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Abstract
Medical image registration is a fundamental and vital task in medical image analysis. Deformable medical image registration
generates a dense nonlinear transformation from the moving image to the fixed image. Current learning-based image
registration methods utilize U-shaped networks, concatenate moving and fixed images as one input, and then impose a global
regularization to ensure smooth deformation fields. However, existing deformable image registration approaches concatenate
image pairs as one input to their model and may ignore independent anatomical relevance of the images. Moreover, the
global regularization causes over/underconstraining, affecting their model registration accuracy and over/under enforcing
the deformation field’s smoothness. To address these two problems, we propose a twinning network, consisting of two
subnetworks. The first subnetwork is the proposed separate encoding neural network (SEN) for predicting high-accuracy
deformation fields, and the second subnetwork is a folding correction block (FCB) to correct the deformation fields
to achieve folding reduction. Comparing our experimental results to the state-of-the-art displacement and diffeomorphic
methods, the proposed method provides superior registration accuracy and reduces the folding numbers. Moreover, we
utilize the FCB to correct the baselines’ output deformation fields, proving that the FCB outperforms global regularization.

Keywords Deformable image registration · Deep learning · CNN · Folding correction

1 Introduction

Image registration is fundamental and crucial in many
medical image analysis tasks. As a part of the medical image
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registration task, deformable registration aims to construct
a dense and nonlinear transformation from a source image
to a target image (denoted as moving image and fixed
image) to represent the variations in anatomical shapes
in images caused by factors including patient motion,
organ motion, and disease development. For example,
deformable registration enables researchers to compare the
organ anatomical structure evolution of patients over time
longitudinally, or the organ differences between individuals
with disease and healthy individuals horizontally, which is
critical for understanding the evolution of organ anatomical
structures of a disease [1–3].

Recently, with the rapid development and superior per-
formance of deep learning, deep learning has been widely
applied in various medical imaging analysis tasks and
has achieved remarkable success in many medical imag-
ing applications. Especially in registration, unsupervised
deep learning-based methods [4–8] have been proposed
and demonstrated to achieve higher performance without
ground-truth information for deformable medical image
registration. These methods generally utilize a convolu-
tional neural network (CNN) to estimate a deformation
field from a pair of images. Then a spatial transform
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network (STN) [9] is utilized to interpolate one image via
the deformation field to the other. The average similar-
ity metric score on the anatomical segmentations, achieves
higher registration accuracy than conventional methods
[10]. Most learning-based methods use UNet-like architec-
tures and concatenate a pair of images as one 2-channel
image input to their model, which fuses the features before
extracting the independent tissue information contained in
each resolution level [4, 5, 8, 8, 11, 12]. Nevertheless,
these methods ignore the independent information of each
image in an image pair. The recent dual-steam, also called
two-stream research [13], states that modeling each image
of the input image pair individually enhances the deep
representation of their model.

Furthermore, medical images, which represent anatom-
ical information in digital data, should have a realistic
deformation field. Put differently, an image converted into
another via a deformation field should retain its anatomical
structure topology properties, which means that a deforma-
tion field should be smooth and have less folding within the
transformation. Most unsupervised learning-based registra-
tion methods [4, 5, 8, 11] impose a global regularization
on the gradient of an output displacement field to restrict
the deformation to be smooth. However, the problem is
that the regularization presumes that the deformations are
in the same smoothness hypothesis, which causes over-
or underconstraining for establishing anatomical correspon-
dence. Learning-based diffeomorphic stationary velocity
field methods [6, 12] provide diffeomorphic transforma-
tions to ensure the topology properties, i.e., to restrict the
folding and even reduce the number of folding regions to
zero. Nevertheless, studying the dynamic motion of organs
requires discontinuous transformation [14], which is dif-
ferent than the continuous property of diffeomorphism.
Thus, diffeomorphic methods perform poorly when regis-
tering the intrapatient organ (e.g., heart or lungs) images of
different systolic cycles. Although the displacement-based
approaches can generate discontinuous transformations,
they also struggle with the annoying issue of folding.

To reduce folding in the deformation field and to ensure
as much registration accuracy as possible, we divide the
image registration task into two subtasks. The first is to
compute highly accurate displacement fields using a global
and coarse regularization function; the second is to use a
model to find the folding and correct it to be smooth (i.e.,
reduce the number of folding regions). Here, we propose
an unsupervised learning-based image registration method
consisting of twinning networks, including a separate
encoding network and a folding correction block. Our main
contributions are as follows:

• We propose a novelty separate encoding network for
unsupervised deformable image registration, which

separately models the independent information of
each image of an image pair to enhance the deep
representation of the registration model.

