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Abstract
Federated learning (FL) provides a robust distributed framework for machine learning that solves privacy leakage concerns.
In the some cases, it is hard to train the FL model with limited communication sources and low computational capabilities
for the coordinator. Especially, designing an efficient framework for vertical federated learning (VFL) is a concern, as each
party has unique data features. Hence, this paper proposes VFL-R, a novel VFL framework combined with a ring architecture
for multi-party cooperative modeling. The VFL-R framework simplifies each party’s intricate communication architecture,
defending against semi-honest attacks and reducing the coordinator’s influence in the modeling process. Several experiments
challenge our framework’s communication performance against current VFL frameworks, highlighting that for similar test
accuracy, VFL-R achieves number of communications in one communication round and an 1 communication cost
for the coordinator.
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1 Introduction

In traditional machine learning (ML) approaches, data are
collected and stored by a single node (or centralized server)
and used for training and testing. However, transmitting
and centralizing data raises numerous administrative, eth-
ical and legal issues, mainly related to privacy and data
protection, according to the General Data Protection Reg-
ulation (GDPR) [1]. Federated learning (FL) empowers
collaborative learning to address data issues while protect-
ing information security [2]. Recently, the FL framework
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has been increasingly used in real-world applications, e.g.,
healthcare [3, 4], purchase recommendation [5, 6], and
distributed synthetic data generation systems [7, 8].

Generally, the FL framework involves three primary
steps: (i) all parties receive the latest global model from
the centralized server (also called a broker), (ii) the parties
train the received model using their local data, and (iii)
they upload their locally trained models back to the
centralized server to be aggregated and form an updated
global model. These steps are repeated until a particular
convergence criterion is obtained. However, such distributed
framework also results in communication cost and leads to
a training bottleneck. Currently, communication efficiency
is still a significant concern for FL.

Recently, some researchers proposed several frameworks
to improve communication efficiency in the horizontal
federated learning (HFL) scenario [9–11]. The vertical
federated learning (VFL) scenario is opposite to the HFL
scenario, where all parties hold homogeneous data, i.e.,
the parties have partial overlap on the sample space,
whereas they differ in the feature space. As a result, the
VFL framework requires a more intricate communication
architecture to ensure the other parties are unaware of the
data and the characteristics of other parties. The literature
has proposed several VFL frameworks. For example, in
2019, Yang et al. proposed a simple VFL framework based
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on the C-S communication architecture with one parameter
server (PS) and two parties [12]. Figure 1 highlights that the
PS occurs as a trusted coordinator who is mainly responsible
for data aggregation and information distribution. Ou et al.
[13] designed a vertical federated learning system utilizing
Bayesian machine learning with homomorphic encryption,
while Hou et al. [14] proposed a verifiable privacy-
preserving scheme (VPRF) based on a vertical federated
random forest. However, the stability and reliability of the
PS are pretty important, as once the PS fails to provide
accurate computation results, the VFL may produce a
low-quality model [15]. To eliminate the effect of PS,
Chen et al. [16] proposed a secure VFL framework based
on a pseudo-decentralization communication architecture.
As illustrated in Fig. 2, the parties are divided into one
active and many passive parties, where the active party
replaces the position of PS as the coordinator. In 2021,
Zhu et al. [17] introduced a secure VFL framework named
PIVODL, which trained GBDTs with data labels distributed
on multiple devices. Zhang et al. [18] suggested a VFL
framework based on an LSTM fault classification network
for the firefighting IoT platform. Chen et al. [19] proposed
an efficient and interpretable inference framework for
decision tree ensembles in a VFL scenario. However, the
pseudo-decentralization communication architecture still
needs many communications to achieve high test accuracy
and privacy security. Real-word applications involving an
intricate communication architecture impose high time

and money costs. Although Gu et al. [20] proposed an
efficient VFL framework called VFB2 to simplify the
communication architecture, VFB2 still suffers from semi-
honest attacks [21] and the coordinator’s effect. Hence, it is
quite challenging to design a framework that considers both
communication efficiency and privacy security for the VFL
scenario.

In addition, a simplified framework is urgently needed
to complete VFL modeling with limited communication
sources and low coordinator’s effect. Hence, this paper
proposes VFL-R, a novel VFL framework integrated with
the ring architecture and a HE-based approach, enabling a
multi-party scheme to train the model collaboratively. We
summarize the contributions of this paper as follows.

