illustrate the robustness of the model.
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4.2 Maps and processing results

Figure 3 illustrates the environment used for the experiment.
The environments are namedMap-1 to Map-10 according to
their obstacle complexity. Map-1 (Fig. 3a), Map-2 (Fig. 3c),
and Map-3 (Fig. 3e) represent cluttered environments with
many rectangular obstacles. This leads to some sampling
points on the obstacles, resulting in multiple useless
samples. Map-4 (Fig. 3g) indicates a cluttered environment
and fewer L-obstacles. Map-5 (Fig. 3i), Map-6 (Fig. 3k),
and Map-7 (Fig. 3m) represent the more common L-shaped
obstacles in practical applications. Therefore, the sampling-
based algorithm needs to search the entire state space to
reach the target. Map-8 (Fig. 3o) shows a typical narrow
passage environment, where the source and the target are
distributed on both sides of the narrow passage. Map-9
(Fig. 3q) is a smaller-sized map with a size of 20 × 20,
where several different obstacles are distributed. Map-10
(Fig. 3s) is a larger sized map with a size of 70 × 70.
The purpose of Map-9 and Map-10 is to test the effect of
different sizes of maps on the algorithm. It is well known
that the sampling strategies of sampling-based algorithms
are mostly random probability sampling. The probability of
sampling in a narrow channel state space is lower than that
in a wide state space. This leads to the difficulty of reaching
the target from the source.

In Fig. 3, for each environment, the results of the
presearching phase are available on its right side. Different
color blocks indicate different clustering regions, and the
bright green color blocks represent effective sampling
regions. It is noteworthy that almost all effective sampling
areas successfully connect the source and the target in the
closest way.

4.3 Comparison with RRT*

We compare the performance of ERCP with RRT* at a
single iteration. Figure 4 compares the metrics associated
with ERCP and RRT* for obtaining initial solutions in Map-
1 to Map-10 and with labels at the bottom of each figure.
The metrics evaluated here include the initial solution cost,
the time consumed to obtain the initial solution, and the
number of nodes needed.

Map-1, Map-2, and Map-3 are environments with
rectangular obstacles of different complexity, and the results
of their presearching are Fig. 3b, d, and f, respectively.
Figure 4a, c, and e are the test results of ERCP on Map-
1, Map-2, and Map-3, respectively. Correspondingly, the
results of RRT* are Fig. 4b, d, and f. In terms of path
cost, the path costs of ERCP are 47.434, 50.137, and
68.039, respectively. The path costs of RRT* are 55.425,
62.466, and 82.768, respectively. This can be seen in

an environment with progressively increasing complexity.
RRT* grows space-filling trees that spread over the entire
space and generates paths with more bends than ERCP.
ERCP searches only a tiny fraction of the space, and the
path quality obtains a complete victory. In terms of time,
the time consumption of ERCP is 0.049 s, 0.122 s, and
4.311 s, respectively. RRT* is 0.337 s, 0.296 s, and 5.157
s, respectively. Regarding the number of nodes, the number
of nodes for ERCP is 139, 156, and 1072, respectively.
The number of nodes for RRT* is 600, 419, and 1634,
respectively. ERCP is still ahead of RRT* in terms of time
and number of nodes. This means that ERCP uses fewer
resources and has better path quality.

Map-4 is an L-shaped rectangular obstacle environment
with Fig. 3h as the presearch result. Figure 4g and h are
the test results for ERCP and RRT*, respectively. The path
cost of ERCP is 54.123, the time taken is 2.529 s, and the
number of nodes is 854. The path cost of RRT* is 93.121,
the time taken is 3.295 s, and the number of nodes is 1720.
Map-4 deserves special attention to highlight the particular
advantages of ERCP. After clustering and presearching,
ERCP yields more worthwhile regions to sample. This
reduces the invalid sampling, which in turn makes the
generation path of ERCP better.

