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Abstract
Accurate traffic forecasting is a critical function of intelligent transportation systems, which remains challenging due to the
complex spatial and temporal dependence of traffic data. GNN-based traffic forecasting models typically utilize predefined
graphical structures based on prior knowledge and do not adapt well to dynamically changing traffic characteristics, which
may limit their performance. The transformer is a compelling architecture with an innate global self-attention mechanism,
but cannot capture low-level detail very well. In this paper, we propose a novel Spatial-Temporal Gated Hybrid Transformer
Network (STGHTN), which leverages local features from temporal gated convolution, spatial gated graph convolution
respectively and global features by transformer to further improve the traffic flow forecasting results. First, in the temporal
dimension, we take full advantage of the local properties of temporal gated convolution and the global properties of
transformer to effectively fuse short-term and long-term temporal dependence. Second, we mutually integrate two modules
to complement each representation by utilizing spatial gated graph convolution to extract local spatial dependence and
transformer to extract global spatial dependence. Furthermore, we propose a multi-graph model that constructs a road
connection graph, a similarity graph, and an adaptive dynamic graph to exploit the static and dynamic associations
between road networks. Experiments on four real datasets confirm the proposed method’s state-of-the-art performance. Our
implementation of the STGHTN code via PyTorch is available at https://github.com/JianSoL/STGHTN.

Keywords Graph convolution network · Temporal convolution network · Transformer · Spatial-temporal forecast

1 Introduction

Traffic forecasting is a core issue in the field of transport
planning and management research [1–3], aiming to predict
traffic based on historical information. Traffic forecasting
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theories and methods were introduced in the 1930s and they
have seen success through years of research and practice.
Quick and accurate traffic flow forecasting is an open
research field. The advent of big data and technology such
as intelligent transportation systems and sensors enables
easy access to spatial-temporal data to facilitate traffic
volume forecasting, for sensing congestion, control traffic
conditions and enable travelers to choose appropriate travel
modes and adjust routes [4–6].

Traffic forecasting has always been a challenge, due to
complex temporal and spatial dependence. As shown in
Fig. 1, traffic data exhibit temporal, spatial, and spatial-
temporal dependence. Temporal dependence refers to the
influence of historical moments on future moments, as
reflected in the variation of traffic flow over time. Spatial
dependence refers to the topology of roads, which directly
influence each other at the same time step. This is
manifested in the way that traffic flows on upstream
roads affect downstream roads, and vice versa. Spatial-
temporal dependence refers to the influence between roads
at different moments in time. As shown in Fig. 2, temporal
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Fig. 1 Complex spatial and temporal dependence of traffic data

dependence usually shows a slight cyclical variation,
and spatial dependence between roads shows different
correlations depending on the environment.

Earlier traffic prediction methods were mainly based
on statistical learning [7–9] and machine learning [10–
12], modeled only on temporal dependence, and could not
effectively capture the nonlinear dependence of spatial-
temporal data. With the development of deep learning,
methods such as DCRNN [13], T-GCN [14] and A3T-
GCN [15] tend to capture temporal dependence through
Recurrent Neural Networks (RNNs) [16] or variants, such
as Long-Short Term Memory (LSTM) [17] and Gated
Recurrent unit (GRU) [18]. These methods tend to capture
only temporal dependence. GNN-based methods, such as
STGCN [19], ASTGCN [20] and STFGNN [21] construct
adjacency matrices based on prior knowledge, such as
those based on road adjacency relationships and time-
series similarity. Although the static spatial dependence
between roads is fully considered, the spatial dependence
should be dynamic, and road connectivity may change
due to congestion. STGNN [22] adopts a learnable
position attention mechanism to aggregate information

about neighbouring roads, and utilises this aggregated
information to generate a dynamic graph structure. This
dynamic approach takes into account real-world events
without considering the inherent spatial dependencies
between roads.

The transformer [23] was first proposed in the NLP
domain, and has achieved superior results in machine
translation due to its strong ability to model the long-
term features of sequences [24]. The transformer for the
traffic prediction task is a pioneering work based on its
key component, the multi-headed self-attention mechanism
(MSA). It is noted that some local features and short-term
dependence among input sequences cannot be effectively
captured by transformer.

To address the above challenges and limitations, we pro-
pose a novel Spatial-Temporal Gated Hybrid Transformer
Network (STGHTN) for traffic flow forecasting. In the
temporal dimension, Temporal Gated Convolution (TGC)
and transformer are hybridized to capture short-term and
long-term temporal dependencies respectively. In the spatial
dimension, Spatial Gate Graph Convolution (SGGC) and
transformer are integrated to obtain local and global spatial
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dependence. SGGC constructs a multi-graph fusion model
that fuses static and dynamic graph features to explore
the spatial dependence of local spaces. We summarize our
contributions as follows:

• We propose a novel transformer-based network model
to effectively capture dynamic complex spatial-
temporal features and then solve the prediction problem
of spatial-temporal data.

