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Abstract
In the past few years, with the advent and developments of artificial intelligence, the location-based mobile services became
prevalent, which produce large-scale location-based data that embeds abundant hints of user preferences on locations. Point
of interest (POI) recommendation, as one of the significant mobile services, aims to recommend new satisfactory location
to user according to their historical records. Existing classical POI recommendation models based on matrix factorization
and collaborative filtering both face a significant challenge that they can not capture the users’ preferences deeply and
effectively. Hence, we propose a deep POI recommendation model (Neu-PCM), which is based on neural networks, to extract
the potential correlation between user and location. First, we present a local learning and dimension-reduction network to
obtain the key information. Second, we put forward a union network to mine the potential correlation effectively. Third, we
build a deep matrix factorization to enhance the final prediction by correlation combination. The results of experiments on
real-world datasets demonstrate our model outperforms the current popular recommendation algorithms.

Keywords Recommendation system · Point of interest · Neural network · Correlation mining · Deep learning

1 Introduction

In recent years, with the continuous innovation and
technical improvement of artificial intelligence, location-
based mobile applications, leading by Facebook, Instagram
and Foursquare which link the virtual network and the
real world are becoming pervasive in our daily lives
[35]. They provide users with many mobile services by
encouraging users to share locations and experiments [20].
Point of interest (POI) recommendation, as one of the most
popular location-based mobile services, recommends users’
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unexplored but potentially interested locations [22]. In
particular, when users face massive amounts of information
in an unfamiliar area, recommendation system attempt
to recommend the most suitable locations [21]. It will
facilitate the outdoor activities of users by producing a
customized list of POIs [16]. Meanwhile, it could also
bring huge commercial benefits to third-party businesses or
advertisers [25], and may promote the development of city.
POI recommendation uses the check-in data generated by
users to understand user behavior patterns and preferences
of locations [1]. Historical behavior has significant effect
on future predicting for recommendation system [11]. Since
POI recommendation is high value to both users and service
providers, it has attracted much attention from academia and
industry in recent years [33].

Current POI recommendation helps users explore loca-
tions which they have not visited before. As the life qual-
ity of modern individuals rises, the outdoor entertainment
demands increase significantly as follow. Therefore, it is
a necessity to technically improve the POI recommenda-
tion accuracy. Original technologies of machine learning are
widely used in recommendation system, such as collabora-
tive filtering and matrix factorization [2]. Subsequently, a
good local minimum depends largely on the initialization of
the latent feature vectors of users and items [18] . The first
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challenge for POI recommendation is data sparseness which
caused the failure of original matrix factorization. Practi-
cally, users always visit only a few locations, which makes
it more difficult to capture personal preferences effectively.
The second challenge is the problem of implicit preference
which could not be mined in traditional way. The implicit
correlation between users and POIs indicates complex pat-
tern that hides under the original user-POI data. It is hard to
characterize heterogeneous and complex data in the recom-
mendation system [5]. Neural network in deep learning, as
a powerful technology for mining the potential correlation,
is able to solve those problems exactly [28]. The correla-
tion represents the semantic relevance of the user vector
and location vector, which shows the implicit preference
deeply. By applying neural network in POI recommenda-
tion, it is possible to relieve the negative impact due to data
sparseness and obtain the potential preferences of user on
locations and then we could design a personal recommen-
dation list to finish mobile service. Hence, in this paper, we
propose a deep POI recommendation model that focus on
mining the potential correlations between users and loca-
tions. Our model is called Neu-PCM that is neural-based
potential correlation mining for POI recommendation, and
its purpose is the predicted probability of user visiting a can-
didate location. For simplicity, POI is also called location.

The main contributions of this paper can be summarized
as follows.

• First, in order to avoid the uncertainty caused by data
sparsity and make neural network more concentrate on
local features, we present local embedding by dividing
the first feature extraction layer into multiple parts
instead of fully connected layer. Local embedding could
strengthen the ability of learning the original vector of
users or locations.

• Second, considering the dimension of vector will
affect the subsequent process of recommendation task,
we build two different dimension-reduction neural
networks for users and locations respectively. This
will further capture the deep information of features
and get a lower dimension which is suitable for
recommendation calculation.