Map-5, Map-6, Map-7, and Map-8 are environments
with many narrow channels, and their presearch results are
shown in Fig. 3j, l, n, and p. Figure 4i, k, m, and o show
the performance of ERCP on those maps. Figure 4j, l, n,
and p illustrate the corresponding performance of RRT*.
The path costs of ERCP are 56.408, 75.649, 82.419,
and 109.373, respectively. The RRT* values are 77.591,
107.723, 110.336, and 128.149, respectively. In terms of
time consumption, ERCP was 2.744 s, 8.207 s, 7.751 s,
and 19.772 s, respectively. The RRT* values are 9.547
s, 12.306 s, 13.833 s, and 2.407 s, respectively. ERCP
has 558, 1909, 1656, and 5488 nodes, respectively. RRT*
has 3305, 4520, 3761, and 3003 nodes, respectively. One
of the shortcomings of RRT* is that the probability of
sampling into narrow channels is negligible. As seen from
the figure, this phenomenon did not interfere with the
effect of ERCP. The main reason is that the clustering and
presearch do not distinguish between narrow channels and
other environments.

Map-9 and Map-10 represent smaller and larger maps,
respectively, with presearch Fig. 3r and t. The relevant
results of ERCP are presented in Fig. 4q and s. The RRT*
data are shown in Fig. 4r and t. In the path cost, ERCP
is 26.764 and 66.924, respectively. RRT* is 30.229 and
71.687, respectively. In the case of resource consumption,
ERCP takes 2.018 s and 0.394 s, and the number of nodes is
560 and 425, respectively. The time consumption of RRT*
is 0.424 s and 0.711 s, and the number of nodes is 486 and
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Fig. 3 Illustration of the different maps in the experiment and their
clustering results. In each row, the first and third images represent the
original maps. The second and fourth panels indicate the clustering
results of the map. The red and blue discs denote the source and target.

The black rectangles represent obstacles. In the display of clustering
results, different color blocks indicate different clusters, and bright
green color blocks indicate effective sampling areas
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Fig. 4 Comparison of initial solutions of ERCP and RRT* in different
maps. The blue line indicates the branches of RRT*. The green line
represents the branches of ERCP. The red line denotes the initial solu-

tion. Cost means the length of the initial solution. Time signifies the
time taken to obtain the initial solution. Node stands for the number of
space-filling tree nodes
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798. After data analysis, smaller and larger environments do
not make ERCP less effective. This proves that ERCP has
excellent generalization ability.

However, in Map-8 and Map-9, ERCP required more
time and resources. The same sampling strategy as RRT* is
used in the path planning phase of ERCP, and randomness
leads to poor performance in a single test. Regarding path
cost, ERCP is far ahead of RRT* thanks to clustering
and presearch. ERCP can achieve excellent initial solutions
in environments with sparse obstacles with less resource
consumption. In complex environments, ERCP still shows
extraordinary performance. RRT* consumes more resources
in the test environment and only obtains suboptimal
solutions. ERCP can accurately find a good sampling area
from source to target and then explore it. More importantly,
the quality of the initial solutions obtained by ERCP
is also surprisingly improved after a small amount of
preprocessing.

4.4 Extensive comparison experiments

We compare ERCP with IRRT*, RRT*, and P-ACO for 100
iterations in all ten environments and count the performance
indicators of the four algorithms. Tables 1, 2, and 3 record
the three primary metrics for ERCP, IRRT*, and RRT* in
all experimental settings. In addition, P-ACO is added to
compare the cost and time to acquire the generated initial
solutions. It includes the initial solution quality, the time
required to obtain the initial solution quality, and the number
of iterations to obtain the initial solution.

Table 1 records the initial solution cost obtained by
the four algorithms. IRRT* takes an elliptical heuristic
search, which will make it closer to the optimal path
for searching. It is noteworthy that ERCP achieves seven
wins in ten environments. Furthermore, the remaining three
environments includeMap-1, Map-3, andMap-8. The initial
solution quality of ERCP is far outperformed by RRT*
and is not much different from the results of IRRT*. The
initial solution variance found by ERCP fluctuates less. This

means that the initial solution obtained by ERCP is more
stable than others. RRT*, IRRT*, and ERCP use the same
sampling and rewiring strategy to find the initial solution.
However, the difference is that IRRT* implements the
allowed ellipsoid heuristic, RRT* searches the entire state
space, and ERCP searches within the effective sampling
region obtained by preprocessing. As a result, the initial
solution quality obtained by RRT* is lower, while the path
quality of ERCP and IRRT* is superior. It is important to
note that ERCP outperforms IRRT* in seven out of ten cases
in terms of initial solution quality.