• We design a Temporal Hybrid CNN-Transformer
(THCT) to model short-term and long-term temporal
dependence by integrating TGC and transformer.

• We propose a Spatial Hybrid GCN-Transformer
(SHGT) consisting of SGGC and transformer on multi-
graphs to extract local and global spatial dependence.
Three different graphs such as road connection graph,
similarity graph, and adaptive dynamic graph are con-
structed to fully exploit the static and dynamic associa-
tions between roads.

• We apply the proposed STGHTN to four real-world
traffic datasets. STGHTN significantly surpasses SOTA
algorithms on all four tasks.

2 Related work

2.1 Spatial-temporal forecasting

Traffic forecasting is an important part of intelligent trans-
portation systems [25]. Early research treated traffic fore-
casting as a simple time-series problem without considering
spatial features. Common traditional machine learning mod-
els include the Vector Autoregressive (VAR) model [26],
Autoregressive Integrated Moving Average (ARIMA) [27],
Support Vector Machine (SVM) [10], and Kalman filter-
ing [9]. It is difficult to model nonlinear spatial-temporal
data with these methods. With the development of deep
learning, the RNN has been applied to sequence tasks.
RNN cannot effectively solve long-term dependencies. And
RNN requires iterative propagation, which may lead to
cumulative errors.

LSTM and GRU were later proposed to alleviate
this problem. LSTM and GRU cannot capture long-term
temporal dependence adequately, and their performance
may be limited due to an increased sequence length. The
emergence of the transformer [23] solves this problem
well, allowing better parallel training and capturing the
dependence between long sequences. Correlations between
multiple domains can be well captured by a self-
attention mechanism. To improve the accuracy of the
model, the researchers introduced spatial features into the
model. Conv-LSTM [28] captures spatial features through
a 1-dimensional Convolutional Neural Network (CNN).

DMVST-Net [29] captures local features of regions in
relation to their neighbors with a local CNN. These methods
still capture spatial dependence mainly through CNNs.
Although certain results have been achieved, CNNs are not
applicable to the non-Euclidean space of roads. Previous
network models have handled data with rules on Euclidean
space. Graph convolution was created for non-Euclidean
space, with great results for several types of tasks based
on graph structures. Graph Neural Networks (GNNs) are
seeing increased use for modeling spatial-temporal data.
DCRNN [13], GCGRU [30] both use GNN to obtain
spatial features, and are combined with RNN to obtain
temporal features. GraphWaveNet [31] adaptively learns
graph structure information without priority knowledge, and
efficiently obtains spatial-temporal dependence at the same
time.

2.2 Graph convolution networks

GNNs have been widely used in node classification, link
prediction, and other graph-structured data tasks. Graph
convolution methods include spectral and spatial convolu-
tion. Spectral convolution uses a graph Fourier transform
for convolution. The original spectral-based approach [32]
generalizes CNNs to non-Euclidean spaces. Although this
method implements convolution on the graph, it is hard to
implement because it is computationally complex and is not
localized. ChebNet [33] reduces computational complexity
by approximating the convolution kernel with K itera-
tions of Chebyshev polynomials. Spatial convolution is the
constant aggregation of information about a node’s neigh-
bors. NN4G [34] is the first spatial-based graph convolu-
tion neural network. GraphSAGE [35] extracts information
about nodes by sampling and aggregating their neighbors,
enabling the application of graph convolution networks to
large-scale graphs. GAT [36] introduces an attention mech-
anism to adjust the weight relationship between neighboring
nodes.

2.3 Transformer

The attention model has been widely used in deep
learning tasks such as natural language processing[37],
speech recognition [38], and computer vision [39] , and
has become the basic model for deep learning. The
attention model was originally implemented on a model
of encoders and decoders and was applied to machine
translation [40]. The original transformer is a model
of an encoder-decoder implemented using MSA, whose
parallelized design improves the training speed. Researchers
have introduced attention mechanisms to spatial-temporal
data prediction, with respectable performance at many
tasks. STGNN [22] uses transformer to capture global
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Fig. 3 STGHTN consists of four stacked spatial-temporal layers and a spatial-temporal fusion layer

temporal dependence and local temporal dependence using
GRU and spatial dependence using a GNN layer with a
positional attention mechanism. The transformer-enhanced
DetectorNet [41] has a multiview temporal attention module
to extract temporal dependence at long and short distances,
and a dynamic attention module to extract dynamic spatial
dependence.