We first incorporate the ring communication architec-
ture into the VFL framework. Hence, our novel VFL
framework avoids the complicated communication pro-
tocol and reduces the coordinator’s effect. The per-
formance of the VFL-R framework is evaluated based
on benchmark datasets and challenged against other
frameworks. The experimental results reveal that VFL-
R effectively reduces the coordinator’s communication
cost during the modeling process while preserving a
high test accuracy.
We provide our framework’s detailed theoretical analy-
sis of the loss function and gradient. This is important
as the theoretical analysis affords a better understanding

Fig. 1 The VFL framework
based on the C-S
communication architecture
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Fig. 2 The VFL framework
based on the
pseudo-decentralization
communication architecture

of the framework’s operating mechanism and optimizes
the model.
To protect the privacy security of each party, we inte-
grate a HE-based approach into our framework. Mean-
while, we analyze the classic semi-honest threat models
and demonstrate VFL-R’s robustness to semi-honest
attacks.

The remainder of this paper is organized as follows.
Section 2 introduces some necessary methods and con-
cepts for the VFL-R framework. Section 3 defines our
framework’s new model formula, while Section 4 describes
the proposed framework in detail. Section 5 presents the
security analysis, and Sections 6, 7 and 8 present the
experimental setup, varying experiment settings, and chal-
lenge VFL-R against different VFL frameworks. Finally,
Section 9 concludes this work and provides some future
research direction.

2 Preliminary

This section introduces some methods and concepts for the
VFL-R framework.

2.1 Paillier homomorphic encryption

Our framework employs the Paillier Homomorphic Encryp-
tion (PHE) [22, 23] scheme to protect data privacy, an
additive homomorphic encryption method that performs

addition and multiplication on the encrypted values. This
paper defines a new encryption operation .

Definition 1 (Encryption operation ) For any ,
the performs the following calculation:

(addition)
(scalar product),

where the additive homomorphic encryption of a vector
is represented as .

2.2 Vertical federated learning

Let a training sample be x 1 2 , where
x x and denote the input vector and output label,
respectively, is the feature’s dimension of the training
sample. For the VFL setting, x is vertically distributed
among parties and each party owns a disjoint subset
of features vector x x 1 2 ,
where is the features dimension of the -th party and

1
. Similarly, we define [ 1 2 ],

where denotes the parameter of the -th party.
Suppose that the -th party holds the label information

, we focus on the following empirical risk
minimization function:

min
1

1 1

x (1)
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where is smooth and convex, is a tuning
parameter, and and denote the loss function and
regularizer, respectively.

2.3 Gradient descent

The stochastic gradient descent (SGD) [24, 25] is the most
commonly used algorithm for solving convex optimization
problems. In this paper, we employ the gradient-based
method to optimize (1) . Let be the derivative,
the local parameters from the -th party are updated
according to:

(2)

where is the learning rate and denotes the gradient
of with respect to . The empirical risk function
reaches the step-wise minimum according to the gradient.

2.4 Loss function

The model’s loss function depends on the model’s purpose
and can be regarded as a true function of one variable

[26]. We rewrite the loss function in (1) as 1

1
with for regression or for classification,

where
1
x and . Some common loss

functions are reported in Table 1.

3 Preparations for VFL-R framework

A natural question arising is which loss function of Table 1
should be adopted by our framework. To answer this
question, this section introduces the necessary theoretical
analysis and derives a new model formula applicable to our
framework.

3.1 Theoretical analysis

For the existing VFL frameworks, Wan et al. [27] assumed
that the loss function is implicitly linearly separable in the

Table 1 Typical loss functions used in machine learning

Loss Function f(t)

the hinge loss [1 ]

the logistic loss log2 1

the quadratic loss 2
2

the absolute value loss

the huber loss

1
2

2

1
2

2 otherwise

form of , where is any differentiable
function and is a linearly separable function in the form

of
1

x . In this paper, we give a new property

for the loss function involving the encryption operation .

Property 1 (Encryption composed property) For
. The encrypted set

, where comprises the elements from

1 2 is as follows 1 2 .