• Third, our core goal in this paper is the potential
correlation mining between users and locations. Hence,
after obtaining the new low-dimension vectors, we
construct a union neural network to compute the
potential correlation by concatenating vectors of users
and locations. This helps us understand the implicit
preferences of users and make full advantage of them.

• Finally, to improve the performance of our model, we
define a deep matrix factorization and then combine the
potential correlation with it. Neu-PCM can output the
probability on visiting location. We conduct abundant

experiments and the results demonstrate our Neu-PCM
outperforms some popular recommendation algorithms.

The rest of our paper is organized as follows. Section 2
introduces the related work of POI recommendation based
on deep learning. Section 3 presents our deep model Neu-
PCM. Section 4 discusses and analyzes the experimental
results. Finally, Section 5 makes the conclusion of the paper.

2 Related work

POI recommendation aims to find new locations where
users will be interested in according to their historical
records. The improvements of POI recommendation con-
tribute to the location exploration. As an important com-
ponent of recommendation system, POI recommendation is
widely studied by researchers.

Since Collaborative Filtering (CF) has been proposed
for a long time, its idea still provides many researchers
inspiration [13]. Matrix Factorization (MF) which fills
unknown items in matrix, has the same contribution [23].
There are many models improving the performance of
original CF or MF by some novel technologies. Liu
et al. define a heterogeneous information network based POI
recommendation model to model various heterogeneous
context features [19]. Yang et al. present a general
and principled POI recommendation framework to solve
the sparsity problem by smoothing among users and
locations [29]. In order to alleviate the error propagation
produced by intermediate outputs, Wang proposes a low-
rank and sparse matrix factorization with prior relations
which predicts items through a sum of the learned low-
rank matrix and sparse matrix [24]. Neural network in
deep learning has been used in various research fields
including recommendation system since its powerful non-
linear ability [8]. Ebesu et al. design a collaborative memory
networks based on deep architecture to unify the two classes
of CF models capitalizing on the strengths of the global
structure of latent factor model and local neighborhood-
based structure in a non-linear fashion [6]. Xue et al. present
a novel deep matrix factorization model based on neural
network to learn common low-dimension feature space for
both users and locations [27].

By replacing the inner product with a neural architecture,
he proposes a general neural collaborative filtering which
could express and generalize MF under its deep frame-
work [9]. Zeng et al. mine the relationship between user
movement and context and proposes a method based on a
recurrent neural network and self-attention mechanism [31].
Deng et al. present a deep collaborative filtering to combine
the strengths of representation learning-based CF method
and matching function learning-based CF method [4]. Zhou
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et al. initiate the first attempt to learn the distribution of
user latent preference by proposing an adversarial POI rec-
ommendation model [34]. It is obvious that neural network
actually embeds the input data into another new space by
non-linear mapping, then to extract the core information
hidden in feature for recommendation computing. Feng et
al. believe that the dimension of embedding space will lose
the high-level implicit information of POI and then designs
a hyperbolic metric embedding approach to capture the
behavior patterns of users [7]. Besides, Kim et al. propose
an adaptive weighting scheme based on meta-learning that
self-generates the meta-data via self-ensembling [14]. For
modeling the interaction information, Wang et al. develop
a neural graph-based collaborative filtering which exploits
the user-item graph structure by propagating embedding on
it [26]. In our previous work, we propose a POI model based
on deep neural network and it also considers the geograph-
ical influence [32]. However, in this paper, we focus on
how to apply deep learning for potential correlation min-
ing between users and locations. Besides, Neu-PCM model
we proposed also combines the deep matrix factorization.
The related works mentioned above do not construct deep
models like ours.

There are several obvious difference between our
POI recommendation and sequence-based next location
prediction. We focus on recommending a new specific

location that users has not visited, such as a nearby Chinese
restaurants. Sequence-based next location prediction always
explores the spatial-temporal information in terms of
trajectory history, such as traffic-flow prediction [30] and
tracking offender [10]. It is common that geo-aware sensors
have been deployed in environmental detection which also
adopt complex deep learning [17]. However, our deep model
is designed for human activity and proposes deep matrix
factorization as well as union network for mining the
potential correlation, instead of capturing the geo-sequence
pattern.

