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Abstract
In a complex group decision-making (GDM) process, decision makers (DMs) usually encounter some uncertainties. The
uncertainty experienced by DMs could be characterized by the non-reciprocal property of pairwise comparisons. In this
paper, the concept of non-reciprocal pairwise comparison matrices (NrPCMs) is introduced to generally capture the situation
with the breaking of reciprocal property. The transformation relation between NrPCMs and interval multiplicative reciprocal
matrices (IMRMs) is addressed. It is identified that NrPCMs together with IMRMs are inconsistent in nature. Then a
consistency index of NrPCMs is constructed according to cosine similarity measures of two row/column vectors. An
optimization-based method for eliciting priorities from NrPCMs is proposed. The properties of the proposed consistency
index and prioritization method are investigated. Furthermore, a model of building consensus in GDM with NrPCMs is
formed, where an optimization model is constructed and solved using a particle swarm optimization (PSO) algorithm. Some
comparisons with the existing methods are reported by carrying out numerical examples. The obtained results reveal that
NrPCMs provide a new yet effective way to capture the uncertainty experienced by DMs.

Keywords Group decision making · Non-reciprocal pairwise comparison matrix (NrPCM) · Consistency index ·
Consensus · Particle swarm optimization

1 Introduction

As a typical choice model, the Analytic Hierarchy Process
(AHP) has been developed and applied for more than
forty years [1, 2]. The basic mathematical tool of the
AHP model is pairwise comparison matrix (PCM), which
is produced by the technique of pairwisely comparing
criteria and alternatives. As shown in the axiomatic
foundation of AHP [3], multiplicative reciprocal property
is usually equipped for a PCM due to mathematical
intuition. It is further noted that some uncertainty is always
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encountered by decision makers (DMs) in the process
of comparing alternatives [4, 5]. An uncertainty-induced
axiomatic foundation of the AHP model has been proposed
[6], where the concept of reciprocal symmetry breaking
was introduced to characterize the uncertainty. Moreover,
the concept of interval multiplicative reciprocal matrices
(IMRMs) has been proposed to capture the experienced
uncertainty of DMs [7], which can be derived from PCMs
with the breaking of reciprocal property.

It is worth noting that there is an inherent relationship
between the concepts of PCMs and IMRMs. The concept
of IMRMs is the extension of PCMs by considering
the uncertainty of human-originated information [7]. It
is further found that IMRMs can be decomposed into
two matrices without multiplicative reciprocal property and
derived by a PCM with reciprocal symmetry breaking [6].
However, the uncertainty-induced axiomatic foundation in
[6] only considers the case with 0 < aij aji ≤ 1 where
aij denotes the comparison ratio between alternatives xi and
xj for i ∈ In = {1, 2, · · · , n}. In fact, for the reciprocal
symmetry breaking, the mixed situation with 0 < aij aji ≤
1 and 1 < aklalk < 81 could emerge. For convenience, the
mixed matrices without multiplicative reciprocal property

/ Published online: 4 October 2022

Applied Intelligence (2023) 53:12888–12907

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-022-04136-5&domain=pdf
http://orcid.org/0000-0003-3691-6902
mailto: f_liu@gxu.edu.cn; fang272@126.com
mailto: 809178529@qq.com
mailto: 2513477401@qq.com


Reaching consensus in GDM with NrPCMs

are recalled as non-reciprocal pairwise comparison matrices
(NrPCMs). It is worth mentioning that the non-reciprocal
property of pairwise comparisons has been considered
theoretically and experimentally [8, 9]. Here we further link
the non-reciprocal property to the uncertainty of decision
information. That is, when the multiplicative reciprocal
property of PCMs is relaxed, the generalized NrPCMs
can be used to characterize decision information under
uncertainty. Moreover, from the viewpoint of producing
a NrPCM, the workload is equal to that of giving an
IMRM. And NrPCMs exhibit a simpler form than IMRMs.
Motivated by the above considerations, we focus on the
concept of the generalized NrPCMs and its application to
group decision making (GDM), since GDM under uncertain
environments has still been a research hotspot [10–15]. In
particular, the consistency index and prioritization method
are studied for NrPCMs. The main contributions are worth
mentioning below:

• The concept of NrPCMs is proposed generally. The
transformation relation between IMRMs and NrPCMs
is carefully addressed.

• The consistency index of NrPCMs is proposed. It is
identified that NrPCMs are inconsistent in nature due to
the lacking of multiplicative reciprocal property.

• The priority vector is derived from NrPCMs by
constructing an optimization model.

• The proposed consistency index and prioritization
method are used to propose a consensus model in
GDM, where individual NrPCMs are optimized using
the particle swarm optimization (PSO) algorithm.

The paper is organized as follows. In Section 2, a
literature review is provided to give a solid foundation
for the present study. Section 3 introduces some concepts
related to PCMs, IMRMs and NrPCMs, respectively. The
relationship between IMRMs and NrPCMs is studied and
some interesting properties are reported. In Section 4,
a consistency index is proposed for NrPCMs and some
comparisons are given by numerical computations. Then the
prioritization method is constructed to derive the priority
vector from NrPCMs. Section 5 gives a consensus model
with NrPCMs and offers some discussions on the effects of
the parameters and comparisons with the existing methods.
Finally, the conclusions and future research direction are
covered in Section 6.

2 Literature review

Our contributions are related to the line of work that
addresses consistency index, prioritization method and
consensus reaching model [11, 16, 17]. It is found that

DMs always provide inconsistent PCMs [1]. In order to
quantify the inconsistency degrees of PCMs, an index
should be proposed. The earliest contribution is attributed to
Saaty’s consistency index (CI) and consistency ratio (CR)
[1], which are constructed from a global view point to
measure the deviation degree of inconsistent PCMs from
a consistent one. The geometric consistency index (GCI)
of PCMs was formalized in [18] using the average value
of the squared difference between the logarithm of entries
and the corresponding ratio of priorities. The consistency
index C∗ of a PCM was determined by the average of
the determinants of 3 × 3 submatrices [19]. A statistical
approach was proposed to measure the consistency level
of PCMs in [20]. The cosine similarity measures of two
column vectors in a PCM were used to obtain the cosine
consistency index (CCI) in [21]. The CCI was further
extended to the double cosine similarity consistency index
(DCSCI) by considering row/column vectors in a PCM
[22]. In general, the consistency indexes of PCMs have
been analyzed and compared using an axiomatic approach
[23]. Recently, the distance-based method has been used to
measure the consistency and transitivity degrees of pairwise
comparisons [24]. It is seen from the above analysis that
the consistency indexes of PCMs have been widely studied
according to various views. Moreover, consistency indexes
of interval-valued comparison matrices have also attracted
much attention [25]. For example, Conde and Pérez [26]
have defined a consistency index of IMRMs by considering
the existence of an associated PCM with consistency. Dong
et al. [27] have constructed two consistency indexes of
interval-valued comparison matrices where the deviation
degree of a PCM from a consistent one. Liu et al. [28]
have given a consistency index of IMRMs by considering
the boundary matrices and the permutations of alternatives.
The result in [28] shows that a consistent PCM is the
limiting case of an IMRM. In addition, the cardinal and
ordinal consistencies of fuzzy preference relations have also
attracted a great deal of attention with some investigations
of consistency index [29–32]. Here we construct the
consistency index of NrPCMs and consider its extension to
IMRMs.

Moreover, it is important to derive the priority vec-
tor from a preference relation. When considering a PCM,
many methods have been proposed [33]; and here they are
split into two classes. One is the direct computation meth-
ods using a mathematical theory. For example, based on
the matrix eigenvalue theory, the eigenvector method was
considered to be the only way to give the priorities and
correct ranking of alternatives [34]. According to the sta-
tistical theory, the scaling method was proposed to elicit
the priorities of alternatives [35]. The other is the distance-
based optimization methods by constructing various
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objective functions. For instance, the logarithmic least
squares method was proposed by Crawford and Williams
to obtain the geometric mean priority vector of alterna-
tives [36]. By considering the singular value decomposition
(SVD) of a matrix, the priorities of alternatives were deter-
mined by explicitly solving an optimization problem [37].
A linear goal programming model was established to derive
the priorities in [38] from a PCM. By maximizing the
cosine similarity degree of two row vectors in a PCM,
the priority vector was elicited in [21]. The cosine maxi-
mization method in [21] has been further extended to the
double cosine similarity maximization method in [22]. The
extended logarithmic least squares method was proposed
to derive individual and collective priority vectors from
multiplicative preference relations with self-confidence in
[39]. In addition, when deriving the priority vector from
IMRMs, the prioritization methods of PCMs have been
extended to propose the corresponding techniques. It is
seen that the sampling method has been given for deriving
the interval weights from IMRMs [7]. The convex com-
bination method has been proposed to directly compute
the interval weights from an IMRM [28, 40]. Following
the ideas of CI and GCI, two methods have been used to
determine the interval weights of alternatives from IMRMs
[41]. Recently, the eigenvector method has been further
applied to derive the interval priority vector from IMRMs
[42]. In addition, many mathematical programming mod-
els have been constructed to elicit the priority vector from
IMRMs [43, 44]. In the present study, an optimization
model will be established to elicit the priority vector from
NrPCMs.