3 Preliminaries

3.1 Problem definition

In this paper, the goal of traffic forecasting is to predict
traffic flow data for future periods based on historical
traffic flow data. We define the topology of a real
traffic road network as a weighted directed graph G =
(V , E, A), where V ={v1, v2, v3, ..., vN } is the set of nodes
representing roads, N is the number of road sensor nodes,
E denotes the set of edges, and A ∈ R

N×N denotes a
weighted adjacency matrix, representing the relationship
between roads. We express the traffic flow data at time t on
the road vn as Xn

t . The purpose of traffic prediction is to
learn a mapping function F(·) that predicts the traffic data
X = {X1, . . . , XT } ∈ R

T ×N at the next P time steps based
on the traffic data X̂ = {XT +1, . . . , YT +P } ∈ R

P×N at the
first T time steps. This is defined as follows:

[XT +1, . . . , XT +P ] = F([X1, . . . , XT ; G]) (1)

4Methodology

4.1 Overview

Figure 3 shows the STGHTN framework, which includes an
input layer, four stacked Spatial-Temporal Layers (STLs),
and a Spatial-Temporal Fusion Layer. The input layer

converts the spatial-temporal features to a high-dimensional
space by convolution to represent complex spatial-temporal
dependence. An STL includes a THCT and a SHGT. THCT
extracts short-term and long-term temporal dependence.
SHGT is used to extract dynamic spatial dependence
on local and global scales. STFL aggregates spatial-
temporal features of different granularities to explore spatial
dependencies between different time steps and performs
downstream prediction tasks using 1×1 convolution.

4.2 Temporal hybrid CNN-transformer

Although RNN-based models are widely used in time-series
analysis, RNN still suffers from time-consuming iterations,
unstable gradients, and slow response to dynamic changes.
THCT consists of a TGC, a Temporal Multi-Head Self-
Attention (TMSA), and a temporal fusion block. TGC
adopts a 1D dilated causal convolution [42] and gating
mechanism [43] to extract short-term temporal dependence.
TMSA adopts a self-attention [23] mechanism to extract
long-term temporal dependence. The temporal fusion block
is used to integrate short-term and long-term temporal
dependence.
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Fig. 4 Example of dilated causal convolution
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4.2.1 Temporal gated convolution

Ordinary CNN-based models cannot effectively model
sequence-to-sequence problems. We use dilated causal
convolution to capture the temporal trend between time
steps of road nodes. As shown in Fig. 4, dilated causal
convolution introduces dilation in the standard convolution
operation and increases the perceptual field through a
deeply stacked network. Given the input time-series X =
{x1, x2, ..., xT } ∈ R

T and filters F = {f1, f2, ..., fU } ∈
R

U , the dilated causal convolution at time step t is
calculated as:

X ∗ F(t) =
U∑

u=1

F(u)xt−d(u−1) (2)

where d is the dilation rate, which indicates the distance
between convolution kernels.

The gating mechanism is used in RNNs to control
the flow of information. Short-term temporal features are
extracted in parallel using the gated convolution on the
time-axis, which is more efficient than LSTM for long-term
time-series data. Given the input XT ∈ R

N×T ×C , where C

is the number of channels. It takes the form:

T GC(XT ) = Sigmoid(�1∗XT +a)�T anh(�2∗XT +b)

(3)

where �1 and �2 are independent 1D dilated causal
convolution operations in the time dimension, a and b are
model parameters, � is the element-wise product, Sigmoid

and T anh are the activation functions.

4.2.2 Temporal multi-head self-attention

We use MSA to model complex temporal dependence.
Given the input temporal feature XT ∈R

T ×N×C and the
spatial feature XS ∈R

T ×N×C , we map spatial-temporal
features to a high-dimensional space to learn complex
temporal dependence. Subspaces QT

i ∈ R
T ×dU , KT

i ∈
R

T ×dU , and V T
i ∈ R

T ×dV are generated by linear
transformation:

QT
i = XSWT

qi
, KT

i = XT WT
ki

, V T
i = XT WT

vi
(4)

where WT
qi

, WT
ki

, and WT
vi

are the parameters of the
learnable. MSA weights are calculated by the scaled dot
product, whcih can be expressed as:

T MSA(XS, XT , XT ) = Concat (headT
1 , headT

1 , · · ·, headT
n )WT

where headT
i = Sof tmax

(
QT

i (KT
i )T√

dU

)
V T

i (5)

where n is the number of heads of MSA, WT is learnable
parameters, and Sof tmax is an activation function.

4.2.3 Temporal fusion block

To consider both short-term and long-term dependence, we
fuse the outputs T MSA(XT ) ∈ R

N×T ×C of TMSA and
T GC(XT ) ∈ R

N×T ×C of TGC, with the following form:

Tout = T MSA(XS, XT , XT ) � Sigmoid(T GC(XT )WT
1 ) (6)

where WT
1 consists of learnable parameters, and Tout ∈

R
T ×N×C is a post-fusion temporal feature. We increase the

expressiveness of the model using residual connections and
linear transformations, and further adjust the dependence
between time steps, The specific form is as follows:

�Tout = LN(Tout + XT )

T tra = LN(Relu( �ToutW
T
2 )WT

3 + �Tout ) (7)

where WT
2 and WT

3 are learnable parameters, LN is layer
normalization, and Relu is the activation functions.