3.2 Newmodel formula in ( )

In our framework, the -th party computes the encrypted
loss function in the form of , where

is the index of the -th party. We assume that the
regularizer satisfies the encryption decomposition property.
Then, the -th party will compute the encrypted regularizer

in the form of with the set
1 2 . The new model formula in (1) can be

rewritten as:

1

1

. (3)

3.3 Aggregation of the encrypted gradient
( k )

The encrypted gradient aggregation is important for our
framework to update the local parameters. Thus, this
subsection introduces the assumption for the gradient.

Assumption 1 The gradients and satisfy Property 1,
namely comprises elements from set and
is composed of elements from set .

Theorem 1 Under Assumption 1, the encrypted gradient
can be composed of the elements from set : for
, x , and for ,

x .

Proof For , we derive the explicit form of
according to (1) as:

1

1

x . (4)

Considering the encrypted form

1

1

x

1

1

x (5)
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x , namely the , is comprises
elements from set .

For , we derive the explicit form of
according to (1) as:

1

1

x . (6)

Considering the encrypted form

1

1

x

1

1

x (7)

x , namely the can
be composed of the elements from set .

According to Theorem 1, we note that the local data
x is necessary to compute the .
However, in this paper the -th party only computes the

and encrypted results during the aggregation
process, written as , where ,
and as 1 2 . Then, each party will compute the
encrypted gradient [[ ]] during the local updating
process. The purpose is to avoid gradient information
leakage and reduce the calculation pressure during the
aggregation process.

4 The VFL-R architecture

This section introduces the novel VFL framework based
on the ring architecture illustrated in Fig. 3. The design
framework has the following characteristics:

It includes two party types, one coordinator and some
workers. The coordinator does not participate in the
model training.
A one-way channel exists among each worker and a
two-way channel between the coordinator and the -th
worker.
During the modeling process, each worker only needs
one public key from the coordinator. Changing the
encryption pairs in our framework is unnecessary.

4.1 The VFL-R framework

We divide our framework into three phases. In Phase One,
the primary task is to aggregate the model function and the
encrypted results, while Phase Two aims to perform local

updating among each worker. Finally, Phase Three focuses
on the decryption of the encrypted local parameters.

a. Phase One
The -th worker needs to compute the ,

and . The aggregation ideas are
summarized as:

1 1

2 1 2

1 2 1

1 . (8)

Denote that the encrypted set 1 2
1 . Each element in can be used to compute

. The 1-st worker computes the encrypted 1

to 1 , while the 2-nd worker computes new elements
based on the elements from 1 2. With the transfer
of suggested in our proposed framework, we increase
the element availability when computing the target model.
Hence, the -th worker will compute the and
similarly, the can be aggregated as:

1 1

2 1 2

1 2 1

1 . (9)

The can be aggregated as:

1 1

2 1 2

1 2 1

1 . (10)

This phase includes the following three steps.

Step 1: The coordinator creates encryption pairs and
sends the public key to the -th worker. Then, the -th
worker sends the public key to the 1-st worker.
Step 2: The 1-st worker receives the public key and
computes the encrypted sets 1 , 1 , 1 . The 2-
nd worker does the same operations as the 1-st worker
after receiving the public key and 1 , 1 , 1 .
This process is repeated until the encrypted sets

1 , 1 , 1 are sent to the -th worker.
Step 3: The -th worker completes the aggregation of

and .
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Fig. 3 The pipeline of VFL-R
framework

b. Phase Two
In this phase, each worker computes the encrypted gradient

and updates the local parameters. The steps are as follows.

Step 4: The -th worker uses the to com-
pute the and updates the local parameters in
the form of under the
ciphertext environment. Next, the is sent
to the 1-st worker and the 1-st worker does the same
things as the last worker. This procedure repeats until
all workers complete the local updating.
Step 5: As illustrated in Figs. 4 and 5, all workers
perform Steps 2-4 during the -th 1
iteration. The coordinator does not play any role during
the modeling process and rarely has access to the
intermediate results concerning the target model.

c. Phase three
Since the local parameter updating is in the ciphertext

environment, it is necessary to decrypt the local parameters
in the -th iteration.

Step 6: As illustrated in Fig. 6, the -th worker
sends to the 1-th worker after updating the local
parameters. Then the 1-th worker sends the 1

to the 2-th worker after updating the local
parameters. This process repeats until the encrypted
set 1 2 is sent to the
coordinator. The coordinator will decrypt he encrypted
set using its private key.