Regarding the performance of the different algorithms,
ERCP outperforms P-ACO in terms of path quality in all ten
environments. The main reason is that even with potential
field guidance, P-ACO still requires a random search to
reach the best global solution. ERCP has less invalid
exploration with the help of effectively sampled regions.
It allows ERCP to achieve better path quality compared to
P-ACO.

Table 2 records the time taken by the four algorithms
to obtain the initial solution. In terms of time, ERCP
achieves seven wins. RRT* performs better the remaining
three times. Table 3 keeps track of the number of iterations
used by the three algorithms to obtain the initial solution.
In terms of the number of iterations, ERCP achieves eight
wins. The remaining two were obtained by RRT* on Map-6
and IRRT* on Map-8. The time to obtain the initial solution
indicates the efficiency of the desired algorithm, and the
number of nodes reflects the algorithm’s performance in
terms of memory. The efficiency and memory performance
reflect the availability of the algorithm to some extent. Note
that ERCP is successful in most scenarios and provides
additional help in a few less than excellent scenarios. In
Map-3, for example, ERCP does not perform particularly
well in terms of path cost and time to obtain the initial
solution. In terms of path cost, RRT*, IRRT*, and ERCP
are 85.210 ± 7.377, 68.321 ± 3.615, and 70.537 ± 1.691,
respectively. In terms of the time to obtain the initial

Table 1 Cost of the initial
solution RRT* IRRT* ERCP P-ACO

Map-1 57.901 ± 4.903 45.968 ± 3.103 51.566 ± 3.305 58.142 ± 5.679
Map-2 65.358 ± 8.129 50.248 ± 4.492 49.123 ± 1.478 62.524 ± 5.028
Map-3 85.210 ± 7.377 68.321 ± 3.615 70.537 ± 1.691 76.336 ± 4.319
Map-4 70.515 ± 17.973 72.865 ± 7.345 52.732 ± 1.278 60.857 ± 5.792
Map-5 88.070 ± 24.244 62.833 ± 15.574 61.496 ± 3.358 61.263 ± 5.168
Map-6 107.785 ± 11.148 85.722 ± 9.423 77.210 ± 1.913 88.716 ± 8.465
Map-7 106.613 ± 9.329 81.411 ± 4.854 81.296 ± 1.989 99.1992 ± 9.094

Map-8 127.309 ± 6.853 104.060 ± 2.940 109.510 ± 2.980 121.322 ± 4.671
Map-9 29.979 ± 1.979 26.370 ± 0.64 25.419 ± 0.620 26.347 ± 1.198
Map-10 75.685 ± 7.953 67.653 ± 3.865 64.162 ± 1.471 71.300 ± 6.276

The boldface entries indicates the best result
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Table 2 Time of the initial
solution RRT* IRRT* ERCP P-ACO

Map-1 0.251 ± 0.164 1.786 ± 0.846 0.106 ± 0.047 52.997 ± 5.946
Map-2 0.507 ± 0.346 4.257 ± 2.012 0.127 ± 0.073 55.069 ± 4.447
Map-3 6.197 ± 3.076 52.212 ± 19.786 8.197 ± 4.097 74.371 ± 7.525
Map-4 6.906 ± 3.066 21.898 ± 11.256 3.463 ± 2.808 58.283 ± 6.164
Map-5 8.767 ± 5.428 54.300 ± 24.416 6.053 ± 3.891 32.935 ± 3.964
Map-6 10.063 ± 6.305 84.597 ± 36.913 8.787 ± 5.451 48.789 ± 6.422
Map-7 8.756 ± 3.989 67.729 ± 27.909 17.062 ± 13.923 54.789 ± 5.132
Map-8 10.235 ± 6.850 59.952 ± 53.843 19.167 ± 10.766 78.371 ± 8.525
Map-9 1.298 ± 0.587 5.528 ± 2.604 0.19 ± 0.023 27.278 ± 2.157
Map-10 1.112 ± 0.620 7.488 ± 1.659 0.290 ± 0.058 68.612 ± 8.739

The boldface entries indicates the best result

solution, RRT*, IRRT*, and ERCP are 6.197 ± 3.076,
52.212 ± 19.786, and 8.197 ± 4.097, respectively. The
better path quality performance, such as IRRT*, takes a
longer time. The paths with better performance in terms of
time, such as RRT*, do not converge enough.