At the end, let us briefly review consensus reaching
models in GDM. In order to achieve a widely accepted
solution to a GDM problem, the consensus of experts
should be considered [11, 45]. The consensus level is
always measured by proposing an index or characterized
by a function. For example, based on the distance between
eigenvectors of individual and collective PCMs, the group
consensus was computed in [10, 46]. The similarity degree
between individual and collective fuzzy preference relations
was used to define the consensus level of group in [47,
48]. The distance-based method was usually developed
to capture the consensus degree between individual and
collective judgements of DMs [49–53]. In the process of
reaching consensus, two approaches are always adopted.
One is the optimization-based method for reaching an
optimal consensus level [10, 46–48, 54–56]. The other
is to use the threshold of consensus index to give an
acceptable consensus degree [49–53]. This paper focuses
on the optimization-based consensus model with NrPCMs,
which is solved using a PSO algorithm.

3 Preliminaries and notations

Suppose that there are a finite set of alternatives X =
{x1, x2, . . . , xn} in a decision making problem. The DM
compares the alternatives in pairs and gives her/his opinions.
In the following, we recall some basic definitions and offer
some novel findings.

3.1 Basic definitions

When the judgements of DMs are expressed as positive
real numbers, the concept of PCMs with multiplicative
reciprocal property is given as follows:

Definition 1 Saaty [1] A PCM A = (aij )n×n is
multiplicative reciprocal, if aij = 1/aji and aij ∈ R

+ for
∀i, j ∈ In.

In addition, by considering the strict transitivity of
judgements, the consistent PCM is defined:

Definition 2 Saaty [1] A PCM A = (aij )n×n is consistent
if aij = aik · akj for ∀i, j, k ∈ In.

It is seen that when A = (aij )n×n is consistent, the
condition of aij = aik · akj yields the multiplicative
reciprocal property aij aji = 1 for ∀i, j ∈ In. In other
words, the multiplicative reciprocal property is a necessary
condition for the consistency of PCMs in Definition 2.
When a PCM is not with multiplicative reciprocal property,
it must be inconsistent.

Moreover, by considering the uncertainty experienced by
DMs, the concept of IMRMs is provided below:

Definition 3 [7] An IMRM Ā is represented as

Ā = (āij )n×n =

⎛
⎜⎜⎜⎝

[1, 1] [
a−

12, a
+
12

] · · · [a−
1n, a

+
1n

]
[
a−

21, a
+
21

] [1, 1] · · · [a−
2n, a

+
1n

]
...

...
...

...[
a−
n1, a

+
n1

] [
a−
n2, a

+
n2

] · · · [1, 1]

⎞
⎟⎟⎟⎠

(1)

where a−
ij and a+

ij are non-negative real numbers satisfying

a−
ij ≤ a+

ij , a−
ij · a+

ji = 1 and a+
ij · a−

ji = 1. The term āij

indicates that the comparison ratio of alternatives xi over xj

lies between a−
ij and a+

ij .

It is seen that two boundary PCMs with multiplicative
reciprocal property can be constructed from an IMRM Ā
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[40]. In addition, since the comparison ratio is considered
to be uniformly distributed in [a−

ij , a+
ij ], the following two

boundary matrices can be also determined:

AL = (a−
ij )n×n =

⎛
⎜⎜⎜⎝

1 a−
12 · · · a−

1n

a−
21 1 · · · a−

2n
...

...
...

...
a−
n1 a−

n2 · · · 1

⎞
⎟⎟⎟⎠ , (2)

AR = (a+
ij )n×n =

⎛
⎜⎜⎜⎝

1 a+
12 · · · a+

1n

a+
21 1 · · · a+

2n
...

...
...

...
a+
n1 a+

n2 · · · 1

⎞
⎟⎟⎟⎠ . (3)

In general, we have 0 < a−
ij a−

ji ≤ 1 and a+
ij a+

ji ≥ 1 since

a−
ij ≤ a+

ij for i, j ∈ In. The two matrices AL and AR

are inconsistent, unless Ā degenerates to a consistent PCM
with a−

ij = a+
ij (i, j ∈ In). As compared to Definition

1, the difference in AL and AR is that the multiplicative
reciprocal property has been relaxed. In the recent paper
[6], the concept of reciprocal symmetry breaking has been
proposed to consider the case without reciprocal property.
The case of 0 < a−

ij a−
ji ≤ 1 has been used to establish

the novel axiomatic foundation of the AHP model under
uncertainty. Here we generally consider the mixed situation,
where the two cases of 0 < a−

ij a−
ji ≤ 1 and a+

ij a+
ji ≥ 1 may

exist at the same time in a matrix. The concept of NrPCMs
is proposed as follows:

Definition 4 If there is a pair of entries in a PCM A =
(aij )n×n such that the relation aij · aji = 1 is not satisfied,
A is called a non-reciprocal pairwise comparison matrix
(NrPCM).

One can find from Definition 4 that when aij · aji �= 1
for at least a pair of i and j, a NrPCM is given. For a
practical situation, when the DM compares alternatives xi

and xj to give the judgement aij , the comparison ratio
of xj over xi is written as aji . A NrPCM means that
it is not necessary to satisfy the relation aij · aji =
1. For example, when considering the scale [1/9, 9] and
giving aij = 1/4, the value of aji could deviate from
4 to a certain degree. This deviation is attributed to the
uncertainty experienced by DMs [7]. As compared to
the process of giving IMRMs, the method of providing
NrPCMs seem simpler and more direct. The reveal-valued
comparison matrix is more intuitive than an interval-valued
one. Hereafter, similar to the idea in [6], when talking about
PCMs, it means that the multiplicative reciprocal property
may be not satisfied. Clearly, AL and AR are two particular
NrPCMs corresponding to 0 < a−

ij a−
ji ≤ 1 and a+

ij a+
ji ≥ 1,

respectively.

3.2 The relationship between NrPCMs and IMRMs

In what follows, let us discuss the relationship between
NrPCMs and IMRMs. For a generalized PCM A =
(aij )n×n, it is convenient to define the uncertainty degree as

hij = 1

aij · aji

, i, j ∈ In. (4)

When the scale [1/9, 9] is used, it gives hij ∈ [1/81, 81]
for ∀i, j ∈ In. It is seen that the interval [1/81, 81] can
be easily transformed into [0, 1] by only using a linear
transformation. Here for the sake of simplicity, the interval
[0, 1] is not used for the uncertainty degree. Then the
uncertainty matrix is determined as:

H = (hij )n×n. (5)

Since hij = hji, we can find that H is a symmetric matrix.
When hij = 1 for ∀i, j ∈ In, A = (aij )n×n is a PCM
with multiplicative reciprocal property. When there are a
pair of i and j for holding hij �= 1, A = (aij )n×n is a
NrPCM. Furthermore, we consider the relationship between
the two PCMs AL and AR . Similar to (4) and (5), we give
the following terms:

h−
ij = 1

a−
ij a−

ji

, h+
ij = 1

a+
ij a+

ji

, i, j ∈ In, (6)

and

HL = (h−
ij )n×n, HR = (h+

ij )n×n. (7)

According to the relations a−
ij · a+

ji = 1 and a+
ij · a−

ji = 1, it
gives

h−
ij = 1

a−
ij

· 1

a−
ji

= a+
ij · a+

ji = 1

h+
ij

. (8)

The above observation shows that the uncertainty degree
of IMRMs can be characterized using the two symmetric
matrices HL and HR, respectively. Hence, we have the
following property:

Theorem 1 For an IMRM Ā = (āij )n×n, letting AL =
(a−

ij )n×n and AR = (a+
ij )n×n, it follows

AR = AL ◦ HL, AL = AR ◦ HR, (9)

where the symbol “◦” denotes the Hadamard product of two
matrices.