• To further reduce the folding in a deformation field
instead of using the global regularization, we propose a
novelty folding correction block, a general module for
2D images and 3D volumes, which can learn folding
features, recognize folding in displacement fields, and
smooth the displacement fields.

• Quantitative and qualitative results demonstrate that the
proposed twinning method outperforms the state-of-
the-art displacement-based and velocity-based methods
both in the registration accuracy and the number of
folding regions in the transformation.

• We use folding a correction block to revises the state-of-
the-art methods output displacement fields and correct
them. The results prove that the folding correction block
is more applicable and effective than global smooth
regularization.

2 Related work

2.1 Conventional deformable approaches

Conventional deformable image registration methods usu-
ally employ a similarity function such as NCC [15, 16],
MSE [17, 18], or NMI [19] to optimize the registration
model iteratively to maximize the similarity between an
input pair of images. These methods, including elastic-type
models [15, 20], discrete methods [21, 22], and DRAMMS
[23] establish the spatial correspondence of two images.
These methods regularize the displacement field to be
smoothed by using a regularization function or smooth-
ing filter. In addition, several conventional studies use
the diffeomorphic model to guarantee that the produced
deformation field is differentiable, topology-preserving, and
invertible [24, 25]. Diffeomorphic models such as LDDMM
[26, 27] and SyN [10] are wildly used and recognized.
However, these iterative methods are time-consuming and
require a large number of computational resources to regis-
ter an image pair.

2.2 Learning-based approaches

Many supervised learning-based methods have recently
been proposed for deformable registration tasks. These
methods usually utilize a CNN model to learn a dense
correspondence between an input pair of images. Further-
more, most of these supervised methods [28–31] require
images with a ground-truth deformation field or anatomi-
cal segmentation to supervise the learning process. Super-
vised methods have demonstrated outperformance in the
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image registration task. However, this ground-truth infor-
mation requires complex annotations by experts or must be
produced by conventional methods. Put differently, infor-
mation for these approaches is difficult to obtain or is not
appropriate as ground-truth information in practice.

In recent years, to avoid the difficulty of collecting super-
vised information, most learning-based approaches have
focused on [4–8, 11, 12] unsupervised training. Unsuper-
vised methods first compute a displacement field, then
utilize an STN to warp the moving image to a fixed
image, and then use a differentiable similarity function to
learn the dense spatial transformations in the image pair.
For example, [4] proposed an unsupervised UNet-like 3D
volume registration method that employs NCC similarity
and L2 regularization constraint displacement field smooth-
ness. However, computing smooth and topology-preserving
transformations is still a challenge. To further avoid folding
and obtain a topology-preserving warped image, stationary
velocity fields are used in diffeomorphic approaches. Dalca
et al. [6] proposed a probabilistic diffeomorphic registra-
tion method that offers uncertainty estimation within CNN
and diffeomorphic integration models. Mok and Chung [12]
proposed a diffeomorphic model to estimate both forward
and inverse velocity fields simultaneously. Al Safadi and
Song [32] proposed a meta-regularization method to learn
regularization filters to generate a smoother displacement
vector field. Kang et al. [13] employed the two-stream archi-
tecture, separately modeling the moving and fixed image to
the bottom of the encoder, then restoring them to the upper
resolution and fusing their feature maps in each level of the
decoder.

In contrast to the abovementioned unsupervised learning-
based approaches, we divide image registration into two
subproblems and solve them step by step. Unlike most

of these methods architectures, the proposed deformable
image registration model fully considers the independent
information of each image in the input pair and provide
displacement fields with coarse regularization. Compared
to the recent two-stream method [13], we introduce a
separate encoding network that focuses on independent
and combined hybrid encoding for the input image pair
information. The correction model then learns to distinguish
folded feature maps in the displacement field and regularize
them to be smooth.

3Methods

Let X and Y be two images defined in the spatial domain
� = Ri (i = 2, 3). Figure 1 illustrates the overall
architecture of the proposed twinning deformable image
registration neural network. Our proposed method is divided
into two stages: one for image registration and another for
correcting folding. In the image registration phase, SEN is
the proposed convolutional neural network for deformable
image registration, which computes the displacement fields
between X and Y . Lreg is the registration loss function.