In terms of time, ERCP achieves a spectacular victory,
while P-ACO underperforms. The main reason for this
phenomenon is that guided by the potential field, the
pheromones produced by the ants are more concentrated
in the part that tends to the target. However, P-ACO
requires many iterations to approach the optimal solution.
Too few iterations prevent the pheromone from converging
sufficiently, and the quality of the obtained paths is poor.
Too many iterations can result in excellent paths but
consume considerable resources.

4.5 Influence of parameters

Another factor that affects the performance of the algorithm
is the radius of xtar and the step size of the space-filling tree.
Many comparative experiments were conducted on Map-4
using RRT*, IRRT*, and ERCP to explain this relationship
more clearly. The radius of xtar was taken as 3 and 5 and the

Table 3 Node of the initial solution

RRT* IRRT* ERCP

Map-1 479 ± 173 463 ± 198 240 ± 79
Map-2 596 ± 278 594 ± 272 166 ± 67
Map-3 1960 ± 713 2012 ± 739 1513 ± 630
Map-4 1413 ± 770 1368 ± 642 861 ± 390
Map-5 3039 ± 1359 2946 ± 1176 1914 ± 761
Map-6 3726 ± 1307 3888 ± 1294 4246 ± 2055
Map-7 3363 ± 1077 3490 ± 1166 3228 ± 1180
Map-8 5078 ± 1860 5042 ± 1934 5504 ± 1816
Map-9 457 ± 171 426 ± 151 401 ± 136
Map-10 998 ± 239 1129 ± 342 331 ± 46

The boldface entries indicates the best result

step size as 0.5, 1, and 2 to measure the relationship between
the two in terms of path cost and the number of iterations,
respectively. The relevant data are shown in Fig. 5. The red
line indicates RRT*, the green line indicates IRRT*, and the
light blue line indicates ERCP.

Figure 5a and b show the effect of different step sizes on
the path cost, where the Y-axis scale is the path cost and
the X-axis indicates the different step size values. Figure 5c
and d show the effect of different radius and step size
values on the number of iterations. The X-axis represents
the different step size values, and the Y-axis represents the
number of iterations. Figure 5 shows that the path cost and
the number of iterations gradually decrease as the step size
increases. When the step size is small, there are a large
number of small, curved parts in the initial solution, which
leads to a high path cost. Increasing the step size reduces
the number of bends in the initial solution, which results in
a smoother path. In addition, the increase in step size means
that each step of RRT*, IRRT*, and ERCP can go farther;
thus, χ tar can be reached faster. This means that the number
of iterations required to explore the initial solution decreases
as the step size increases. The radius of xtar mainly affects
the number of iterations and has a relatively small effect on
the path cost. The larger the radius of xtar is, the faster the
algorithm can reach χ tar, and significantly fewer nodes are
required to reach it.

4.6 Discussion

Combining these data, ERCP achieves a 70% win regarding
path quality. In Table 1, the three failures are Map-1, Map-
3, and Map-8. This is because IRRT* applies the ellipse
heuristic to produce smoother paths. In contrast, ERCP,
like RRT*, does not optimize the paths specifically, leaving
them with some bends. Happily, the difference between
the results obtained by ERCP and the path quality of the
IRRT* algorithm is not significant. In terms of time, ERCP
also achieves a 70% win, as shown in Table 2. IRRT*
takes a longer time to obtain the initial solution. This
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Fig. 5 Performance comparison of different combinations of step size
and radius of xtar. The X-axis indicates the different step sizes.The Y-
axes in (a) and (b) indicate the path cost. The Y-axes in (c) and (d)