5 Security analysis

This section discusses our framework’s privacy security. Given
that the semi-honest threat models have been widely used
in FL security analysis [28–30], we introduce two assump-
tions for semi-honest threat models and analyze the privacy
security from two aspects: the coordinator and the workers.

Assumption 2 (Honest-but-curious) Each party follows the
designing protocol to perform the correct computations.
However, some parties may infer the other party’s raw data
and model by retaining the intermediate computation result
records.

Assumption 3 (Honest-but-colluding) Each party follows
the designing protocol to perform the correct computations.
Unlike Assumption 2, some parties may collude to infer
the other party’s raw data and model by sharing their own
retained records.

For workers In our framework, each worker passes the
intermediate results and updates local parameters in the
ciphertext environment.Workers usually receive the encrypted
values from other workers, while under the encryption
protection, it is challenging to perform inference attacks for
other workers under Assumptions 2–3.

For the coordinator In our framework, the coordinator’s
task is to distribute the public key in the 1-th iteration and
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Fig. 4 The aggregation process for the VFL-R framework in Steps 1-3

decrypt the local parameters in the -th iteration. Even if the
coordinator obtains the actual values of the local parameters,
it is different from inferring the raw data under Assumption 2.

6 Experiment setting

All experiments simulate the VFL scenario utilizing Python
3.8.5 on an Intel Core E5-2640 CPU 2.40GHz. The data
were partitioned vertically into four non-overlapping parties
with a nearly equal number of features. We randomly selected

70% of the samples as the training data, and the remaining
were employed as testing data.

6.1 Problem

The following experiment focuses on the binary classifica-
tions problem and utilizes the logistic regression [31, 32]
scheme written as:

1

1

log 1 exp (11)

Fig. 5 The local updating process for the VFL-R framework in Step 4
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Fig. 6 The decryption of local
parameters for the VFL-R
framework in Step 6

where x and 1 1 . We add the 2-norm
regularized risk written as 1

2
2
2 to avoid overfit-

ting. Meanwhile, we use the second-order Taylor approxi-
mations for the logistic loss function to solve the non-linear
problem [33]. The model function can be written as:

1

1

log 2
1

2

1

8
2

2
2
2. (12)

The gradient with respect to is:

1

1

1

4

1

2
x . (13)

6.2 Benchmark datasets

We evaluate our framework’s performance on benchmark
datasets with various numbers of samples and features.
Specifically, we select four datasets from the UCI datasets
[34]: the lonosphere, statlog (Heart), sonar, and breast
cancer wisconsion diagnostic (WDBC) datasets. The
sample and feature numbers are listed in Table 2, while the
values of each feature are standardized into 0 1 .

6.3 The algorithm

Affected by the limited calculation power, using a public
key to perform repeated PHE operations becomes hard. To
solve such problem, we set t as a fixed training period
in Algorithm 1. Specifically, the value of t can attend the
maximum number of PHE operations. Algorithm 2 gives the

system of the VFL-R framework after T (T t) iterations.
In fact, the total period T will be divided into many small
periods t. Each party will execute the VFL-R framework in
the divided period.

7 Varying experiment setting

The performance assessment metrics are the convergence
performance and the classification results on the benchmark
datasets. Moreover, we explore the effects of various
learning rates and tuning parameters .

7.1 Varying learning rates

In our experiment, it is hard to get the loss function curves
due to the limits of the encrypted local parameters. Thus,
we assume that all workers save the results of the encrypted
parameters and jointly compute the loss function with the
coordinator ( 1). The loss function curves of the VFL-
R framework under various learning rates are presented in

Table 2 Statistic of benchmark datasets

Dataset #Samples #Features

lonosphere 351 34

statlog (Heart) 270 13

sonar 208 60

WDBC 569 30

12406 J. Li et al.



Figs. 7, 8, 9 and 10. These figures highlight that the loss
function curves have a consistent overall trend regardless
of the learning rates. Moreover, from 0.01 to
0.3, the convergence speed of VFL-R is improved, and
the classification results under various learning rates are
reported in Table 3. When 0.1, the VFL-R framework
achieves the best classification, while overall, the learning
rate affects the classification performance. Therefore, the
learning rate value must be appropriately tuned rather than
selecting a large value.