Many displacement field based approaches [4, 5, 7, 11]
employ global regularization, which causes over-or under-
constraining and affects their registration performance.
Unlike the mentioned methods, we use a model to correct
the output displacement fields to reduce the folding. In the
folding correction phase, FCB is a proposed convolutional
neural network for correcting the displacement field. After
SEN training is finished in this coarse regularization way,
we freeze the SEN parameters and output the predicted
displacement field to FCB. Lf c is the folding correction
loss.

Fig. 1 Overview of the proposed
twinning method for deformable
image registration. ◦ denotes the
spatial transform network. � is
the residual factor. φ̄ represents
the corrected deformation field
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3.1 Separate encoding neural network

We take a deep unsupervised approach to learn the
generation function for displacements, which the function
denoted as gθ (X, Y ) = (φ

(1)
XY , φ

(1)
YX). gθ represents the

separate encoding neural network (SEN) with its parameters
θ . φ

(1)
XY and φ

(1)
YX are two output displacement fields,

which are the direct and inverse displacement fields. The
motivation for estimating the bidirectional deformation is to
guarantee the existence of the inverse transformation [12,
33]. To guarantee the invertible property in registration, let
x ∈ X and y ∈ Y , we compute two directions by functions
φ

(1)
XY = φ

(0)
Y X (−φ

(0)
XY (x)) and φ

(1)
YX = φ

(0)
X Y (−φ

(0)
YX(y)),

where φ
(0)
XY and φ

(0)
YX are two output displacement fields

from gθ . Therefore, gθ can be rewritten as gθ (X, Y ) =
(φ

(0)
XY (−φ

(0)
YX(y)), φ

(0)
YX(−φ

(0)
XY (y))).

Architecture of SEN As shown in Fig. 2a, our proposed con-
volutional neural network consists of a 5-level hierarchical
encoder-decoder with skip connections, which is similar to
UNet [34]. Unlike formal U-shaped networks [4–7, 12] that
concatenate X/fixed and Y/moving image volumes as a sin-
gle 2-channel input, the proposed SEN is divided into three
branches in the encoder. The first branch extracts feature
maps for X, the second branch extracts feature maps for Y,
and the third branch extracts feature maps for concatenated
XY in each level encoder. The proposed SEN concatenates
these three-branched feature maps at each level, then further
computes the concatenated feature maps and downsamples
these feature maps to the next resolution level encoder block
as the input to the third branch. The blocks in the encoder
consist of 3×3×3 kernel size convolutional layers with a
stride of 1, followed by a rectified linear unit (ReLU) acti-
vation for computing the constant size feature maps in each

resolution level. We apply 3×3×3 kernel size convolutional
layers with a stride of 2 followed by a ReLU activation to
downsample the feature maps in half until the lowest res-
olution level is reached. For each resolution level in the
decoder, we apply 3 × 3 × 3 kernel size convolutional lay-
ers with a stride of 1 followed by ReLU activation and a
2 × 2 × 2 deconvolutional layer to upsample feature maps
to twice their size and then concatenate them with the fea-
ture maps from the encoder through skip connections. To
ensure that inverse transformation exists, we utilize two
3 × 3 × 3 convolutional layers with a stride of 1 followed
by softsign activation (i.e., sof tsign(x) = x

1+|x| ) to nor-

malize the feature maps to [−1, 1] to obtain direct φ
(0)
XY

and inverse φ
(0)
YX, and then each of them is multiplied by a

constant c within the range [−c, c] to obtain displacement
fields.

3.2 Folding correction block

We freeze the parameters when our proposed SEN training
is finished, and then we reuse the train set through the
trained SEN to obtain the displacement fields. We take
an unsupervised approach to learn the generation function
fθ ′(φ(1)) = � for correcting displacements. fθ ′ is the
proposed folding correction block (FCB) with its parameter
φ(1). � is a factor that is used to reduce the folding in the
input displacement fields by the formula φ̄ = c × φ(1) −�.
This formula indicates that � includes folding location
information and the magnitude of the displacement fields
that need to be corrected. φ̄ is the corrected displacement
field. Figure 3 shows some folding regions represented by
the folding in the grid figure. We can observe that the
FCB can recognize folding and correcting to smooth the
transformation, i.e., the grid line without crossing.