illustrate the number of nodes required to obtain the initial solution.
The red line indicates RRT*, the green line indicates IRRT*, and the
light blue line indicates ERCP

is because IRRT* takes into account the optimization of
the paths. ERCP does not optimize the initial solution.
One reason is that the quality of the paths implemented
by ERCP is good enough. Another reason is that ERCP
considers the efficiency problems caused by the optimized
paths. Regarding the number of iterations, ERCP achieves a
victory of 80%. This is mainly due to the critical role of the
effective sampling region, which makes it unnecessary for
ERCP to explore the redundant state space. Therefore, it can
be concluded that ERCP can strike a good balance between
path quality and efficiency.

The above comparison experiments show that the exclu-
sion of the redundant part of the state space enables ERCP
to achieve excellent path quality. We performed hundreds
of comparative experiments on ERCP, RRT*, IRRT*, and
P-ACO under different conditions. The four algorithms
are evaluated in terms of their initial solution cost, time

consumption, and the number of iterations. The redun-
dant state space is eliminated by performing clustering and
presearching in a shorter period during the ERCP search.
In this way, ERCP no longer searches the entire state space
blindly. Then, ERCP spends less time exploring the effec-
tive sampling area to obtain excellent initial solutions. Many
experiments indicate that ERCP can achieve a convincing
balance between initial solution quality and efficiency under
different conditions.

The results of clustering also have an impact on the initial
solution cost. The main reasons for the parameters p and
l of the Markov clustering algorithm include that p makes
each pair of nodes in the graph have a stable probability
of reaching other nodes. The main factor affecting the
clustering effect is the parameter l, where a smaller l leads
to larger individual clusters and a smaller total number of
clusters, and vice versa. Reflecting in ERCP, a smaller l
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leads to a larger effective sampling area, which makes the
final path underconverge and thus degrades to a normal
RRT* algorithm. A larger l leads to a smaller effective
sampling area. In the extreme case, this may lead to a
less helpful path planning phase, degrading ERCP to a
grid-based path planning algorithm.

In ERCP, p and l obtain good results by taking the
recommended values (p = 2, l = 2) of the Markov
algorithm. This is due to the superiority of the Markov
clustering algorithm itself.

However, the Markov clustering algorithm still has some
areas for improvement. In some exceptional cases, there
may be overlapping parts of the clustering results. The
overlapping part means that the points in one cluster are
shared by more than one cluster. Thankfully, overlapping
clusters only occur in unique symmetric graphs. That is,
only when some points are assigned with equal probability
to more than one cluster do these clusters have the same
structure as each other.

Taking Map-1 as an example, the whole map is symmet-
ric with symmetric source and target . On the one hand,
we divide the clusters from left to right and top to bottom
according to the clustering results, and the overlapping parts
belong to the clusters divided first. On the other hand, the
clustering result is only used as a basis for dividing the over-
all state space. In the path planning stage, it is converted
into a continuous state space again. Even if there are over-
lapping clusters, the impact on the final generated paths is
minimal.

5 Related work

Since the 1990s, the RRT algorithm has been widely used
in path planning in several areas. However, the quality of
the paths obtained by RRT is not guaranteed in most cases.
Over many years, researchers have proposed different types
of ways to improve the performance of RRT.

Improving RRT performance by improving the algorithm
itself is one possible way. RRT* can converge to the
optimal solution. However, it requires many resources.
IRRT* [18] implements an elliptic heuristic search to obtain
more rapid convergence. RRT*-Smart [19] has the same
exploration and iteration strategy as RRT*. The difference
is that after RRT*-Smart acquires the initial solution,
the child nodes try to find the ancestor nodes. The tree
structure will be modified if a qualified ancestor node is
found. During the bending process, RRT*-Smart can find
multiple anchor points. However, these anchor points are
often close to obstacles and cannot directly help the child
nodes to optimize. KB-RRT* [20] is a random tree method
for fast bidirectional exploration. It avoids inefficient tree
growth by proposing an effective branch pruning strategy.