Algorithm 1 The VFL-R framework with the t training period.

Algorithm 2 The VFL-R framework with the t iterations.

7.2 Varying tuning parameters

For this case, we set the learning rate to 0.1 and alter
the tuning parameters. The loss function curves involving
various tuning parameters are illustrated in Figs. 11, 12, 13
and 14 demonstrating that the loss function curves have
a similar convergence trend. The classification results of
VFL-R with different tuning parameters are reported in
Table 4, indicating that when increases from 0.1 to
0.9, VFL-R achieves the high classification performance
of 84.69% - 85.05% on the lonosphere dataset, 86.11% -
86.33% on the statlog (Heart) dataset, 81.43% - 82.05%
on the snoar dataset, and 95.55% - 95.83% on the WDBC
dataset.

8 Comparison with different VFL frameworks

At present, existing VFL frameworks pay little attention
to the innovation of the communication architecture. In
order to better highlight the performance of VFL-R, we
challenge it against the VFL [12] and VFB2 [20] framework
in different aspects, including functionality analysis, test
accuracy, and communication performance.

8.1 Functionality analysis

Table 5 reports the functional comparison of the above
frameworks. Specifically, VFL is based on the C-S com-
munication architecture and can defend against semi-honest
attacks to preserve data security. However, such a C-S

12407VFL-R: a novel framework for multi-party in vertical federated learning



Fig. 7 Loss function curve with
various in the lonosphere
dataset, where =
0.01 0.1 0.2 0.3

communication architecture is inefficient, especially when
many parties are involved. Regarding the VFB2 frame-
work, it relies on the tree communication architecture and
supports distributed learning. Although the tree communi-
cation architecture can significantly reduce the number of
communications during the modeling process, its privacy
protection can not guarantee high privacy security without
using encryption technology [35].

Furthermore, VFL and VFB2 frameworks impose a sig-
nificant communication burden for the coordinator, as dur-
ing the modeling process, the coordinator sends the gradient

or other parameters, involving an unnecessary communica-
tion cost and a high risk of information disclosure. In con-
trast, our proposed framework balances the two frameworks
and reduces the coordinator’s communication burden.

8.2 Test accuracy

To demonstrate the test accuracy of the VFL-R framework,
we challenge it against the VFL and VFB2 frameworks.
Furthermore, we test the accuracy gap of different
loss functions by considering the non-federated (NonF)

Fig. 8 Loss function curve with
various in the statlog (Heart)
dataset, where =
0.01 0.1 0.2 0.3
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Fig. 9 Loss function curve with
various in the snoar dataset,
where = 0.01 0.1 0.2 0.3

Fig. 10 Loss function curve
with various in the WDBC
dataset, where =
0.01 0.1 0.2 0.3

Table 3 Classification results
of the VFL-R framework under
various learning rates on the
benchmark datasets for T=300

Datasets lonosphere statlog (Heart) snoar WDBC

Accuracy Accuracy Accuracy Accuracy

VFL-R 0.01 70.75% 83.95% 78.44% 95.61%

VFL-R 0.1 73.58% 85.60% 81.44% 95.88%

VFL-R 0.2 72.64% 85.18% 80.84% 95.61%

VFL-R 0.3 71.70% 85.18% 81.40% 95.83%

12409VFL-R: a novel framework for multi-party in vertical federated learning



Fig. 11 The loss function curve
with different in the
lonosphere dataset, where =
0.1 0.3 0.6 0.9

experiment where all data are integrated for modeling with
the logistic loss function.

Figures 15, 16, 17 and 18 plot the test accuracy of four
frameworks based on benchmark datasets. For the Taylor
loss function, the VFL-R framework achieves a similar test
accuracy to the VFL and VFB2 frameworks, with the test
accuracy of each framework deviating at most by 4% in the
lonosphere dataset. Considering the logistic loss function,
the VFL-R framework attends the small test accuracy gap.

8.3 Communication cost

We assume that each VFL framework includes N parties.
Enc is defined as encryption operation and denotes

the data size of each party during the modeling process.
and represent the intermediate results for the -th party,
which are used to compute the loss function and gradient,
respectively. is the gradient for modeling process.

For the VFL-R framework. During the aggregation process,
each party sends the Enc to the next party and
receives the Enc 1 1 from the last party. For the
VFL-R framework, the coordinator does not participate in
the modeling process. Thus, the communication cost of the
third-coordinator is 1 .