Proof Since

a+
ij = a−

ij · a+
ij

a−
ij

= a−
ij · 1

a−
ij a−

ji

= a−
ij · h−

ij ,

and

a−
ij = a+

ij · a−
ij

a+
ij

= a+
ij · 1

a+
ij a+

ji

= a+
ij · h+

ij ,
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for ∀i, j ∈ In, we get AR = AL ◦ HL and AL = AR ◦
HR .

It is noted from the above analysis that both NrPCMs
and IMRMs can be used to capture the uncertainty of DMs.
Moreover, the transformation relationship between NrPCMs
and IMRMs can be determined as follows:

Theorem 2 For a NrPCM A = (aij )n×n, let

a−
ij = aij · hij , a+

ij = aij for aij · aji ≥ 1, (10)

and

a−
ij = aij , a+

ij = aij · hij for aij · aji < 1, (11)

where hij has been defined in (4). Then an IMRM Ā =
([a−

ij , a+
ij ])n×n is uniquely determined by (10) and (11).

Proof If aij · aji ≥ 1, we can determine hij = 1
aij ·aji

≤ 1,

and

a−
ij = aij · hij ≤ aij = a+

ij .

According to (10), it follows:

a−
ij = aij · hij , a+

ij = aij ,

and

a−
ji = aji · hji, a+

ji = aji .

Therefore, it is calculated that

a−
ij · a+

ji = aij · hij · aji = aij · aji · 1

aij · aji

= 1,

and

a+
ij · a−

ji = aij · aji · hji = aij · aji · 1

aji · aij

= 1.

Similarly, when aij · aji < 1, we also obtain a−
ij ≤

a+
ij , a−

ij · a+
ji = 1 and a+

ij · a−
ji = 1. Hence, an

IMRM Ā = ([a−
ij , a+

ij ])n×n is constructed and the proof is
completed.

It is seen from Theorem 1 that an IMRM can be
decomposed into two NrPCMs with the relations in (9). A
NrPCM can be transformed into an IMRM according to
Theorem 2. When all the entries in a NrPCM A = (aij )n×n

satisfy aij · aji ≥ 1 or 0 < aij · aji ≤ 1, A = (aij )n×n is
written as AR or AL and an IMRM is determined using (9).
When the two cases of aij ·aji ≥ 1 and 0 < aij ·aji ≤ 1 are
all existing, some computations should be made to obtain

an IMRM in terms of Theorem 2. For example, we consider
the following NrPCM:

A1 =

⎛
⎜⎜⎜⎜⎝

1 4 3 7 5
1/5 1 1/2 5 3
1/3 3 1 6 3
1/7 1/5 1/5 1 1/3
1/6 1/3 1/2 3 1

⎞
⎟⎟⎟⎟⎠

.

It is seen that a23 ·a32 = 1
2 ·3 = 3

2 > 1, then h23 = h32 = 2
3 .

According to (10), we have

a−
23 = a23 · h23 = 1

2
· 2

3
= 1

3
, a+

23 = a23 = 1

2
,

and

a−
32 = a32 · h32 = 3 · 2

3
= 2, a+

32 = a32 = 3,

meaning that

ā23 =
[

1

3
,

1

2

]
, ā32 = [2, 3].

Because a12 · a21 = 4 · 1
5 = 4

5 < 1, then it gives h12 =
h21 = 5

4 . The application of (11) yields

a−
12 = a12 = 4, a+

12 = a12 · h12 = 4 · 5

4
= 5,

and

a−
21 = a21 = 1

5
, a+

21 = a21 · h21 = 1

5
· 5

4
= 1

4
,

implying that

ā12 = [4, 5], ā21 =
[

1

5
,

1

4

]
.

For the case of a13 · a31 = 3 · 1
3 = 1, it is natural to give

h13 = h31 = 1 and

ā13 = [3, 3], ā31 =
[

1

3
,

1

3

]
.

According to the above computations, the IMRM Ā1 can be
determined:

Ā1 =

⎛
⎜⎜⎜⎜⎝

[1, 1] [4, 5] [3, 3] [7, 7] [5, 6]
[1/5, 1/4] [1, 1] [1/3, 1/2] [5, 5] [3, 3]
[1/3, 1/3] [2, 3] [1, 1] [5, 6] [2, 3]
[1/7, 1/7] [1/5, 1/5] [1/6, 1/5] [1, 1] [1/3, 1/3]
[1/6, 1/5] [1/3, 1/3] [1/3, 1/2] [3, 3] [1, 1]

⎞
⎟⎟⎟⎟⎠

.

4 Consistency index and prioritization
method of NrPCMs

It is noted that NrPCMs are inconsistent due to the lack of
multiplicative reciprocal property. It is important to propose
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a consistency index to quantify the inconsistency degree and
a prioritization method of NrPCMs.

4.1 A consistency index based on cosine similarity
measure

Following the ideas in [21, 22], the cosine similarity
measure of two vectors is used to construct a consistency
index of NrPCMs. For convenience, we recall the following
definitions:

Definition 5 [21] For 	vi = (vi1, vi2, . . . , vin) and 	vj =
(vj1, vj2, . . . , vjn), the cosine similarity measure is given
as:

CSM(	vi, 	vj ) = ‖	vi � 	vj‖
‖	vi‖ · ‖	vj‖ = ‖∑n

k=1 vikvjk‖√∑n
k=1 v2

ik

√∑n
k=1 v2

jk

,

(12)

where the symbol � is the dot product of two vectors.

Then the properties of cosine similarity measure are
given as follows [21]:

• 0 ≤ CSM(	vi, 	vj ) ≤ 1;
• CSM(	vi, 	vi) = 1;
• CSM(	vi, 	vj ) = 1 means that 	vi and 	vj are completely

similar;
• CSM(	vi, 	vj ) = 0 implies that 	vi and 	vj are not similar

at all;
• CSM(	vi, 	vj ) < CSM(	vi, 	vk) indicates that 	vk is more

like 	vi than 	vj .

According to the cosine similarity measure, a consistency
index of PCMs has been constructed:

Definition 6 [22] Assume that A = (aij )n×n is a PCM.
The row and column vectors of A = (aij )n×n are written
as 	ai· = (ai1, ai2, . . . , ain) and 	a·i = (a1i , a2i , . . . , ani)

T

for i ∈ In, respectively. The double cosine similarity
consistency index (DCSCI) is defined as:

DCSCI (A) = 1

n(n − 1)

n∑
i<j

(2 − rij − cij ), (13)

when rij = CSM(	ai·, 	aj ·) and cij = CSM(	a·i , 	a·j ).

One can see from the finding in [22] that the values of
rij and cij could be different for a PCM with multiplicative
reciprocal property. In the present study, in order to consider
the non-reciprocal property of NrPCMs, the DCSCI should
be modified. Therefore, we propose a consistency index of
NrPCMs as follows:

Definition 7 For a generalized PCM A = (aij )n×n, the
consistency index is defined as:

CSCI (A) = 1

2n2

n∑
i=1

n∑
j=1

(
2 − rij + eij

2
− cij + fij

2

)
,

(14)

where rij = CSM(	ai·, 	aj ·), cij = CSM(	a·i , 	a·j ), eij =
CSM(	ai·, 	a−1

·j ), and fij = CSM(	a·i , 	a−1
j · ) with

	a−1
i· =
(

1

ai1
,

1

ai2
, · · · 1

ain

)
, 	a−1

·i =
(

1

a1i

,
1

a2i

, · · · ,
1

ani

)T
.

(15)

It is noted from Definition 7 that the proposed
consistency index for a generalized PCM considers the
cosine similarity measures of two row vectors, two column
vectors, the row vectors and the reciprocal vectors of
column vectors, the column vectors and the reciprocal
vectors of row vectors. The uncertainty of a NrPCM has
been incorporated into the proposed consistency index.
Now, we give the properties in the following result:

Theorem 3 Suppose that A = (aij )n×n is a generalized
PCM. The consistency index in (14) satisfies:

(1) 0 ≤ CSCI (A) ≤ 1;
(2) CSCI (A) = 0 if and only if A is consistent according

to Definition 2;

(3) CSCI (A) = n − 1

n
DCSCI (A) when A is with

multiplicative reciprocal property.

Proof (1) Since we have 0 ≤ CSM(	vi, 	vj ) ≤ 1 for any two
vectors, it is determined 0 ≤ CSCI (A) ≤ 1 according to
(14).