Compared with traditional path planning algorithms, KB-
RRT* achieves better performance. However, there is still
room for optimization of its generated paths. DT-RRT*
[21] uses a bidirectional tree structure and separates the
expansion and optimization processes. It has one original
RRT for exploring the unknown environment and another
modified RRT* for obtaining the optimal solution for the
optimized path. MOD-RRT* [22] is an algorithm known
as multiobjective dynamic fast exploration stochastic. The
algorithm consists of a path generation process and a path
optimization process. First, a modified RRT* is used to
obtain an initial solution, and a state tree structure is
generated as a priori knowledge. Then, a shortcut method
is given to optimize the initial solution. In addition, it
considers the case of infeasible paths. The algorithm is
improved in terms of path cost, smoothness, and stability.

Improving the RRT with known partial information is a
feasible approach. P-RRT* [23] uses an artificial potential
field to guide RRT* for exploration. The addition of
the artificial potential field provides direction for RRT*
exploration and allows P-RRT* to converge faster than
RRT*. Optimizing the algorithm in the structure of RRT*
itself can also speed up the algorithm’s convergence. Q-
RRT* [24] uses triangular inequalities to improve the
nearest neighbor search and rewiring processes. Compared
to RRT*, Q-RRT* obtains a faster convergence rate. PQ-
RRT* [25] is an improved algorithm based on P-RRT* and
Q-RRT*. With the same resource consumption, PQ-RRT*
produces better initial solutions and faster convergence of
the optimal solution than P-RRT* and Q-RRT*. However, a
point worth improving is that the effectiveness of PQ-RRT*
depends on the initial parameter settings. Skilled-RRT [26]
proposes a path planning method for regular 2D building
environments. First, Skilled-RRT computes the skeleton in
a 2D environment and then uses it to extend the RRT* and
the path seeds. GMR-RRT* [27] learns from the demo and
improves the convergence speed and path quality of RRT*.
However, its generalization ability is poor.

Solving path planning problems by machine learning is
also a promising candidate. Li et al. [28] uses a neural
network to predict the cost function so that the generated
paths are near optimal and designs a new reconstruction
method for random search trees. The final paths gener-
ated by this algorithm achieve good results. Mohammadi et
al. [29] predicts reliable paths via generative adversarial net-
works [30]. However, it has poor generalization capabilities
since it is trained and tested on a straightforward and small
neural network. NRRT* [31] uses a convolutional neural
network [32] to predict promising sampling regions for
RRT*. It speeds up obtaining the optimal solution of RRT*
to some extent. However, there is still potential for improve-
ment in the predicted regions it generates. LM-RRT [33]
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guides multiple RRTs to explore the space through a rein-
forcement learning algorithm. This strategy improves the
RRT’s ability to explore the local space. However, it leads
to an unusually time-consuming RRT extension process.

6 Conclusion and further work

In this paper, we combine the advantages of unsupervised
clustering algorithms, grid-based algorithms, and sampling-
based algorithms. We propose an enhanced RRT* algorithm
with clustering and presearching (ERCP). In addition, we
study a large number of cases to compare ERCP with
RRT* and IRRT*. It is worth mentioning that ERCP is a
breathtaking winner in comparison with P-ACO, an intelli-
gent algorithm that combines the advantages of traditional
algorithms. The effect of different parameters on ERCP
performance is discussed at the end of the experiment.
The results show that ERCP strikes a convincing balance
between the quality and efficiency of the initial solution and
has strong robustness and superiority.

The advantage is that ERCP can generate sufficiently
good and stable paths for an arbitrary unknown environment
while ensuring efficiency. Moreover, ERCP can reuse the
valid sampled area multiple times after preprocessing for the
same environment. This is one of the unique advantages of
ERCP.

The main limitation of our approach is that the resulting
effective sampling area is too small in a few cases, resulting
in poor intercluster connectivity and thus curvature of the
generated paths. Therefore, the Bessel curve method is
needed to optimize the paths.

In the future, we can collect real-world datasets and
apply ERCP to test its practical application value. Another
exciting direction is obtaining the state space’s environment
semantics by adapting the first two phases of ERCP to
extend to dynamic environments.
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