4.3 Spatial hybrid GCN-transformer

Most of the existing GNN-based methods for capturing
spatial dependence suffer from a lack of extraction of
global spatial features. And the predefined graph structure
information cannot be adapted to dynamic spatial-temporal
data. The SHGT consists of an SGGC, a Spatial Multi-Head
Self-Attention (SMHA), and a spatial fusion block. SGGC
uses multi-graph graph convolution operations to extract
local spatial information. SMHA leverages a self-attention
mechanism to excavate connections between distant roads
to adjust for global spatial dependence. The spatial fusion
block is designed to integrate the dependencies between
connected roads and between roads that are far apart.

4.3.1 Multi-graph construction

Graph convolution is an aggregation of information on a
graph, whose structure can greatly affect the performance
of the model. We usually think that interconnected roads
in road networks can have similar properties. However,
in the real world, two shopping areas that are far apart
may also have similar properties. At the same time,
there are hidden potential dependence. This cannot be
done by the predefined graph structure, and due to the
change of external environment, the predefined graph
structure often cannot fully reflect the real road relationship.
Therefore, we propose a multi-graph fusion scheme that
combines a road connection graph, a similarity graph, and
an adaptive dynamic graph, considering both static and
dynamic links between roads. The multi-graph formalism is
G={G1, G2, G3}, taking the following form:

• Road connection graph G1 = (V , Es, As) is con-
structed based on road connection relationships. Its
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spatial adjacency matrix As ∈ R
N×N is deduced from

G. It takes the form:

As
ij =

{
1, ((vi, vj ) ∈ V ) & (vi, vj ∈ Es)

0, otherwise
(8)

• Similarity graph G2 = (V , Et , At ) is constructed
based on the Dynamic Time Warping (DTW) algorithm
[44], which is widely used in speech recognition.
We use Algorithm 1 to calculate the similarity
DT W(vi, vj ) between two roads based on their traffic
flow sequences. DTW is more able than Euclidean
distance to reflect the similarity of traffic sequences.
For example, the change of traffic flow on an upstream
road often has a certain lag compared to that on the
corresponding downstream road. Euclidean distance
cannot effectively measure the similarity between
two time-series that have similar shapes but are not
synchronized in time. DTW can effectively solve this
problem. The temporal similarity matrix At ∈ R

N×N is
generated using the following form:

At
ij =

{
1, exp(−DT W(vi, vj )) > ρ

0, otherwise
(9)

where ρ is a threshold.
• The adaptive dynamic graph G3 = (V , Eadp, Aadp)

is generated based on As and At . We use learnable
parameters E s and E t , which are respectively the source
and target node, to capture the potential and dynamic
dependence between two roads. E s and E t generate
dynamic spatial dependence by matrix multiplication.
The adaptive adjacency matrix is as follow:

Aadp = Sof tmax(ReLU(EsET
t )) � (As + At) (10)

where ReLU and Sof tmax are activation functions,
used respectively to reduce and normalize the effect of
slight perturbations.

4.3.2 Spatial gated graph convolution

GCN can efficiently exploit the feature information of
nodes. We use this to capture the dependence of the spatial
relationships between roads [45], where the representation
of nodes is calculated by aggregating information from
direct neighbors. Given the input x ∈ R

N×C , a single-layer
GCN expressed as:

GCN(A, x) = ReLU(D−1/2ÂD1/2xW1)

Â = A + IN

Dii =
∑

j

Âij (11)

where D is the degree matrix of Â, and W1 is a learnable
parameter.

Input: 1 2 ... , 1 2 ...
, cumulative distance matrix W 0;

Output: Temporal similarity ;
1: for 1; ; do
2: for 1; ; do
3: 2;
4: if 1& 1 then W ;
5: else if 1 then W W 1;
6: else if 1 then W W 1 ;
7: else W W 1 1 W 1

W 1 ;
8: end if
9: end for

10: end for
11: W ;

Algorithm 1 Temporal similarity calculation.

As shown in Fig. 5, to increase the expressiveness of
GCN representation, we add skip connections and linear
transformations to the network. Given input features XS ,
we can obtain the static graph convolution to generate static
spatial features ST A(XS), and dynamic graph convolution
generate dynamic spatial features DYN(XS). The specific
form is as follows:

ST A(XS) = Concat (GCN(As, XS), GCN(At , XS), XS)Wsta

DYN(XS) = Concat (GCN(Aadp, XS), XS)Wdyn (12)

where Wsta and Wdyn are learnable parameters to mitigate
GCN over-smoothing. We simultaneously consider static
and dynamic graph convolution through a gated fusion
mechanism, which obtains a tensor that lies between 0 and
1 by means of a sigmoid activation function. The specific
form is as follows:

z = Sigmoid(ST A(XS)Wg1 + DYN(XS)Wg2 + b)

GFS(XS) = z � ST A(XS) + (1 − z) � DYN(XS) (13)

where Wg1, Wg2, and b are learnable parameters,
GFS(XS) ∈ R

N×T ×C is a post-fusion feature, and z ∈
R

N×T ×C is the gating value.