Deconvolution 2x2x2, Stride=2

Convolution 3x3x3, Stride=1, 

Softsign activation

Convolution 3x3x3, Stride=1 

Convolution 5x5x5, Stride=2 

Convolution 3x3x3, Stride=2 

(b) Folding correction block (FCB)

16 16 32

16 16 32

3 32 16 316 32 16 32 164 4 8

8 8 16 32

16 16 32 64

32 32 64 128

64 64 128 256

128 128 128

64 64 64

32 32 32

3

3

Skip connection

(a) Separate encoding neural network (SEN)

Fig. 2 Illustration of our two subnetworks. (a) illustrates our proposed
fully connected network SEN architecture to predict the bidirec-
tional deformation fields. The gray and orange blocks indicate the

3D feature maps from the encoder and decoder, respectively. (b) illus-
trates our proposed FCB architecture utilized to reduce the folding
regions in the SEN predictions
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Fig. 3 An example of showing
the FCB correcting the folding
regions in a displacement field.
The grid figure is the
visualization of a displacement
field. The red frames marked in
the deformation field are parts
of folding regions. We zoom the
marked regions and then find the
gridline crossing. The arrows
indicate the corrected local
displacement field

Architecture of FCB As shown in Fig. 2b, the proposed FCB
consists of four 3×3×3 kernel size convolutional layers,
each of them with a stride of 1 and followed by a ReLU
activation except for the last layer. Convolutional layers
with kernel sizes of 3×3×3 and 5×5×5 with different
strides followed by ReLU activation downsample the input
displacement fields to the same size. The deconvolutional
layers upsample the 1/2 resolution feature maps to the
shaped of the original input displacement fields. Then, the
last layer outputs the residual factor �.

3.3 Loss functions

3.3.1 Registration loss function

We employ the registration loss function to penalize
the displacement field Lreg = Lsim(·) + Lsmooth(·),
which is divided into the similarity loss function and
the regularization loss function. Each of these two loss
functions is pairwise, both consisting of bidirection losses.
We use normalized cross-correlation (NCC) and mean
square error (MSE) as the similarity loss functions to
measure the similarity between the warped image and the
fixed image. To measure the similarity between warped X

and Y and warped Y and X, the similarity loss function is
formulated as

Lsim(X, Y ) = Lsim(X ◦ (φ
(1)
XY ), Y ) + Lsim(Y ◦ (φ

(1)
YX), X),

(1)

where X ◦ (φ
(1)
XY ) and Y ◦ (φ

(1)
YX) represent image X

warped toward Y via the displacement field φ
(1)
XY and

image Y warped toward X via the displacement field φ
(1)
YX

respectively. Lsim is NCC when � = R3 and Lsim is MSE
when � = R2. A higher NCC value or a smaller MSE value
indicates a better alignment.

We enforce the deformation field coarse smoothness
using an L2 regularization loss function with ∇, which

denotes the spatial gradient using differences with neigh-
boring positions. Thus, Lsmooth can be defined as follows:

Lsmo(φ
(1)
XY , φ

(1)
YX)=

∑

x∈�

(‖grad(φ
(1)
XY )‖2+‖grad(φ

(1)
YX)‖2).

(2)

Therefore, the registration loss function of our first network
can be written as follows:

Lreg(X, Y ) = Lsim(X, Y ) + λ1Lsmo(φ
(1)
XY , φ

(1)
YX), (3)

where λ1 is a hyperparameter that balances the accuracy of
the network predictions and the coarse smoothness of the
output displacement fields.

3.3.2 Folding correction loss function

We propose a folding correction loss function Lf c =
Lsim2(·) + LJdet (·) + Lenc(·) consisting of three terms,
including the deformation field similarity loss Lsim2 , the
Jacobian determinant regularization loss LJdet and the
regularization Lenc. In this section, Lsim2 is an MSE
similarity function, which is used to measure the similarity
between φ̄ and φ(1). Lsim2 can be formulated as follows:

Lsim(φ(1), φ̄) = MSE(φ(1), φ̄), (4)

where φ(1) is the input displacement field and φ̄ is the
corrected displacement field.