(2) When A = (aij )n×n is perfectly consistent, one has
aij = aik · akj for ∀i, j, k ∈ In. Therefore, it follows

aij ·aji = aik ·akj ·ajk ·aki = aik ·aki ·ajk ·akj = aii ·ajj = 1,

for ∀i, j ∈ In. Thus, we have

rij =
∑n

k=1 aikajk√∑n
k=1 a2

ik

√∑n
k=1 a2

jk

=
∑n

k=1 aij a
2
jk√∑n

k=1 a2
ij a

2
jk

√∑n
k=1 a2

jk

= 1,

eij =
∑n

k=1 aik(1/akj )√∑n
k=1a

2
ik

√∑n
k=1(1/akj )2

=
∑n

k=1 aikajk√∑n
k=1 a2

ik

√∑n
k=1 a2

jk

=rij =1,

cij =
∑n

k=1 akiakj√∑n
k=1a

2
ki

√∑n
k=1 a2

kj

=
∑n

k=1 a2
kiaij√∑n

k=1 a2
ki

√∑n
k=1 a2

kia
2
ij

= 1,

fij =
∑n

k=1 aki (1/ajk)√∑n
k=1a

2
ki

√∑n
k=1(1/ajk)2

=
∑n

k=1 akiakj√∑n
k=1 a2

ki

√∑n
k=1 a2

kj

= cij =1.
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This means that CSCI (A) = 0 by virtue of Definition 7.
On the contrary, the application of CSCI (A) = 0 leads

to
rij + eij

2
+ cij + fij

2
= 2.

Moreover, in terms of Definition 5, it follows 0 ≤
rij , eij , cij , fij ≤ 1. Hence, we must have rij = eij =
cij = fij = 1 for ∀i, j ∈ In. According to the properties of
cosine similarity measure and Definition 7, A = (aij )n×n is
perfectly consistent.

(3) When A = (aij )n×n is with multiplicative reciprocal
property, one has

aij = 1/aji, i, j ∈ In.

Therefore, it follows:

eij = CSM(	ai·, 	a−1
·j )

=
∑n

k=1 aik(1/akj )√∑n
k=1 a2

ik

√∑n
k=1(1/akj )2

=
∑n

k=1 aikajk√∑n
k=1 a2

ik

√∑n
k=1 a2

jk

= rij ,

Similarly, we can get fij = cij for ∀i, j ∈ In. Based on
Definition 5, the following relations hold:

rij = rji , cij = cji .

Hence, we have

CSCI (A) = 1

2n2

n∑
i=1

n∑
j=1

(2 − rij + eij

2
− cij + fij

2
)

= 1

2n2

n∑
i=1

n∑
j=1

(2 − rij − cij )

= 1

n2

n∑
i<j

(2 − rij − cij )

= n − 1

n

1

n(n − 1)

n∑
i<j

(2 − rij − cij )

= n − 1

n
DCSCI (A).

It is found from Theorem 3 that the consistency index is
based on the deviation degree of a generalized PCM from
a consistent one. The more the value of CSCI (A) is, the
more the inconsistency degree of A is. As compared to
the DCSCI in [22], the only difference is the coefficient
for a PCM A with multiplicative reciprocal property. This
is attributable to the different coefficient when defining
the two consistency indexes. Moreover, the acceptable

consistency of NrPCMs should be considered according to
the proposed consistency index in (14). Here we follow the
idea of Saaty [1] to randomly generated 10,000 NrPCMs
and give the mean value of CSCI as the random consistency
index in Table 1 for n = 2, 3, · · · , 9, respectively. As
compared to the random index of consistency index in [1],
the main difference is the non-zero value for n = 2 here.
Then the consistency ratio is defined as

CRNr(A) = CSCI (A)

CSCI
. (16)

When CRNr(A) ≤ 0.1, matrix A is considered to be
acceptable. Otherwise, matrix A is unacceptable and could
be adjusted to a new matrix with acceptable consistency.

As an illustration, we compute the value of CSCI for the
following NrPCM:

A2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 3 3 1 3 4
1/4 1 7 3 1/6 1
1/3 1/6 1 1/5 1/5 1/6
1 1/3 4 1 1 1/3

1/3 5 3 1 1 3
1/4 1 6 3 1/2 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

According to Definition 7, it gives

R2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1.0000 0.6106 0.7076 0.6574 0.8952 0.6448
0.6106 1.0000 0.9301 0.9440 0.6194 0.9967
0.7076 0.9301 1.0000 0.9896 0.6460 0.9266
0.6574 0.9440 0.9896 1.0000 0.5773 0.9423
0.8952 0.6194 0.6460 0.5773 1.0000 0.6403
0.6448 0.9967 0.9266 0.9423 0.6403 1.0000

⎞
⎟⎟⎟⎟⎟⎟⎠

,

C2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1.0000 0.6032 0.6902 0.5550 0.8860 0.7378
0.6032 1.0000 0.5846 0.5210 0.7433 0.9304
0.6902 0.5846 1.0000 0.9792 0.5526 0.6221
0.5550 0.5210 0.9792 1.0000 0.4562 0.5594
0.8860 0.7433 0.5526 0.4562 1.0000 0.9148
0.7378 0.9304 0.6221 0.5594 0.9148 1.0000

⎞
⎟⎟⎟⎟⎟⎟⎠

,

E2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.9923 0.6281 0.7332 0.6267 0.8249 0.6348
0.5859 0.9979 0.9161 0.9491 0.7283 0.9977
0.6790 0.9240 0.9925 0.9853 0.7483 0.9237
0.6221 0.9367 0.9917 0.9970 0.6961 0.9381
0.9360 0.6355 0.6330 0.5605 0.9653 0.6377
0.6199 0.9990 0.9205 0.9419 0.7380 0.9997

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and

F2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.9986 0.6104 0.7385 0.5570 0.8904 0.7707
0.6060 0.9979 0.6926 0.5210 0.7397 0.8534
0.7176 0.5518 0.9773 0.9796 0.5368 0.6305
0.5845 0.4848 0.9336 0.9999 0.4331 0.5730
0.8796 0.7688 0.6002 0.4566 0.9979 0.9497
0.7406 0.9428 0.6822 0.5594 0.9107 0.9848

⎞
⎟⎟⎟⎟⎟⎟⎠

.

It is found that matrices R2 and C2 are symmetric, while
matrices E2 and F2 are asymmetric. By virtue of (14), we
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Table 1 Random consistency
index of NrPCM with order n n 2 3 4 5 6 7 8 9

CSCI 0.1393 0.2928 0.3840 0.4382 0.4713 0.4921 0.5055 0.5141

arrive at CSCI (A2) = 0.2179 and CRNr(A2) = 0.5222 >

0.1, meaning that A2 is not of acceptable consistency.
By the way, based on the relationship between NrPCMs

and IMRMs, we can construct a novel consistency index of
IMRMs as follows:

Definition 8 Suppose that two NrPCMs AL and AR are
obtained from an IMRM Ā = (āij )n×n. The consistency
index of Ā is defined as:

NCI (Ā) = CSCI (AL) + CSCI (AR)

2
. (17)

As shown in Theorem 3, the properties of NCI (Ā) can
be obtained straightforwardly and the detailed procedures
have been omitted. In particular, it is observed that if and
only if NCI (Ā) = 0, IMRM Ā degenerates to a consistent
PCM. That is, the value of NCI (Ā) can be considered as
the deviation degree of Ā from a consistent PCM. The above
observation is in agreement with the finding in [28]. For
example, we consider the IMRM as follows [27, 28, 40]:

Ā2 =

⎛
⎜⎜⎝

[1, 1] [2, 5] [2, 4] [1, 3]
[1/5, 1/2] [1, 1] [1, 3] [1.2]
[1/4, 1/2] [1/3, 1] [1, 1] [1/2, 1]
[1/3, 1] [1/2, 1] [1, 2] [1, 1]

⎞
⎟⎟⎠ .

The results in [28] have shown that ICI (Ā2) = 0,

SICI (Ā2) = 0.3385 and WCI (Ā2) = 0.0483. Here
the application of (17) leads to NCI (Ā2) = 0.0592 and
ICI (Ā2) < WCI (Ā2) < NCI (Ā2) < SICI (Ā2).

4.2 An optimizationmethod of eliciting priorities

When the judgements of DMs are expressed as NrPCMs,
one of the important issues is on how to derive the priority
vector of alternatives. Suppose that 	ω = (ω1, ω2, . . . , ωn)

T

with
∑n

i=1 ωi = 1 and ωi ≥ 0 (i ∈ In) is the priority
vector obtained from a PCM A = (aij )n×n. Moreover, let
	t = (t1, t2, . . . , tn) and ti · ωi = 1. If A = (aij )n×n is
consistent, then aij = ωi

ωj
[1]. At the same time, one has

	ai· = ωi(
1
ω1

, 1
ω2

, . . . 1
ωn

) = ωi(t1, t2, . . . , tn) and 	a·j =
1
ωj

(ω1, ω2, . . . ωn)
T . In the following, based on the idea

of constructing CSCI in (14), we propose an optimization
model to elicit the priorities of alternatives.