4.3.3 Spatial multi-head self-attention

In the spatial dimension, we use MSA to capture spatial
dependence on a global scale. Given the spatial feature
XS ∈ R

N×T ×C and the temporal feature XT ∈ R
N×T ×C ,

subspaces QT
i ∈ R

N×dK , KT
i ∈ R

N×dK , and V T
i ∈

R
N×dM are generated by linear transformation. They take

the form:

QS
i = XT WS

qi
, KS

i = XSWS
ki

, V S
i = XSWS

vi
(14)
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Fig. 5 Module of spatial gated
graph convolution

where WS
qi

, WS
ki

, and WS
vi

are learnable parameters. MSA
weights are calculated by the scaled dot product, whcih can
be expressed as:

SMSA(XT , XS, XS) = Concat (headS
1 , headS

1 , · · ·, headS
n )WS

where headS
i = Sof tmax

(
QS

i (KS
i )T√

dK

)
V S

i (15)

where WS is a learnable parameter.

4.3.4 Spatial fusion block

Since GCN aggregates information about neighbors around
a node, it is local in nature, while MSA captures global
features and can effectively capture spatial dependence
between two roads that are far from each other. We adopt a
similar approach to THCT to fuse local and global spatial
dependence. Specifically, it takes the form:

Sout = SMSA(XT ,XS,XS) � Sigmoid(GFS(XS)WS
1 ) (16)

where WS
1 consists of learnable parameters, and Sout ∈

R
N×T ×C is the spatial feature after fusion. Further, we

adjust the spatial dependence between roads using residual
connections and linear transformations. The following form
is used:

�Sout = LN(Sout + XS)

Stra = LN(Relu(�SoutW
S
2 )WS

3 + �Sout ) (17)

where WS
2 and WS

3 are learnable parameters.

4.4 Spatial-temporal fusion layer

After extracting high-level features from the STLs, we
aggregate the temporal feature T

(k)
tra ∈ R

N×T ×C and
spatial features S

(k)
tra ∈ R

N×T ×C from each STL. To
preserve the original features of the data as much as
possible, we sum up the features extracted from each layer.
The dependence between sequences is further adjusted
using linear transformations and residual concatenation to
increase the expressiveness of the model. The temporal and

spatial features are summed to obtain the fused spatial-
temporal feature FUS(T

(k)
tra , S

(k)
tra) ∈ R

N×T ×C . The specific
format is as follows:

XT
out = LN(WT

a (WT
b

K∑

k=0

T
(k)
tra ) +

K∑

k=0

T
(k)
tra )

XS
out = LN(WS

a (WS
b

K∑

k=0

S
(k)
tra) +

K∑

k=0

S
(k)
tra)

FUS(T
(k)
tra , S

(k)
tra) = XT

out + XS
out (18)

where WT
a , WT

b , WS
a , and WS

b are learnable parameters, and
K is the number of layers in the STLs.

Further, we use a two-layer 1 × 1 convolution operations
to complete the multi-step prediction, which is more
efficient than single-step prediction. The specific format is
as follows:
→
Y = �2 � (�1 � FUS(T

(k)
tra , S

(k)
tra)) (19)

where �1 and �2 are independent 1 × 1 convolution
operations, and Y ∈ R

N×T is the multi-step predicted value.
Since the traffic data collection process is error-prone, we

use a Huber loss function, which is robust and insensitive to
outliers. It is expressed as:

L(Y,
→
Y ) =

{
1
2 (Y − →

Y )2, |Y − →
Y | ≤ �

� |Y − →
Y | − 1

2� 2, |Y − →
Y | > �

(20)

where Y is real traffic flow, and
→
Y is predicted traffic flow,

and � is a threshold. We summarize the training process of
STGHTN in Algorithm 2.

5 Experiment

5.1 Datasets

We used four large-scale datasets from STSGCN [46]:
PEMS03, PEMS04, PEMS07, and PEMS08, which come
from four regions of California. Table 1 shows the details
of the four datasets. Sensor data was aggregated at 5-minute
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Table 1 Details of four datasets

Dataset Nodes Time steps Time range Missing ratio

PEMS03 358 26208 9/1/2018-11/30/2018 0.672%

PEMS04 307 16992 1/1/2018-2/28/2018 3.182%

PEMS07 883 28224 5/1/2017-8/31/2017 0.452%

PEMS08 170 17856 7/1/2016-8/31/2016 0.696%

Algorithm 2 Training process of STGHTN.

intervals. We used the first 12 time steps to predict the next
12 time steps. The input data was normalized using the
Z-Score as follows:

X̂ = X − mean(Xtrain)

std(Xtrain)
(21)

where mean(Xtrain) and std(Xtrain) are the mean and
standard deviation, respectively, of the training data.

5.2 Baselinemethods

We compare the STGHTN model with seven state-of-the-art
baselines:

• SVR [11]: Linear support vector regression uses
SVM to make regression predictions on traffic flow
sequences, ignoring spatial dependence.

• LSTM [17]: Long short Term Mempry Network to
model time series.

• DCRNN [13]: Diffusion Convolution Recurrent Neural
Network, which models spatial dependence using
bidirectional random walks and temporal dependence
using encoders and decoders.