We utilize the Jacobian determinant in the second term
in the proposed folding correction loss function because
it is positive when the displacement field is smooth. Put
differently, we can say that the Jacobian determinant is
folding sensitive. The definition of the Jacobian matrix can
be written as follows:

Jφ̄(p) =

∥∥∥∥∥∥∥∥

∂φ̄x(p)
∂x

∂φ̄x(p)
∂y

∂φ̄x(p)
∂z

∂φ̄y(p)

∂x

∂φ̄y(p)

∂y

∂φ̄y(p)

∂z
∂φ̄z(p)

∂x
∂φ̄z(p)

∂y
∂φ̄z(p)

∂z

. (5)
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Jφ̄(p) denotes the Jacobian determinant metric over

deformation field φ̄ at position p.
To measure the degree of a folding region in the defor-

mation field, we utilize Jacobian determinant regularization
in [12] and give a smooth formulation. The Jacobian deter-
minant regularization is written as follows:

LJdet = ln

⎛

⎝ 1

N

∑

p∈�

ReLU(−|Jφ̄(p)|)
⎞

⎠, (6)

where N is the total number of elements in |Jφ̄ |. ReLU is
the linear activation function that maintains the values when
Jφ̄(p) ≤ 0 and sets the values to zero when Jφ̄(p) > 0.

Aiming at balancing the contribution of Lsim and LJdet ,
we use a variant L2 regularization on the spatial gradient of
� to encourage its change. Thus, Lenc is defined as follows:

Lenc = ln
∑

x∈�

(‖grad(�)‖2) (7)

These two functions (4) and (6) in Lf c enforce the
adjustment to the local regions with negative Jacobian
determinants in the deformation field φ(1). In contrast,
the local regions with positive Jacobian determinants are
not corrected. This adjustment is made under the premise
that the adjusted deformation field φ̄ is similar to the
original deformation field φ(1). Put differently, the adjusted
local region deformation field maintains the constraints and
magnitude constrains in the neighborhood. We balance the
contributions of these two terms with weight λ2 multiplied
by Jφ̄(p). Therefore, Lf c can be written as Lf c = Lsim +
λ2LJdet + λ3Lenc.

4 Experiments

4.1 Datasets

The first dataset is the EchoNet-Dynamic dataset [35].
This dataset is composed of echocardiogram videos and
human expert annotations for the left cardiac ventricle of
each subject. We select 1276 image pairs representing end-
systole and end-diastole at two separate times in each video,
which are annotated by human experts. We use the end-
systole phase image as Y and the end-diastole phase image
as X. The selected image pairs are randomly divided into
920 for training, 100 for validation, and 256 for evaluatation
for each method.

The second dataset is OASIS [36] preprocessed in
[4], which consists of a cross-sectional collection of T1-
weighted MRI scans from 416 subjects aged 18 to 96, as
one of our experimental datasets. These raw MRI scans
with shapes of 256 × 256 × 256 and 1mm × 1mm ×
1mm resolution are preprocessed by using FreeSurfer [37],

resulting in shapes that are 160 × 224 × 192. We resample
these scans into 96 × 112 × 96. We randomly select 270
MRI scans from the dataset, and the scans are divided
into 200, 36, and 34 scans for training, validation and
testing, respectively. We randomly select 4 and 6 MRI
volumes from our validation and testing set as fixed, and the
remainder denotes the moving image volumes. We perform
a registration task by aligning the moving image volumes to
each fixed image. To compare with the other methods, we
use X as the fixed image and Y as the moving image volumes
in our method, and we register a total of 120 fixed/moving
image volume pairs for each method.

4.2 Measurement

Because the ground-truth nonlinear deformation field is
challenging to obtain, we evaluate registration performance
with the Dice similarity coefficient metric and Jacobian
determinant (|Jφ |). For example, we first warp each moving
brain MRI volume to each atlas to obtain the deformation
field. Then, we warp the anatomical segmentation maps
belonging to each moving image to align with the
anatomical segmentation maps belonging to each fixed
image by using the predicted deformation fields. We
evaluate the overlap of the segmentation maps using the
percentage of Dice metrics (higher is better). Then, compute
|Jφ | on each displacement field and count the number of
pixels with nonpositive Jacobian determinants (i.e., |Jφ | ≤
0, lower is better).

4.2.1 Dice

Dice is a metric for measuring the overlap of anatomical
segmentation maps between the warped moving image and
the fixed image. In our experiments, for brain MRI, 36
anatomical structures are used for analysis. For cardiac
ultrasound images, only the left ventricle annotation is used
for analysis. The Dice values ranged from [0, 1], and a high
Dice metric indicates a high registration accuracy.