3 Neu-PCM: Neural-Based potential
correlationmining for POI recommendation

In this section, we will introduce our deep neural-based
potential correlation mining model for POI recommenda-
tion, which is also called Neu-PCM. The whole framework
of this POI model is shown in Fig. 1. Firstly, we present
local embedding and dimension-reduction networks to learn
core information from original users vector and locations
vector respectively. Secondly, we concatenate the new vec-
tors to represent the unique pair of users and locations.
Thirdly, we put it into a novel union network which is for
mining potential correlation. Then, we build a deep matrix

Fig. 1 The Framework of
Neu-PCM
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factorization to further improve the performance by com-
bining potential correlation with it. Finally, the output of
our Neu-PCM model is the probability of user visiting loca-
tion. The detail of each part will be presented in following
subsections.

3.1 Problem formulation

POI recommendation aims to help users find new satisfac-
tory locations according to their historical check-in data.
In this paper, suppose that we have a set U of users
{u1, u2, · · · , um}, a set L of locations {l1, l2, · · · , ln}. All
these users and locations form the User-POI matrix R :
M ×N and Rij denotes the number of times that ui has vis-
ited lj . R indicates the original explicit correlation between
users and locations, which could be observed. We also could
use 0 or 1 to replace the value in R where it tells us whether
users has visited the location or not.

The goal of POI recommendation model is to predict the
probability of visiting an unobserved location from R. If
current users ui has not visited the candidate location lj
before, the goal could be defined as follows:

̂Rij = Model
(

ui, lj |θ
)

(1)

Recui
= {

lj |sorted by ̂Rij , K
}

(2)

where ̂Rij is the final prediction and θ is the set of all
parameters in our model. Recui

is the personal list of
recommendations we produce by sorting predictions of all
unvisited locations. K is the length of Recui

. Hence, our
task is to design a better POI model that will recommend
satisfactory locations to users correctly.

3.2 Local embedding

The process of predicting unknown Rij based on deep
learning is to mine the potential correlation from User-POI
matrix. However, the original users vector or location vector
is much sparser with many zeros, which will destroy the
computing of recommendation task. Now, we present local
embedding to capture core information on input in the first
layer of our deep model.

Users input and locations input are denoted as −→
ui and−→

lj . In the first layer, we construct a local window instead
of fully connected layer which is shown in Fig. 2. Local
window will divide the input vector into different parts in
terms of the size of the window. At the same time, the first
layer will also be divided into different parts. Each part
of input corresponds to a part of the first layer. In another
word, there are many sub-networks in the first layer and
each will concentrate more on local input to learn features
sufficiently.

Fig. 2 Local Embedding

The input is the original users vector or location vector.
The first local-embedding layer is shown as follows.

In = −→
ui or

−→
lj (3)

Layer1 = Con
(

f
(

w1
1In1 + b11

)

, f
(

w2
1In2 + b21

)

, (4)

· · · , f
(

ww n
1 Inw n + bw n

1

))

where w n is the number of local windows in terms of
windows-size. w1

1 and b11 are the weight matrix and bias of
the first local window. w2

1 and b21 are the weight matrix and
bias of the second local window, and so on. Function Con

links results of all local windows, which is the output of the
first layer. Activation function f is chosen as follows.

f (x) = max (0, x) (5)

Since there are much useless information in original
input, the first local-embedding layer plays a significant
role in our whole model. The local embedding makes each
sub-network to concentrate more on local input.

3.3 Dimension-reduction network

Even local embedding learns information from original
input, the dimension of vector is so large that will
make the computing process cumbersome. We want to
extract more useful high-level features and make vector
have an appropriate dimension. Therefore, we construct
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two dimension-reduction networks for both users and
locations. The dimension-reduction network including local
embedding has M layers, which is defined as follows.

Layerk = f (wkLayerk−1 + bk) , k = 2, 3, · · · , M (6)

where wk and bk are the weight matrix and bias of
corresponding layer. Layerk is the output of last layer.
When k = 2, the Layerk−1 is the output of local
embedding. f is still chosen as ReLu function. Note that
each layer has a smaller number of neural units than former
layer to reduce the dimension. Each layer is able to capture
more useful information from the former one. Hence, the
final output of this network is denser than original vector
with less dimensions. To avoid parameter redundancy, we
adopt less than 4 layers for this network part.