• STGCN [19]: Spatial-Temporal Graph Convolutional
Networks, which use graph convolution and gated
causal convolution and do not rely on LSTM or GRU.

• ASTGCN [20]: Attention Based Spatial Tempo-
ral Graph Convolutional Networks, where a spatial-
temporal attention mechanism captures spatial relation-
ships through graph convolution and temporal relation-
ships through ordinary convolution.

• Graph WaveNet [31]: Graph WaveNet for Deep
Spatial-Temporal Graph Modeling uses adaptive adja-
cency matrices and learns by node embedding. Tempo-
ral dependence captures using 1D dilated convolution.

• STSGCN [46]: Spatial-Temporal Synchronous Graph
Convolutional Networks capture spatial-temporal rela-
tionships and use the same component for both time and
space.

• STFGNN [21]: Spatial-Temporal Fusion Graph Neural
Networks use a spatial-temporal fusion module that a
new graph structure constructs based on a data-driven
approach.

5.3 Experiment settings

The datasets were divided into training, testing, and
validation sets at a 6:2:2 ratio. Experiments were conducted
in a Windows environment. The processor was an Intel
Xeon E5-2680 v4 CPU @2.40 GHz with 128 GB RAM. The
GPU was a single NVIDIA RTX2080Ti. We used the grid
search strategy to determine the optimal hyperparameters.
We trained our model using an Adam optimizer. The batch
size was 16 and the learning rate was 0.001. There were
four spatial-temporal layers and four heads of MSA. The
number of channels was 32. The evaluation metrics were
Mean Absolute Error (MAE), Mean Absolute Percentage

12479



J. Liu et al.

Error (MAPE), and Root Mean Squared Error (RMSE). The
specific format is as follows:

MAE = 1

N × T

T∑

t=1

N∑

n=1

|Yn
t −

→
Yn

t |

RMSE =
√√√√ 1

N × T

T∑

t=1

N∑

n=1

(
Yn

t −
→
Yn

t

)2

MAPE = 1

N × T

T∑

t=1

N∑

n=1

|Yn
t − →

Yn
t |

Yn
t

(22)

5.4 Experimental results

Table 2 shows the prediction performance of the different
models on the four datasets at 15 minutes, 30 minutes,
60 minutes and on average. STGHTN shows the best
performance in both short-term and long-term forecasting.

The traditional machine learning method SVR tends to
have less-than-ideal prediction performance due to a lack
of nonlinear representation capability. Deep learning meth-
ods have strong nonlinear representation abilities. Among
these, LSTM had poor prediction performance because it

Table 2 Performance comparison of different methods on PEMS03, PEMS04, PEMS07, and PEMS08 datasets

Datestes Methods 15 min 30 min 60 min Average

MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%)

PEMS03

SVR 17.14 29.63 17.07 21.16 35.41 21.39 29.77 47.12 30.17 21.88 36.84 22.11
LSTM 15.73 26.39 16.20 20.04 31.72 18.71 27.37 42.37 28.50 20.64 33.02 20.40
DCRNN 15.57 25.88 14.84 18.35 30.47 17.20 24.11 38.69 22.67 18.77 31.23 17.67
STGCN 17.43 28.43 16.99 19.25 31.33 18.40 23.48 37.51 21.95 19.62 31.95 18.77
ASTGCN 15.71 26.48 15.31 17.75 29.84 16.85 22.12 36.30 21.70 18.02 30.39 17.42
Graph WaveNet 16.16 25.90 16.36 19.21 30.56 17.46 24.73 38.42 24.01 19.64 31.34 19.43
STSGCN 15.85 25.65 15.91 17.56 28.58 16.61 20.72 33.75 19.44 17.67 28.90 16.89
STFGNN 15.32 25.86 15.21 16.80 28.44 16.23 19.37 32.57 18.37 16.84 28.59 16.33
STGHTN 14.18 24.94 13.41 15.41 26.88 14.17 17.13 29.26 16.07 15.46 26.79 14.28

PEMS04

SVR 21.93 33.94 14.55 26.49 40.25 17.64 36.44 53.64 24.67 27.39 42.06 18.33
LSTM 21.85 33.98 14.44 25.91 39.64 17.32 34.80 51.52 24.49 26.67 41.13 18.07
DCRNN 20.37 31.94 13.81 23.62 36.51 15.96 30.49 45.99 20.72 24.17 37.64 16.38
STGCN 21.35 33.99 14.10 23.60 37.08 15.55 28.80 44.00 19.08 24.06 37.84 15.92
ASTGCN 19.20 30.56 12.72 20.38 32.35 13.52 23.57 36.83 15.50 20.63 32.75 13.63
Graph WaveNet 21.76 33.94 14.69 24.83 38.31 17.73 30.55 46.31 23.33 25.06 38.62 18.00
STSGCN 19.64 31.47 12.79 21.16 33.89 13.70 24.21 38.36 15.63 21.34 34.22 13.84
STFGNN 18.78 30.14 12.48 19.82 31.95 13.12 21.55 34.60 14.26 19.82 31.94 13.12
STGHTN 18.40 29.53 12.05 19.38 31.33 12.57 20.98 33.73 13.90 19.35 30.93 12.66