4.2.2 Jacobian determinant

The Jacobian metric is defined in (5). In our experiments,
we compute the Jacobian determinant of each displacement
field and count the number of pixels or voxels with
nonpositive Jacobian determinants (i.e., |Jφ | ≤ 0).

4.2.3 Baseline methods and implementation

We compare our proposed method to three unsupervised
deep learning-based deformable registration methods. The
first and second baseline methods are VoxelMorph (VM)
[4] and Vit-V-Net (VVN) [11], both of which predict a
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displacement field and then utilize global regularization to
restrict the displacement fields smoothing. VM employs
a UNet and outputs the displacement field directly.
VVN is a transformer-based method, that introduces
transformer into image registration. The third baseline
method is SYMNet (SN) [12], which predicts diffeomorphic
transformations. For these methods, we use their official
online implementation. We train VM, VVN, and SN and
follow the recommended parameter settings in [4, 11, 12].
The proposed method is implemented based on PyTorch.
We adopt the Adam [38] optimizer with a learning rate of
0.0001 for SEN and FCB. We train our method and baseline
methods on an RTX 3080 GPU. What needs to noted is that
we first train our proposed SEN, then we freeze the SEN
parameter to compute displacement fields between each
image pair. Finally, FCB uses these displacement fields to
learn its parameters. The FCB mentioned below are trained
based on the SEN predictions. For different datasets, λ1, λ2,
and λ3 have different settings, and the specific settings are
shown in Section 4, the experimental results.

4.3 Experimental results

4.3.1 Validation on the cardiac dataset

We first evaluate displacement-based methods (VM, VVN)
with global regularization λ1 = (0.04, 0.05) and our pro-
posed method on the cardiac dataset. We utilize MSE as the
loss function and train these methods for 160,000 iterations.
We tune the hyperparameter λ1 = 0.05 for the coarse
regularization in our method. We set λ2 and λ3 to (40, -1).

Analysis and discussion The first part of Table 1 shows
the registration results on 256 cardiac ultrasound image
pairs. We can observe that our proposed single method SEN
outperforms the other two baseline methods on the average

Table 1 Comparison of cardiac ultrasound image results

Method Dice (%) |Jφ | ≤ 0

Affine Only 75.51 ± 7.00 −
VM (λ1 = 0.04) 88.49 ± 4.52 45.39 ± 51.50

VM (λ1 = 0.05) 88.14 ± 4.78 36.47 ± 45.65

VVN (λ1 = 0.04) 88.97 ± 4.33 61.79 ± 64.84

VVN (λ1 = 0.05) 88.22 ± 4.79 39.84 ± 46.70

SEN 89.32 ± 4.14 59.27 ± 44.36

SEN + FCB 89.35 ± 4.16 37.00 ± 34.85

VM (λ1 = 0.04) + FCB 88.58 ± 4.49 21.14 ± 30.65

VVN (λ1 = 0.04) + FCB 89.14 ± 4.28 24.73 ± 35.12

Affine only: the results from preprocessing only

The bold entries are the highlighted results that prove our methods
outperform the baseline methods

Dice metric. Our proposed twinning method, denoted as
SEN+FCB, outperforms the others both on the Dice metric
and the number of nonpositive |Jφ |. Figure 4 shows a
registration result, including displacement field computed
by the SEN, the displacement field corrected by the FCB,
and the final warped image.

To illustrate that the FCB correction outperforms global
regularization, we use the FCB to correct the output
displacement fields of VM (λ1 = 0.04) and VVN (λ1 =
0.04), which indicates VM and VVN are trained with the
hyperparameter setting of the global regularization as λ1 =
0.04. Then we compare the correction results to the output
displacement fields of VM (λ1 = 0.05) and VVN (λ1 =
0.05), which are trained with the hyperparameter setting
of the global regularization as λ1 = 0.05. Compared to
VM, SN, and VVN, our proposed SEN and SEN+FCB
achieve the best Dice metrics. On the average nonpositive
|Jφ | metric, the results of VM are slightly higher than
our proposed SEN+FCB. Comparing the nonpositive |Jφ |
standard deviations of all three methods, our proposed
SEN+FCB is the lowest among all approaches, which
indicates that our method is robust in predicting deformation
fields. The second part of Table 1 shows the global
regularization and the correction results. It is worth noting
that the Dice values are improved while the number of
nonpositive |Jφ | is significantly reduced when the FCB is
utilized for VM, VVN, and SEN. This demonstrates that the
correction by using the FCB is more effective than using a
global regularization. Figure 7 shows the deformation fields
of the cardiac images predicted by each method and the
warped image with the overlaid segmentation map.