We have mentioned before that neural network trans-
forms the data into another new feature space. So the
original distribution of data will be changed. In order to fol-
low a constant distribution of data and mine the potential
correlation hidden in data correctly, we adopt batch normal-
ization [12] to dimension-reduction networks. As shown as
follows, it works before activation function.

Layerk = f (BNk (wkLayerk−1 + bk)) (7)

BNk (Neumid ) = γ

(

(Neumid − μ (Neumid )) /

√

σ (Neumid )2 + ε

)

+ β

(8)

Neumid = wneu
k Layerneu

k−1 + bneu
k (9)

where BNK is the batch normalization that sets the
distribution of data and alleviates over-fitting to a certain
extent. Neumid is the middle-output of a neuron before
activation function. Its weight vector and bias are wneu

k and

bneu
k . Function μ and σ calculate the average value and
standard deviation of one training batch on this neuron.
ε is a minimum to prevent denominator from being zero.
γ and β are parameters of batch normalization that is for
complementing non-linear ability of neural network. More
details about batch-normalization are beyond the scope of
our paper.

The dimension-reduction networks are shown in Fig. 3.
The upper half part is for user feature vector and the lower
half part is for location vector. After reducing dimension, we
capture more high-level features and the new vectors could
be applied into our recommendation task. The new vectors
of users and locations are defined as follows.

ũi = f
(

· · · f
(

BNU
k

(

wU
k f

(

BNU
k−1

(

wU
k−1f (· · · ) + bU

k−1

))

+ bU
k

))

· · ·
)

(10)

˜lj = f
(

· · · f
(

BNL
k

(

wL
k f

(

BNL
k−1

(

wL
k−1f (· · · ) + bL

k−1

))

+ bL
k

))

· · ·
)

(11)

where BNU
k , wU

k and bU
k are the batch normalization,

weight matrix and bias for dimension-reduction networks
of users. BNL

k , wL
k and bL

k are batch normalization,
weight matrix and bias for dimension-reduction networks
of location. ũi and ˜lj are new vectors of users and
location respectively and they indicate more core high-level
information with lower-dimension features.

3.4 Union network for potential correlationmining

The purpose of this paper is to mine the potential correlation
between users and locations for POI recommendation by
neural network in deep learning. The original input of

Fig. 3 Dimension-Reduction
Network
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users and locations after reducing dimensions become ũi

and ˜li respectively. The new vectors indicate the core
high-level information with less dimensions. Hence, they
are suitable for next recommendation computing. Now we
concatenate the vectors to represent the unique pair of users
and locations, which is shown as follows.

˜ulij = ũi ⊕ ˜lj (12)

where symbol ⊕ is operation of concatenating. ˜ulij is the
unique-pair vector and it will be applied into feature cross.
Each user and each location will form only one unique
vector that improves the accuracy of the correlation mining
between users and locations. Based on ˜ulij , we build a union
network, as the following shows.

Layerk = f (wkLayerk−1 + bk) × −→
DK, K = 1, 2, · · · , N

(13)

−→
DK = drop (r) , r ∼ Bernoulli (p) (14)

where the union network has N layers and wk and bk are
weight matrix and bias of it. Activation function is still
chosen as ReLu. Since it is possible to face over-fitting
when learning correlation, we adopt drop-out in our union
network.

−→
DK is the drop-out vector that is filled with 0-

1. drop is the function to generate drop-out vector and
each dimension depends on Bernoulli (p) which outputs
1 according to the probability p. After union network, we
obtain the potential correlation Coij . It reveals the implicit
preference of users. The union network is shown in Fig. 4.

Considering that matrix factorization could improve
performance of recommendation model based on deep
learning, we define a user latent-factor matrix ULF and
a location latent-factor matrix LLF to realize deep matrix
factorization. The two latent-factor matrices will be trained
in our whole deep model. The unknown item using deep
matrix factorization is shown as follows.

MFij = ULF
i LLFT

j (15)

whereULF
i andLLF

j are corresponding row vectors of users
and locations. Deep matrix factorization further enhances
the result of potential correlation mining. The potential
correlation Coij is a unique implicit preference and if we
combine it with deep matrix factorization, its role will be
displayed fully.

3.5 POI recommendation

Now, we have obtained Coij and MFij by potential
correlation mining and deep matrix factorization. Coij tells
us the implicit preference that is hidden under the original
data, which is the core part of our deep model. MFij

predicts the unknown item from matrix, which could be
regarded as an improvement.