PEMS07

SVR 24.33 37.32 10.32 29.97 45.41 12.84 41.33 60.38 18.31 30.75 47.06 13.30
LSTM 23.86 36.56 10.28 28.68 43.48 12.22 39.38 57.57 17.63 29.53 45.07 12.82
DCRNN 22.86 35.08 9.99 26.63 40.54 11.69 34.82 51.32 16.23 27.19 41.57 12.17
STGCN 25.12 39.61 10.81 27.73 43.48 11.92 33.80 51.74 14.75 28.20 44.25 12.22
ASTGCN 22.42 34.69 9.53 25.32 38.95 10.80 31.37 47.21 13.66 25.61 39.56 10.99
Graph WaveNet 22.68 35.12 9.64 26.70 40.96 11.31 34.62 51.86 15.68 27.24 41.52 11.92
STSGCN 21.12 34.18 8.84 23.50 38.41 9.86 28.10 45.88 11.90 23.72 38.95 9.97
STFGNN 20.30 32.89 8.49 21.95 35.94 9.14 24.77 40.55 10.33 21.98 36.03 9.17

STGHTN 19.63 31.58 8.27 21.06 34.37 9.01 23.55 38.28 10.27 21.00 33.99 8.93

PEMS08

SVR 17.56 26.94 10.78 21.62 33.21 13.28 30.55 45.21 18.80 22.40 34.69 13.80
LSTM 17.61 26.98 10.97 21.10 32.52 12.73 28.98 43.27 18.05 21.76 33.73 13.44
DCRNN 15.48 23.53 10.33 17.65 26.71 11.68 21.76 32.41 14.19 17.87 27.18 11.81
STGCN 17.07 26.07 11.58 18.64 28.60 12.31 22.49 34.05 14.54 19.01 29.16 12.63
ASTGCN 16.19 24.96 9.87 18.12 27.84 11.00 22.12 33.33 13.48 18.31 28.20 11.16
Graph WaveNet 16.62 25.83 10.37 18.77 29.48 11.81 23.01 35.67 15.37 18.88 29.78 12.36
STSGCN 15.72 24.25 10.38 17.13 26.75 11.22 19.56 30.58 12.55 17.19 26.89 11.20
STFGNN 15.20 23.60 9.87 16.48 25.97 10.56 18.83 29.66 11.90 16.56 26.10 10.63
STGHTN 14.54 22.62 9.33 15.42 24.42 9.64 17.11 27.20 10.76 15.30 24.27 9.88

Smallest errors are bolded and second-best are underlined
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Fig. 6 The performance of the different models on the four datasets varies with the prediction time step

only considers temporal correlations and ignores spatial cor-
relations. DCRNN, STGCN, ASTGCN, Graph WaveNet,
STSGCN, and STFGNN considered both temporal and spa-
tial correlations to improve prediction performance. The
more recent model STFGNN incorporates a spatial graph,
temporal graph, and temporal connected graph in a baseline
approach that showed greater performance. We propose a
model that fuses As , At , and Aadp, considering both static
and dynamic graph feature fusion. The best performance is
demonstrated on all datasets.

In the average prediction result, the improvement ratios
of the RMSE metrics compared with the baseline optimal

model STFGNN on the four datasets are 6.30%, 3.16%,
5.66%, and 7.01%, respectively. The relatively large missing
rate in the PEMS04 dataset had a certain impact on the
performance of the model. Our proposed model generally
has stronger prediction performance because it more
comprehensively considers spatial-temporal correlations.
Figure 6 shows the predicted results for the 12 time
steps in more detail. The results show that the prediction
performance of the model decreases as the range of
predictions increases. The LSTM model modelling only
temporal features has the fastest degradation in prediction
performance. Our model shows the best performance overall

Table 3 Combinations of
different graphs on PEMS04
and PEMS08

Dataset Adjacency Matrix MAE MAPE(%) RMSE

[As ] 19.68 12.83 31.34

[At ] 19.58 12.62 31.57

PEMS04 [Aadp] 19.52 12.82 31.21

[As , At ] 19.42 12.91 30.95

[As , At , Aadp] 19.35 12.66 30.93
[As ] 15.59 10.45 24.75

[At ] 15.48 10.27 24.51

PEMS08 [Aadp] 15.42 9.94 24.32

[As , At ] 15.60 10.15 24.75

[As , At , Aadp] 15.30 9.88 24.27

Smallest errors are bolded
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Fig. 7 Heatmap of three kinds of adjacency matrix for 50 nodes on PEMS04

and also the slowest decline in performance as the prediction
horizon increases, as we consider both modelling long-term
temporal dependence and short-term temporal dependence.