4.3.2 Validation on brain dataset

We evaluate VM, VVN, SN, and our proposed twinning
method on 3D brain MRI volumes. For VM, SN, and
the proposed SEN, we use NCC as the loss function. We
find that the Dice metric is the best when VM is trained
with smooth hyperparameter λ1 = 3 and VVN is trained
with λ1 = 0.02 on this 3D brain dataset. We use the
recommended global regularization hyperparameters in [12]
for SN. SN employs the explicit Jacobian loss term with
the hyperparameter λo to achieve folding reduction. We use
λo = (0, 1000), which is the recommended setting in [12]
to restrict the folding, and then compare it to our proposed
twinning method results. We tune the hyperparameter λ1 =
2 for the coarse regularization in our method. We set λ2 and
λ3 to (50000, -0.01).

Analysis and discussion The first part of Table 2 shows the
experimental results on brain MRI volumes. We find that for
SN, the Dice metrics changes too much while the folding
reduction is insufficient when the hyperparameter λo of the
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Fig. 4 A sample result of registering two cardiac ultrasound images
pair. (a) Fixed image. (b) Moving image. (c) Warped moving image
by displacement field. (d) Displacement field. (e) Corrected displacement

field. (f) Warped moving image by corrected displacement field.
(g) Difference representation between warped image and corrected
warped image. Colorbar in (g) represents the normalized difference

explicit Jacobian loss term changed (i.e., 0 → 1000). This
result motivates us to design the folding correction block
by utilizing the smooth Jacobian loss term. The single SEN
achieves the best results on Dice metrics and leads the other
methods by almost 1-2%. The proposed twinning method
outperforms the others both on Dice and nonpositive |Jφ |
metrics except VVN with the smooth hyperparameter λ1 =
0.02. When we adjust λ1 to 0.05 to make the number of
nonpositive |Jφ | of VVN’s result similar to ours, VVN does
not perform well on the Dice metric. This is due to the worse
performance of the model when the smooth hyperparameter
is larger, as stated in [6, 12]. Figure 5 shows a registration
result, including the displacement field computed by the
SEN, the displacement field corrected by the FCB, and the
final transformed brain image. The boxplot in Fig. 6 shows
the comparison results for each anatomical structure.

The second part of Table 2 shows the FCB correcting the
folding of the other three methods. The results demonstrate
that FCB effectively reduces the number of nonpositive |Jφ |
while sacrificing some registration accuracy. FCB reduces
almost 85-90% nonpositive |Jφ | for VM, VVN, and our
proposed SEN while reducing 65% nonpositive |Jφ | for
SN. We attribute this gap in the percentage of reducing
results to the deformation field generation form: one is
based on the displacement field, and the other is based on
the velocity field. The results of SN + FCB prove that the
use of the additional convolutional block with the Jacobian
loss term outperforms than the single network with the

explicit Jacobian loss term. Compared to the experimental
results on the cardiac dataset, the Dice metrics are reduced
after being corrected by the FCB. This is because of the
different number of anatomical labels for each subject for
evaluation: one label for each ultrasound cardiac image and
36 labels for each brain MRI volume. Overall, compared to
SN, FCB can correct the displacement field more effectively
and maintain the registration accuracy well. We give each

Table 2 Comparison of brain MRI scans results

Method Dice(%) |Jφ | ≤ 0

Affine Only 56.51 ± 6.32 −
VM (λ1 = 3) 72.24 ± 3.00 1066.22 ± 800.86

VM (λ1 = 5) 71.74 ± 3.25 212.66 ± 243.01

VVN (λ1 = 0.02) 73.00 ± 2.65 1636.18 ± 712.95

VVN (λ1 = 0.05) 72.43 ± 2.75 228.641 ± 137.66

SN (λo = 0) 71.92 ± 2.81 1038.65 ± 270.93

SN (λo = 1000) 71.51 ± 2.87 993.62 ± 247.62

SEN (Ours) 73.32 ± 2.65 1069.94 ± 227.81

SEN + FCB (Ours) 72.80 ± 2.83 155.39 ± 69.10

VM (λ1 = 3) + FCB 71.74 ± 3.06 98.90 ± 108.68

VVN (λ1 = 0.02) + FCB 72.46 ± 2.68 251.48 ± 147.64

SN (λo = 0) + FCB 71.70 ± 2.80 341.33 ± 138.47

Affine only: the results from preprocessing only

The bold entries are the highlighted results that prove our methods
outperform the baseline methods
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Fig. 5 A sample slice of a result of registering two brain MRI volumes
pair. (a) Fixed image, (b) Moving image, (c) Warped moving image by
displacement field, (d) Displacement field, (e) Corrected displacement

field, (f) Warped moving image by corrected displacement field.
(g) Difference representation between warped image and corrected
warped image. Colorbar in (g) represents the normalized difference

method’s output deformation field of the brain images and
the warped images in Fig. 7.