For the VFL framework Each party needs to send the Enc
to the major party and receives the Enc

Fig. 12 Loss function curve
with various in the statlog
(Heart) dataset, where =
0.1 0.3 0.6 0.9
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Fig. 13 Loss function curve
with various in the snoar
dataset, where =
0.1 0.3 0.6 0.9

Fig. 14 Loss function curve
with various in the WDBC
dataset, where =
0.1 0.3 0.6 0.9

Table 4 Classification results
of the VFL-R framework with
various tuning parameters on
four datasets for T=300

Datasets lonosphere statlog (Heart) snoar WDBC

Accuracy Accuracy Accuracy Accuracy

VFL-R 0.1 84.69% 86.11% 81.43% 95.83%

VFL-R 0.3 84.66% 86.33% 82.05% 95.55%

VFL-R 0.6 84.66% 86.11% 81.44% 95.80%

VFL-R 0.9 85.05% 86.20% 81.43% 95.80%

12411VFL-R: a novel framework for multi-party in vertical federated learning



Table 5 Comparison analysis
of the VFL and VFB2

frameworks

Framework VFL VFB2 VFL-R

Encryption protection

Decentralization

Defend against semi-honest attacks

Efficient communication architecture

Low coordinator’s effect

Fig. 15 Test accuracy on the
lonosphere dataset with various
VFL frameworks, where
25 50 100 150 200 250 300 350 400 ,

0.1 and 0.3

Fig. 16 Test accuracy on the
heartstalog dataset with different
VFL frameworks, where
25 50 100 150 200 250 300 350 400 ,

0.1 and 0.3

Fig. 17 Test accuracy on the
snaor dataset with different VFL
frameworks, where
25 50 100 150 200 250 300 350 400 ,

0.1 and 0.3
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Fig. 18 Test accuracy on the
wdbc dataset with different VFL
frameworks, where
25 50 100 150 200 250 300 350 400 ,

0.1 and 0.3

Table 6 Communication cost
of the VFL-R framework
compared with the VFL and
VFB2 frameworks in one
communication round

Framework Each party The coordinator

VFL-R Enc + Enc 1 1 1

VFL Enc + 1
1 Enc Enc

VFB2

Fig. 19 The number of
communications about three
VFL frameworks in one
communication round

12413VFL-R: a novel framework for multi-party in vertical federated learning



from the other party, where 1 2 1 . The
coordinator has to send the Enc to each party and
therefore the communication cost of the coordinator can be
formulated as Enc .

For the VFB2 framework Each party sends the to
the next party based on the tree communication architecture.
Meanwhile, each party will receive the from the coordi-
nator. Thus, the communication cost of the coordinator is

.
In Table 6, we compare in detail the communication

cost of all competitor frameworks, demonstrating that our
framework reduces the coordinator’s communication cost.
Meanwhile, compared to the VFL framework, our method
greatly reduces the communication cost for each party.

8.4 The number of communications

Next, we compare the number of communications of
the three VFL frameworks per communication round. In
Fig. 19, the horizontal axis shows the number of parties
and the vertical axis shows the number of communications
in one communication round. It reveals that the VFL
framework requires 2 communications as the number
of participants increases. However, our proposed framework
requires communications, similar to the VFB2

framework. Nevertheless, as mentioned in Section 8.1, the
VFB2 framework has poor privacy security, which is not a
concern in our framework.

9 Conclusion and future work

This work proposes VFL-R, a new VFL framework that
utilizes a ring communication architecture to simplify the
intricate communication architecture among each party. In
particular, the ring communication architecture reduces the
coordinator’s communication burden, and our novel com-
munication architecture reduces the number of communica-
tions in one communication round. Furthermore, our frame-
work employs HE-based technology to guarantee privacy
security. Functionality analysis and extensive experiments
demonstrate that VFL-R effectively reduces the communi-
cation cost and achieves high accuracy on all benchmark
datasets.

Our framework is limited by the necessary assumptions
regarding the loss function and gradient. Therefore, future
work will aim for improvements utilizing more complicated
machine learning approaches or other methods solving
these problems. Meanwhile, we will continue our research

in designing an efficient framework that further enhances
communication performance in VFL scenario.
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