First, by considering the non-reciprocal property of
NrPCM A = (aij )n×n, we construct a new matrix D =
(dij )n×n where

dij =
aij + 1

aji

2
, i, j ∈ In. (18)

According to Definition 5, we have

Cj = CSM( 	ω, 	d·j ), Ri = CSM(	t, 	di·), (19)

where 	di· = (di1, di2, . . . , din) and 	d·j = (d1j , d2j , . . . ,

dnj )
T for i, j ∈ In. It is further obtained that

C =
n∑

j=1

Cj =
∑n

j=1
∑n

i=1 ωidij√∑n
i=1 ω2

i

√∑n
i=1 d2

ij

=
∑n

j=1
∑n

i=1 ωi

aij + 1
aji

2

√∑n
i=1 ω2

i

√
∑n

i=1(
aij + 1

aji

2 )2

, (20)

R =
n∑

i=1

Ri =
∑n

i=1
∑n

j=1 tj dij√∑n
j=1 t2

j

√∑n
j=1 d2

ij

=
∑n

i=1
∑n

j=1 tj
aij + 1

aji

2

√∑n
j=1 t2

j

√
∑n

j=1(
aij + 1

aji

2 )2

. (21)

Second, similar to the finding in [22], the optimization
model is established as follows:

max F = pC + qR

s.t .

⎧⎨
⎩

∑n
i=1 ωi = 1,

tiωi = 1, i ∈ In,

ωi ≥ 0, i ∈ In,

(22)

where p ≥ 0 and q ≥ 0 are constants. If A is
with multiplicative reciprocal property, the optimization
model (22) degenerates to that in [22]. For convenience,
the proposed model is called as the cosine similarity
maximization method (CSM). For the optimal solutions, we
have the following result:

Theorem 4 Assume that the optimal solution to the
optimization problem (22) is 	ω∗ = (ω∗

1, ω∗
2, . . . , ω∗

n)
T and

the optimal value is F ∗.
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(1) When p = 1 and q = 0, the optimal solution and
value of the optimization model (22) are determined as:

ω∗
i = ω̂∗

i∑n
j=1 ω̂∗

j

, i ∈ In, F ∗ =

√√√√√
n∑

i=1

⎛
⎝

n∑
j=1

uij

⎞
⎠

2

,

(23)

where

ω̂∗
i =

∑n
j=1 uij√∑n

i=1(
∑n

j=1 uij )2
, uij = dij√∑n

i=1 d2
ij

,

dij =
aij + 1

aji

2
. (24)

(2) When p = 0 and q = 1, the optimal solution and
value of the optimization model (22) are given as:

ω∗
i = 1/t̂∗i∑n

j=1(1/t̂∗j )
, i ∈ In, F ∗ =

√√√√√
n∑

j=1

(
n∑

i=1

vij

)2

,

(25)

where

t̂∗j =
∑n

i=1 vij√∑n
j=1(
∑n

i=1 vij )2
, vij = dij√∑n

j=1 d2
ij

,

dij =
aij + 1

aji

2
. (26)

Proof (1) When p = 1 and q = 0, letting

ω̂i = ωi√∑n
j=1 ω2

j

≥ 0, i ∈ In,

and

uij = dij√∑n
i=1 d2

ij

> 0, i, j ∈ In,

we have
n∑

i=1

ω̂2
i = 1,

n∑
i=1

u2
ij = 1.

Then the optimization model (22) is simplified as the
following form:

max F =
n∑

j=1

n∑
i=1

uij ω̂i =
n∑

i=1

⎛
⎝

n∑
j=1

uij

⎞
⎠ ω̂i

s.t .

{∑n
i=1 ω̂2

i = 1,

ω̂i ≥ 0, i ∈ In.
(27)

The model (27) can be solved by introducing the Lagrangian
function as follows:

L(C, λ) = C + λ

(
n∑

i=1

ω̂2
i − 1

)

=
n∑

i=1

⎛
⎝

n∑
j=1

uij

⎞
⎠ ω̂i + λ

(
n∑

i=1

ω̂2
i − 1

)
.

By assuming

∂L(C, λ)

∂ω̂i

=
n∑

j=1

uij + 2λω̂i = 0, i ∈ In,

it gives

ω̂i = −
∑n

j=1 uij

2λ
.

According to
∑n

i=1 ω̂2
i = 1, ω̂i ≥ 0 and uij > 0, one has

λ < 0 and

n∑
i=1

⎛
⎝

n∑
j=1

uij /2λ

⎞
⎠

2

=
n∑

i=1

ω̂2
i = 1.

Then it follows

λ = −

√√√√√
n∑

i=1

⎛
⎝

n∑
j=1

uij

⎞
⎠

2

/2,

and

ω̂∗
i = −

∑n
j=1 uij

2λ
=

∑n
j=1 uij√∑n

i=1(
∑n

j=1 uij )2
, i ∈ In,

F ∗ =
n∑

i=1

(
n∑

j=1
uij

)
ω̂∗

i =
√√√√ n∑

i=1

(
n∑

j=1
uij

)2

.

We further normalize the vector ω̂∗
i to give

ω∗
i = ω̂∗

i∑n
j=1 ω̂∗

j

, i ∈ In.

(2) When p = 0 and q = 1, the proof is similar to the
case (1) and the detailed procedure has been omitted for
saving space.

In general, when p �= 0 and q �= 0, the optimization
model (22) should be solved using a resolution algorithm.
For example, let us assume p+q = 1 and derive the priority
vector from the following NrPCM:

A2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 3 3 1 3 4
1/4 1 7 3 1/6 1
1/3 1/6 1 1/5 1/5 1/6
1 1/3 4 1 1 1/3

1/3 5 3 1 1 3
1/4 1 6 3 1/2 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Table 2 Priority vectors and rankings for A2 under various prioritization methods

Priority CSM EV WLS AN LLS

p = 0 p = 0.25 p = 0.5 p = 0.75 p = 1

w1 0.2984 (1) 0.2905 (1) 0.2888 (1) 0.2881 (1) 0.2894 (1) 0.3120 (1) 0.4074 (1) 0.2946 (1) 0.3137 (1)

w2 0.1316 (5) 0.1391 (5) 0.1458 (5) 0.1517 (4) 0.1577 (3) 0.1419 (4) 0.0995 (5) 0.1543 (4) 0.1409 (4)

w3 0.0503 (6) 0.0508 (6) 0.0508 (6) 0.0500 (6) 0.0423 (6) 0.0358 (6) 0.0377 (6) 0.0394 (6) 0.0395 (6)

w4 0.1492 (4) 0.1491 (4) 0.1474 (4) 0.1454 (5) 0.1450 (5) 0.1255 (5) 0.1123 (4) 0.1381 (5) 0.1249 (5)

w5 0.2088 (2) 0.2091 (2) 0.2080 (2) 0.2073 (2) 0.2082 (2) 0.2370 (2) 0.2163 (2) 0.2169 (2) 0.2257 (2)

w6 0.1618 (3) 0.1613 (3) 0.1593 (3) 0.1576 (3) 0.1575 (4) 0.1479 (3) 0.1268 (3) 0.1568 (3) 0.1553 (3)

The obtained results are shown in Table 2 according to the
proposed method. In addition, it is seen that there are many
methods to derive the priority vector from PCMs [33]. For
the sake of simplicity, here we extend serval representative
methods to A2, such as the eigenvector method (EM) [35],
the additive normalization method (AN) [1], the weighted
least-squares method (WLS) [57] and the logarithmic least
squares (LLS) method [36]. As shown in Table 2, the rank-
ing of alternatives is dependent on the values of p or q.
When p = 0, p = 0.25 and p = 0.5, the CSM-based rank-
ing is in accordance with that using WLS. When p = 0.75,

the ranking using CSM is in agreement with those using
EV, AN and LLS. Furthermore, in order to assess the per-
formance of various prioritization methods, we also use the
following two error criteria [58]:

ED( 	w) =
⎡
⎣

n∑
i=1

n∑
j=1

(
aij − ωi

ωj

)2
⎤
⎦

1/2

,

and

MV ( 	ω) =
n∑

i=1

n∑
j=1

lij ,

with

lij =

⎧⎪⎪⎨
⎪⎪⎩

1, ωi > ωj , aji > 1 or aij < 1,

0.5, ωi = ωj , aji �= 1 or aij �= 1,

0.5, ωi �= ωj , aji = 1 or aij = 1,

0, otherwise.