4.3.3 Runtime analysis

We register each pair of images for the nonlinear deformable
registration task using an NVIDIA RTX 3080 GPU. We
measure the execution time for VM, VVN, SN, SEN, and
SEN+FCB. Figure 8 shows the average runtime of our
proposed methods and these baseline methods. The results

show that our method is faster than both of these baseline
methods for registering a pair of images. Furthermore, it
is worth noting that utilizing the FCB to correct folding
in a deformation field does not significantly increase the
registration method runtime.

4.3.4 Ablation study

To demonstrate the effectiveness of our proposed SEN,
we remove the separate encoding of each image, leaving

Fig. 6 A boxplot illustrating the Dice value of each anatomical structure segmentation for VM, VVN, SN, and our proposed twinning method.
We averaged the Dice values of the left and right brain hemispheres and combined them into one structure for visualization
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Fig. 7 The view of the
fixed/moving image slices and
each baseline method’s
deformation fields and the
warped images with the overlaid
segmentation maps Fixed Moving
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only the concatenated encoding branch. Then, we doubled
the number of concatenated branch channels to double to
keep the number of channels in each level unchanged.
As shown in Fig. 2a, this network with the separate
encoding branch removed degenerates to an ordinary U-
shaped architecture, which is denoted as SEN-1. We apply
SEN-1 and SEN to the cardiac and brain datasets. We
train SEN and SEN-1 with λ1 = (0.01, 0.05, 0.1) on the
cardiac dataset and λ1 = (2, 4) on the brain dataset.
We evaluate these two methods on the testing set of the
cardiac and brain datasets. Then, the two-direction output
displacement field is utilized to warp X and Y. The average
Dice metric on the two warped anatomical segmentation
maps indicates the registration performance. Table 3
shows that the SEN consistently outperforms the SEN-
1 on all hyperparameter settings. This demonstrates that
separate encoding for each image enhances the registration
accuracy.

Fig. 8 The bar chart of runtime for each method to register a pair of
images. The orange bars are the average runtime. The blue bars are the
standard deviations of runtime

5 Conclusion

In this work, we introduce a twinning network for learning-
based deformable image registration, which consists of two
subnetworks. We utilize the proposed SEN to compute the
high-accuracy symmetric displacement fields. Then, we uti-
lize the proposed FCB to correct folding in the output
displacement field from SEN. We validate our proposed
twinning method on 2D ultrasound cardiac images and
3D brain MRI scans. Compared with three other unsu-
pervised learning-based methods, the experimental results
demonstrate that our twinning method achieves high reg-
istration accuracy on Dice metrics and reduces the num-
ber of nonpositive Jacobian determinants in the predicted

Table 3 Ablation comparison between SEN and SEN-1

Method Data λ1 Dice % |Jφ |

SEN-1 Cardiac 0.01 88.59 ± 3.85 275.15 ± 124.82

0.05 89.67 ± 4.96 48.84 ± 38.72

0.1 89.32 ± 4.24 13.20 ± 15.58

Brain 2 72.97 ± 2.69 1203.42 ± 230.91

4 72.48 ± 2.69 132.84 ± 38.69

SEN Cardiac 0.01 88.82 ± 3.83 281.63 ± 126.37

0.05 89.84 ± 3.72 48.30 ± 39.00

0.1 89.71 ± 4.10 19.04 ± 21.43

Brain 2 73.24 ± 2.68 1082.90 ± 207.34

4 72.54 ± 2.90 149.53 ± 40.69

The bold entries are the highlighted results that prove our methods
outperform the baseline methods
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displacement fields compared to baseline methods. Further-
more, the experimental results on FCB correcting displace-
ment fields of the baseline methods demonstrate that FCB
outperforms global regularization on folding reduction. The
ablation study shows that separate encoding improves the
registration performance.
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