5.5 Ablation study

5.5.1 Evaluation onmulti-graph fusion

To verify the effectiveness of the multi-graph, we designed
four combinations of graphs for comparison experiments
on PEMS04 and PEMS08, whose results are shown in
Table 3. It can be found that the similarity graph method
and the adaptive dynamic graph method perform better
than the road connection graph method. In the absence
of expert domain knowledge, we can achieve relatively
effective predictions using only the adaptive adjacency
matrix. When we consider the fusion of three adjacency
matrices simultaneously, a combination of the predefined
prior knowledge and potential information mined from
traffic data, the optimal evaluation score is finally achieved.
Figures 7 and 8 visualize the three graphs. It can be found
that the adjacency matrix As constructed based on the road
connection relationship is sparse compared to the graph

At constructed by the DTW method. As is only a local
spatial connection relationship, and At can dig out the
spatial dependence relationship at a long distance. The
adaptive adjacency matrix Aadp can dynamically adjust the
correlations relationship between roads.

5.5.2 Ablation experiments

To verify the validity of each part of our model, we designed
four variant models and conducted ablation experiments
with our models on the PEMS04 and PEMS08 datasets. The
variant models are as follows:

• Basic: This basic framework does not include TMSA,
SMSA, TGC and SGGC.

• +Self-Attention: This model adds TMSA and SMSA to
the basic model.

• +TGC: TGC is added to the +Self-Attention model.
• +SGGC: SGGC is added to the +Self-Attention model.
• +T-SGC: This model adds both TGC and SGGC to the

+Self-Attention model.

As shown in Fig. 9, the performance after introducing the
attention mechanism is clearly due to the basic model,

5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5

10

15

20

25

30

35

40

45

50

5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5

10

15

20

25

30

35

40

45

50

5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5

10

15

20

25

30

35

40

45

50

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Fig. 8 Heatmap of three kinds of adjacency matrix for 50 nodes on PEMS08
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Fig. 9 Ablation study on PEMS04 and PEMS08 datasets

because we use the self-attention mechanism to extract the
remote temporal dependence in the temporal dimension
and the direct spatial dependence of different roads in
the spatial dimension, respectively. TMSA can capture
long-term temporal dependence. We add TGC to further
capture short-term temporal dependence. SMSA mines
dependence from the data to introduce real-world semantic
connections. We further use SGGC to model the direct
spatial dependence of different roads. It can be found that
+T-SGC has a respectable improvement compared to +Self-
Attention, while confirming the effectiveness of our model
design.

5.6 Effect of hyperparameters

Figures 10 and 11 show the prediction results of our model
on PEMS04 and PEMS08 with different hyperparameters.
When we adjust one parameter, the others are set optimally
by default. Layer denotes the number of STLs. Head
indicates the number of heads of MSA. Dimensions indicate
the number of channels. It can be found that the appropriate
increase of layer, head, and dimensions can improve the
performance of the model. However, this will make the
model too complex and reduce computational efficiency,
while leading to overfitting, which reduces performance.
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Fig. 10 Impact of hyperparameter settings on PEMS04
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Fig. 11 Impact of hyperparameter settings on PEMS08

5.7 Visualization

Figures 12 and 13 show the absolute errors of the STGHTN
model on the 10 minutes, 20 minutes, 30 minutes, 40
minutes, 50 minutes, and 60 minutes prediction tasks on
PEMS04 and PEMS08.

We can find that the STGHTN model shows promising
forecasting performance for both short-term and long-
term forecasts. It can effectively capture the temporal
trend of traffic flow. Because real-world traffic conditions
are complex and variable, the prediction effectiveness of
the model decreases as the prediction range increases.
Figure 14 shows the prediction results of our model and
the baseline model STFGNN, STSGCN at 500 time steps

on the PEMS04 and PEMS08 datasets. We can find that
although both exhibit excellent prediction performance, our
model more accurately predicts the beginning and end of a
traffic peak. Our model convolves separately in the temporal
and spatial dimensions and incorporates a self-attention
mechanism to respond more quickly to the dynamically
changing traffic flow.

6 Conclusion

We considered traffic flow forecasting as a spatial-temporal
forecasting problem, and proposed STGHTN for traffic
flow prediction. We separately performed TGC and SGGC
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Fig. 12 Heatmap shows the absolute errors between true and predicted values for different prediction horizons on PEMS04
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Fig. 13 Heatmap shows the absolute errors between true and predicted values for different prediction horizons on PEMS08
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Fig. 14 Visualization results of different models on PEMS04 and PEMS08
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in the temporal and spatial dimensions to extract local
temporal and spatial dependence. These dependencies
are complementary to the global dependence obtained
by transformer. Multiple spatial graph structures were
constructed to exploit the static and dynamic associations
between roads. Moreover, we employ STFL to explore
spatial-temporal dependence across different time periods.

We conducted rich experiments on four real datasets and
achieved the optimal performance compared to the state-
of-the-art. In future work, we will exploit more effectively
fusing mechanisms for transformer, and apply our model
to more spatial-temporal sequence tasks, such as rainfall
predictions.
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