The less the values of ED or MV, the better the perfor-
mance of the prioritization method is. The obtained results
are given in Table 3. It is seen that the proposed method
is effective and better than the others according to the
criterion ED.

5 Reaching consensus in GDMwith NrPCMs

One can see that the GDM models with PCMs and PSO
have been widely studied [10, 46]. Here it is of much interest
to apply the proposed consistency index and prioritization
method to GDM with NrPCMs. A consensus reaching
process is built, where an optimization model is constructed
and solved using PSO [59, 60].

5.1 Consensus reachingmodel

Assume that a group of experts E = {e1, e2, . . . , em} (m ≥
2) are invited to express their opinions on X =
{x1, x2, . . . , xn} (n ≥ 2). A set of NrPCMs A(k) =
(a

(k)
ij )n×n for k ∈ Im = {1, 2, · · · , m} are provided. In

GDM, a consensus building process is necessary to improve
the level of consensus within the group. To assess the level
of consensus among DMs, we can examine the distance
between individual and collective opinions. For obtaining
the collective matrix, the weighted geometric mean method
is applied to A(k) = (a

(k)
ij )n×n (k ∈ Im) [61, 62]. That is, we

obtain Ac = (ac
ij )n×n with

ac
ij =

m∏
k=1

(
a

(k)
ij

)λk

, (28)

Table 3 Error measure values of prioritization methods for A2

Criteria CSM EV WLS AN LLS

p = 0 p = 0.25 p = 0.5 p = 0.75 p = 1

ED 8.4027 8.3579 8.3421 8.3186 8.2988 9.5097 11.2336 8.6320 8.9920

MV 4 4 4 3 3 3 4 3 3
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where
m∑

k=1

λk = 1, λk ≥ 0, k ∈ Im.

For the two matrices A(k) and Ac, the similarity matrix can
be computed as SMkc = (smkc

ij )n×n, where

smkc
ij = (a

(k)
ij − ac

ij )
2. (29)

Then the similarity degree between A(k) and Ac is
calculated as follows:

cdk =
√∑n

i=1
∑n

j=1 smkc
ij

n(n − 1)
, k ∈ Im. (30)

Hence, the consensus degree of DMs is determined as:

cd =
m∑

k=1

λk · cdk . (31)

Obviously, the smaller the value of cd is, the better the group
consensus is.

Moreover, for reaching the optimal solution to a GDM
problem accepted by the most experts, a DM could consider
the opinions of the others and modify her/his initial
judgments by multiple consultations. This means that DMs
should have some flexibility to adjust their initial opinions
[10, 54]. Following the idea in [46], it is assumed that the
flexibility degree αk is given to the DM ek with the initial
matrix A(k). Then the entries in A(k) can be adjusted such
that

Case I: ã
(k)
ij ∈
[

max

(
1

9
, a

(k)
ij − 8αk

9

)
, min

(
1, a

(k)
ij + 8αk

9

)]
, (32)

for 1
9 ≤ a

(k)
ij < 1, and

Case II: ã
(k)
ij ∈
[
max
(

1, a
(k)
ij − 8αk), min(9, a

(k)
ij + 8αk

)]
, (33)

for 1 ≤ a
(k)
ij ≤ 9 with αk ∈ [0, 1] (k ∈ In). It is convenient

to express the set of all matrices with the entries satisfying
(32) or (33) is expressed as P(A(k)).

In order to build the consensus model in GDM, two
objectives are usually considered: the group consistency
level and the consensus degree among DMs [10, 45, 54, 56].
The former is due to the consideration of rationality for the
judgements of DMs, and the latter is attributable to the wide
acceptability of the final solution. For the former, by using
the proposed consistency index of NrPCMs, the objective
function is written as:

Q1 =
m∑

k=1

λk · CSCI (A(k)). (34)

For the latter, the application of (31) leads to

Q2 = cd . (35)

Hence, we construct an optimization problem as follows:

min(Q1, Q2). (36)

For the sake of simplicity, the multi-objective problem (36)
is written as the linear form [46, 48]:

min
A(k)∈P (A(k))

Q = μQ1 + νQ2, (37)

where μ and ν are non-negative real numbers. Furthermore,
in order to reach a group consensus, we equip the constraint
condition for the optimization model (37) as follows:

Q2 ≤ δ, (38)

where the term δ stands for the predetermined threshold
of the consensus level. When solving the optimization
model (37) under the condition (38), the consistency levels
of individual and collective matrices can be controlled
automatically. If one wants to further make Ac be with
acceptable consistency, the following constraint condition
can be equipped:

CRNr(A
c) ≤ 0.1. (39)

5.2 Optimization of individual NrPCMs

It is noted that the PSO algorithm has been used to solve
the nonlinear and complex optimization problems arising
in GDM [10, 54, 55]. The PSO algorithm was proposed
to simulate the behavior of birds flying for finding the
food through swarm cooperation [59]. The PSO algorithm
is initialized as a group of random particles, then to find
the optimal solution through iterations. In each iteration,
the particle updates itself by tracking two “extremum”: the
local optimal solution 	zp found by the particle itself and
the global optimal solution 	zg found by the population. The
position of each particle changes according to the following
formula:

	v(t + 1) = w · 	v(t) + c1 · rand() · (	zp − 	z(t))
+c2 · rand() · (	zg − 	z(t)), (40)

	z(t + 1) = 	z(t) + 	v(t + 1). (41)

The terms c1 and c2 are positive constants, which are
called learning factors, and are usually assigned to 2 [10,
54, 55, 59]. The symbol rand() means to generate the
random numbers with uniform distribution in [0, 1]. In the
searching process, the balance between the local and global
searching abilities plays an important role to the success of
the algorithm. Properly changing the inertia weight w will
have a good effect. When the inertia weight w is large, it
is conducive to search the local optimum. When the inertia
weight w is small, it is conducive to the convergence of the
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algorithm. Therefore, a large inertia weight it is generally
assumed in the initial stage of optimization, and a small
inertia weight is used in the later stage of optimization. For
this reason, we adopt the linear change of inertia weight w

as follows:

w(t) = (wmax − wmin) · tmax − t

tmax

+ wmin, (42)

where wmax is the initial factor usually assigned to 0.9;
wmin is the factor at the maximum number of iterations
usually assigned to 0.4; tmax is the maximum number of
iterations, and t is the current number of iterations [10, 54,
55, 59]. The initial position and velocity of a particle are
generated randomly, and updated according to (40) and (41),
respectively.

In this study, due to the non-reciprocal property of
NrPCMs, the dimension of particles is mn(n − 1) and
the searching range is given in (32) and (33), respectively.
Based on the proposed consistency index and prioritization
method, the new GDM algorithm is elaborated on as
follows:

Step 1: In a GDM problem, a group of experts E =
{e1, e2, . . . , em} are invited to provide their opin-
ions by pairwisely comparing alternatives in X =
{x1, x2, . . . , xn}.

Step 2: NrPCM A(k) is determined to represent the initial
position of expert ek with flexibility degree αk for k ∈ Im.

Step 3: The fitness function Q is constructed and the
constraint conditions (32) and (33) are considered.

Step 4: The PSO algorithm is used to solve the optimiza-
tion problem (37) with the constraint conditions in (38).
The matrices A(k) (k ∈ Im) are optimized and written as
Ã(k) (k ∈ Im).

Step 5: Using the optimized matrices Ã(k)(k ∈ Im), the
collective one Ãc is obtained by using (28).

Step 6: According to Ãc = (ac
ij )n×n, the weight of

alternatives is derived by using optimization model (22).

It is convenient to provide the algorithm to solve the
GDM problem with NrPCMs by controlling the consistency
and consensus levels. The resolution process of a GDM with
NrPCMs is shown in Fig. 1.

5.3 Numerical results and discussion

Now we carry out a numerical example to illustrate the
above algorithm and investigate the effects of parameters
αk, p and q on the objective functions Q, Q1 and
Q2, respectively. It is considered that four DMs E =
{e1, e2, e3, e4} are invited to compare and analyze five

alternatives in X = {x1, x2, x3, x4, x5}. Four NrPCMs
{A(1), A(2), A(3), A(4)} are provided as follows:

A(1) =

⎛
⎜⎜⎜⎜⎝

1 1/4 1/3 1/7 1/3
4 1 1/6 1/5 1/6
4 6 1 1/3 1/3
7 4 2 1 1/2
3 6 3 2 1

⎞
⎟⎟⎟⎟⎠

,

A(2) =

⎛
⎜⎜⎜⎜⎝

1 1/2 1/6 1/3 1/2
2 1 1/5 1/2 4
4 5 1 1/4 1/2
3 2 1 1 3
2 1/2 3 1/3 1

⎞
⎟⎟⎟⎟⎠

,

A(3) =

⎛
⎜⎜⎜⎜⎝

1 1/2 1/2 1/8 1/8
2 1 1/4 1/3 1/6
2 5 1 1/5 1/5
8 3 4 1 1/4
8 9 5 4 1

⎞
⎟⎟⎟⎟⎠

,

A(4) =

⎛
⎜⎜⎜⎜⎝

1 1/2 1/3 1/6 1/2
2 1 1/5 1/2 1/3
3 4 1 1/4 1/4
7 2 4 1 1/2
2 3 4 1 1

⎞
⎟⎟⎟⎟⎠

.

It is easy to compute the initial values of consistency
index and consensus level as CSCI (A(1)) = 0.1280,

CSCI (A(2)) = 0.2324, CSCI (A(3)) = 0.0906, CSCI

(A(4)) = 0.1423 and cd = 0.2740.
For convenience, it is assumed that each NrPCM is

equipped with the same flexibility degree α and λk = 1/4
(k = 1, 2, 3, 4). When the PSO algorithm is run, the
selected values of some parameters are given in Table 4.
Figure 2 is drawn to show the variations of the fitness
function Q versus the generation number for (μ, ν) =
(0.25, 0.75) with α = 0.05, 0.1, 0.15 respectively. We can
observe from Fig. 2 that the values of Q decrease with the
increase of generation number. Then a stable value of Q is
obtained for a sufficiently large generation number such as
100, meaning that the optimal value of Q is determined. In
addition, with the increase of α, the value of Q decreases
for a fixed generation number, indicating that the greater
the flexibility degree is, the better the value of Q is. The
above findings are in agreement with the existing results
[10, 46, 47].

Furthermore, we investigate the effects of α on the values
of Q, Q1 and Q2, respectively. The variations of Q, Q1

and Q2, versus α are shown in Fig. 3 by choosing (μ, ν) =
(0.25, 0.75) and performing 100 iterations. It is found from
Fig. 3 that the values of Q, Q1 and Q2 generally decrease
with the increase of α. Additionally, we analyze the effects
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Fig. 1 Resolution process of a
GDM with NrPCMs A GDM problem with n

alternatives and m experts

 Consensus level:
  cd

 Consistency index:
  CSCI

   Fitness function

  Optimization model

Optimized NrPCMs

 PSO

  Optimal solution

  Individual NrPCMs

  Collective NrPCM

Optimization
   model

of the parameters μ and ν on Q. As shown in Fig. 4, a series
of (μ, ν) are selected to compute. It is noted that for a fixed
value of μ (or ν), the values of Q decreases with the increase
of ν (or μ). The above findings are in accordance with the

phenomenon in [48]. This means that the values of μ and ν

can be used to adjust the value of Q.
At the end, the optimized individual matrices and the

final collective ones can be determined. For example, by

Table 4 Selected values of
some quantities Parameter Maximum number of iterations Dimension c1, c2 w

Selected values 100 80 2 0.9 ∼ 0.4
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0 20 40 60 80 100
Generation number

0.15

0.175

0.2

0.225

0.25
Q

( , )=(0.25,0.75)

=0.05

=0.1

=0.15

Fig. 2 Plots of Q versus the generation number with (μ, ν) =
(0.25, 0.75) for α = 0.05, 0.1, 0.15, respectively

selecting (μ, ν) = (0.25, 0.75), when α = 0.05, we
have

Ã
(1)
0.05 =

⎛
⎜⎜⎜⎜⎝

1.0000 0.2944 0.2889 0.1873 0.2889
3.6000 1.0000 0.2111 0.2444 0.2111
3.6000 5.6000 1.0000 0.3778 0.3778
6.6000 4.4000 2.4000 1.0000 0.5444
3.4000 6.4000 3.4000 1.6000 1.0000

⎞
⎟⎟⎟⎟⎠

,

Ã
(2)
0.05 =

⎛
⎜⎜⎜⎜⎝

1.0000 0.4556 0.2111 0.2889 0.4556
2.4000 1.0000 0.2444 0.4556 3.6000
3.6000 4.6000 1.0000 0.2056 0.5444
3.4000 2.4000 1.0000 1.0000 2.6000
2.4000 0.5444 2.6000 0.3778 1.0000

⎞
⎟⎟⎟⎟⎠

,

Ã
(3)
0.05 =

⎛
⎜⎜⎜⎜⎝

1.0000 0.5444 0.5444 0.1111 0.1111
2.4000 1.0000 0.2944 0.2889 0.2111
2.4000 4.6000 1.0000 0.1556 0.1556
7.6000 3.2476 3.6000 1.0000 0.2944
7.6000 8.6000 4.6000 3.6000 1.0000

⎞
⎟⎟⎟⎟⎠

,

Ã
(4)
0.05 =

⎛
⎜⎜⎜⎜⎝

1.0000 0.5444 0.3359 0.2111 0.4556
2.4000 1.0000 0.2444 0.4556 0.3778
3.4000 4.4000 1.0000 0.2944 0.2944
6.6000 2.4000 3.6000 1.0000 0.5444
2.4000 3.4000 3.6000 0.9556 1.0000

⎞
⎟⎟⎟⎟⎠

,

and

Ã
(c)
0.05 =

⎛
⎜⎜⎜⎜⎝

1.0000 0.4465 0.3250 0.1887 0.2857
2.6560 1.0000 0.2469 0.3479 0.4962
3.2068 4.7785 1.0000 0.2442 0.3115
5.7922 3.0120 2.3616 1.0000 0.6902
3.4928 3.1771 3.4784 1.2008 1.0000

⎞
⎟⎟⎟⎟⎠

.

When α = 0.1, it gives the following results:

Ã
(1)
0.1 =

⎛
⎜⎜⎜⎜⎝

1.0000 0.3389 0.2444 0.1111 0.2444
3.2000 1.0000 0.2556 0.2475 0.2556
3.2000 5.2000 1.0000 0.4222 0.4222
6.2000 3.2000 2.4904 1.0000 0.5889
3.8000 5.2000 3.0083 1.2000 1.0000

⎞
⎟⎟⎟⎟⎠

,

Ã
(2)
0.1 =

⎛
⎜⎜⎜⎜⎝

1.0000 0.4111 0.2556 0.2444 0.5889
2.8000 1.0000 0.2889 0.5889 3.2000
3.2000 4.2000 1.0000 0.3389 0.5889
3.8000 2.8000 1.0000 1.0000 2.2000
2.8000 0.5889 2.2000 0.4222 1.0000

⎞
⎟⎟⎟⎟⎠

,

Ã
(3)
0.1 =

⎛
⎜⎜⎜⎜⎝

1.0000 0.5889 0.5889 0.2139 0.2139
2.6058 1.0000 0.3389 0.3418 0.2556
2.8000 4.3881 1.0000 0.2889 0.2889
7.2000 3.1868 3.2000 1.0000 0.3389
7.2000 8.2000 4.2000 3.2000 1.0000

⎞
⎟⎟⎟⎟⎠

,

Ã
(4)
0.1 =

⎛
⎜⎜⎜⎜⎝

1.0000 0.5889 0.3767 0.2556 0.4111
2.8000 1.0000 0.2889 0.4111 0.2444
2.2000 4.4572 1.0000 0.3389 0.3389
6.2000 2.8000 3.2000 1.0000 0.5889
2.8000 3.6527 3.2000 0.9111 1.0000

⎞
⎟⎟⎟⎟⎠

,

and

Ã
(c)
0.1 =

⎛
⎜⎜⎜⎜⎝

1.0000 0.4688 0.3431 0.1963 0.3354
2.8435 1.0000 0.2916 0.3783 0.4754
2.8182 4.5462 1.0000 0.3440 0.3950
5.6948 2.9902 2.2472 1.0000 0.7131
3.8270 3.0947 3.0710 1.1025 1.0000

⎞
⎟⎟⎟⎟⎠

.

When α = 0.15, one arrives at the following matrices:

Ã
(1)
0.15 =

⎛
⎜⎜⎜⎜⎝

1.0000 0.3833 0.2000 0.2762 0.2000
2.8000 1.0000 0.3000 0.3333 0.3000
4.1044 4.8000 1.0000 0.4667 0.4667
5.8000 3.2815 2.3207 1.0000 0.6333
4.2000 4.8000 4.2000 3.2000 1.0000

⎞
⎟⎟⎟⎟⎠

,

Ã2
0.15 =

⎛
⎜⎜⎜⎜⎝

1.0000 0.4710 0.3000 0.2000 0.3667
2.7413 1.0000 0.3333 0.3841 2.8000
4.1525 4.0438 1.0000 0.3833 0.3667
4.2000 3.2000 1.0000 1.0000 1.8000
3.2000 0.6333 3.2158 0.4667 1.0000

⎞
⎟⎟⎟⎟⎠

,

Ã3
0.15 =

⎛
⎜⎜⎜⎜⎝

1.0000 0.6333 0.3667 0.2583 0.1111
2.2827 1.0000 0.3833 0.2000 0.3000
3.2000 4.0714 1.0000 0.3333 0.3333
6.8000 3.3939 2.8000 1.0000 0.3833
6.8000 7.8000 3.8000 2.8000 1.0000

⎞
⎟⎟⎟⎟⎠

,

Ã4
0.15 =

⎛
⎜⎜⎜⎜⎝

1.0000 0.6333 0.4667 0.3000 0.6333
2.4946 1.0000 0.3333 0.3667 0.4667
4.2000 4.2077 1.0000 0.3833 0.3833
5.8000 3.2000 2.8000 1.0000 0.6333
3.2000 3.4028 3.6150 1.0000 1.0000

⎞
⎟⎟⎟⎟⎠

,
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Fig. 3 Plots of the optimal values of Q, Q1 and Q2 versus α for the
selected values of (μ, ν) = (0.25, 0.75)

and

Ãc
0.15 =

⎛
⎜⎜⎜⎝

1.0000 0.5187 0.3183 0.2558 0.2680
2.5713 1.0000 0.3362 0.3113 0.5856
3.8904 4.2703 1.0000 0.3888 0.3845
5.5674 3.2679 2.0653 1.0000 0.7253
4.1354 2.9971 3.6907 1.4300 1.0000

⎞
⎟⎟⎟⎠ .
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(b) =0.75

Fig. 4 Plots of the optimal values of Q versus α under the conditions
of (a): μ = 0.25 together with the selected values of ν, and (b):
ν = 0.75 together with the selected values of μ

The values of consistency index and consensus level
are given in Tables 5 and 6 under the selected flexibility
degrees. The values of CSCIc, Q1, Q2 and Q decrease with
the increasing values of α. The phenomenon is in agreement
with the observation in [47]. Moreover, for the optimized
individual matrices, there are some different situations in
the values of consistency indexes and consensus levels. For
example, when α = 0.15, the values of CSCI2 and cl1
increase with the increasing values of α. The observation
shows that although the individual levels of consistency and
consensus may be worse, the global levels of consistency
and consensus could be better. When the threshold of
consensus level δ = 0.2 is selected, the group consensus is
reached for α > 0.10 according to Table 6. However, we
consider the threshold of CSCI for acceptable consistency in
Table 1, the consistency degree of CSCIc is not acceptable.
In order to achieve the condition (39), we only need to
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Table 5 Values of consistency index for Ã(1) − Ã(4) and Q1 under
(μ, ν) = (0.25, 0.75) and various flexibility degrees

Flexibility degrees CSCI1 CSCI2 CSCI3 CSCI4 CSCIc Q1

α = 0.00 0.1280 0.2324 0.0906 0.1423 0.0905 0.1483

α = 0.05 0.0988 0.1958 0.0814 0.1137 0.0888 0.1224

α = 0.10 0.0791 0.1539 0.0695 0.0972 0.0740 0.0999

α = 0.15 0.0774 0.1607 0.0507 0.0844 0.0639 0.0933

increase the value of flexibility degree to α = 0.2. The
detailed procedure is only based on the straightforward
computation and it has been omitted.

The final issue of concern is the priorities and ranking
of alternatives. For comparisons, the priorities and rankings
of alternatives are given in Tables 7 and 8 by using the
proposed method and the eigenvector method [1], where
the collective matrices under α = 0.00, 0.05, 0.10 and
α = 0.15 are considered. Here it should be pointed out
that although the considered matrices could be with non-
reciprocal property, the eigenvector method may still be
suitable to derive the priorities of alternatives [6]. It is found
from Tables 7 and 8 that for different values of α, the
ranking of alternatives obtained by the two methods are the
same.

5.4 Comparative analysis

In this paper, we constructed a consensus reaching model
in GDM based on NrPCMs, where the consistency index,
the prioritization method and the consensus level have been
proposed. An optimization model has been constructed
by controlling the consistency degrees of individual and
collective matrices under the given consensus level of
group. A thorough comparative analysis with the existing
consensus models in GDM is worth making to show the
advantages and disadvantages of the proposed one.

First, the uncertainty experienced by DMs is character-
ized using the non-reciprocal property of NrPCMs. More-
over, IMRMs [7] and intuitionistic multiplicative preference
relations (IMPRs) [63] have the same capability as NrPCMs
to describe the uncertainty. But the expression of NrPCMs

Table 6 Values of consensus level for Ã(1) − Ã(4), Q2 and Q under
(μ, ν) = (0.25, 0.75) and various flexibility degrees

Flexibility degrees cd1 cd2 cd3 cd4 Q2 Q

α = 0.00 0.2119 0.3104 0.4417 0.1320 0.2740 0.2426

α = 0.05 0.1938 0.2792 0.3849 0.1026 0.2401 0.2107

α = 0.10 0.1187 0.2439 0.3417 0.0882 0.1981 0.1736

α = 0.15 0.1350 0.2053 0.2958 0.0730 0.1772 0.1562
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1 is simpler than those of IMRMs and IMPRs, which is
one of the advantages of NrPCMs. In addition, the work-
load of providing a NrPCM is less than giving an IMRM
or an IMPR. From the mechanism of causing uncertainty,
NrPCMs clearly show that the uncertainty is caused by the
inherent indeterminacy of human-originated information
when exchanging the order to paired alternatives.

Second, the consistency index is constructed by consid-
ering the cosine similarity degree between two row/column
vectors in a NrPCM. Although this idea comes from the
existing works [21, 22], the procedure of forming the con-
sistency index is an extension of that in [22] by considering
the non-reciprocal property of NrPCMs. When compar-
ing with multiplicative reciprocal PCMs, the expression
of NrPCMs and the method of computing the consis-
tency index are more complex. Moreover, the prioritization
method of NrPCMs is also an extension of the finding in
[22]. The comparative analysis with EV, WLS, AN and
LLS shows the advantage and disadvantage of the proposed
method.

Third, the consensus reaching process is based on the
optimization model by controlling the consistency degree of
matrices and consensus level of group. The PSO algorithm
is used to simulate the dynamic process of adjusting experts’
judgements. The developed consensus model follows the
initial work of Pedrycz and Song [10]. In addition, here the
collective matrix is obtained using an aggregation operator,
which is different with that in [10], where the collective
priority vector was used.

6 Conclusions

It is common to experience some uncertainty when
comparing alternatives for decision makers (DMs). Interval
multiplicative reciprocal matrices (IMRMs) have been used
to characterize the experienced uncertainty. In this paper,
the concept of non-reciprocal pairwise comparison matrices
(NrPCMs) has been proposed to generally consider the
case with the reciprocal symmetry breaking. Then the
consistency index and prioritization method of NrPCMs
have been established. A consensus model in group decision
making (GDM) has been proposed where the opinions of
DMs are expressed as NrPCMs. The main findings are
covered as follows:

• The transformation relation between IMRMs and
NrPCMs has been constructed due to the similar ability
to capture the uncertainty experienced by DMs.

• It is concluded that NrPCMs and IMRMs are incon-
sistent in nature. The cosine similarity degree-based
consistency index has been given to quantify the incon-
sistency degree of NrPCMs and IMRMs.
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• The prioritization method has been constructed to elicit
the priority vector from NrPCMs and it is effective as
compared to some extended methods.

• The consensus model in GDM with NrPCMs has
been reported by constructing an optimization problem,
which is solved by the particle swarm optimization
(PSO) algorithm.

We should point out that except for the transformation
between IMRMs and NrPCMs, NrPCMs are related to
intuitionistic multiplicative preference relations (IMPRs)
[63], which could be investigated in the future. In
addition, this paper only focuses on the typical consensus
reaching model with NrPCMs, and some further studies
could be made. For example, some GDM algorithms
could be developed under uncertainty and incomplete
decision information by following the idea shown in
NrPCMs. Multiple-objective optimization models could be
constructed and solved such that the Pareto solutions can
be found. The effectiveness and performance of decision-
making models could be evaluated by considering the
differences of decision information. By considering the
large-scale and cooperative/non-cooperative relationship of
DMs [45, 50, 52], some GDM models could be proposed.
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