One measurement to realize deep matrix is to design
a two-channel deep network which accepts original row
and column from matrix and multiply result as one value,
like our dimension-reduction network. However, in order
to reduce parameters, we use an initial weight matrix
to represent latent matrix, which is trained along with

Fig. 4 Union Network
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our whole deep model. As shown in right-top part in
Fig. 1, the two latent matrices will conduct the deep matrix
factorization in our model and also be trained as part of loss.

In order to combine them and make final prediction of
POI recommendation, as the following shows, we use a
simple perceptron.

Preij = f
(

wCoCoij + wMF MFij + b
)

(16)

f (x) = 1/
(

1 + e−x
)

(17)

where wCo and wMF are the weights of Coij and MFij

respectively, b is the bias of the perceptron. Since we want to
get the probability of users visiting location, the activation
function is chosen as sigmoid. Actually, Preij is the goal
̂Rij in problem formulation. We sort all candidate locations
in terms of their predictions and make a personal list of
POI recommendation to complete our service. It is shown in
Fig. 5.

A whole framework could be designed for pattern mining
and supervised classification to form different applications
of location predicting [3]. As for loss function which
suits our POI recommendation framework, we adopt cross-
entropy loss that is widely common in many deep learning
models. It makes the core recommendation task become
classification problem of whether users will visit the
candidate location or not. The loss is defined as follows.

Loss = −
∑

Rij ∈Batch

(

I
(

Rij

)

log P reij + (

1 − I
(

Rij

))

log
(

1 − Preij

))

(18)

where I
(

Rij

)

outputs 1 if lj is a visited location, otherwise
0. Rij belongs to one training batch which includes negative
samples. We adopt mini-batch gradient descent for our
training.

Fig. 5 POI Recommendation

Table 1 Description of Foursquare Datasets

City Users Locations Check-ins Average Check-in

Los Angeles 4747 7136 48461 10

Seattle 2381 6928 58052 24

4 Experiments

In this section, we will choose appropriate values for key
parameters in our model, and then evaluate our model
with some popular recommendation algorithms on two
real-world datasets.

4.1 Datasets

We employ two real-world datasets1 collected from two
cities on Foursquare which is a location-based social
application. One is Los Angeles, the other is Seattle.
The descriptions of datasets are shown in Table 1. There
are 48,461 check-ins made in Los Angeles and they are
produced by 4,747 users on 7,136 locations. The average
check-in of per user is 10. For Seattle dataset, there are
58,052 check-ins and they are made by 2,381 users on
6,928 locations. The average check-in of each user is 24.
Obviously, the dataset of Los Angeles is sparser than that
of Seattle. We randomly select 70% of the locations of each
user as training data and the remaining 30% as test data.
Moreover, for the sake of effectiveness of experiments, the
users who have visited less than 5 locations and the locations
that have been visited by less than 5 users are removed from
datasets.

4.2 Evaluationmetrics

Like most recommendation models, we use Normalized
Discounted Cumulative Gain (NDCG) and Recall as
evaluation metrics. Since the goal of POI recommendation
is to correctly predict the potentially interested locations,
and the results of the test data is the best illustration. If
our model captures the preferences of users effectively, the
Recall will be high. Moreover, sorting is an important and
indispensable step when making recommendation list and
NDCG should be taken into account. They are defined as
follows.

NDCG@K = 1/m
∑

u

DCGu@K/IDCGu@K (19)

Recall@K = 1/m
∑

u

|Recu ∩ T estu| / |T estu| (20)

where Recu is the recommendation list for users u and
T estu is the test data of users u. K is the length of

1https://github.com/lab413/datasets
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recommendation list, which is set to 10, 20 and 30. ‘@’
means that results of evaluation metrics will vary according
to different values of K . NDCG requires DCG and IDCG.
IDCG is the ideal sorting result and DCG is the real sorting
result. They are shown as follows.

DCGu@K =
∑

z

1

log(z + 1)
(21)

IDCGu@K =
|T estu|
∑

q

1

log(q + 1)
(22)

where z is the ranking index of test POI data in our rec-
ommendation list. q represents and indicates the real index
it should be. Generally speaking, since all test POI data for
one use should be placed in top part of recommendation list,
it is allowed to apply any order on them.

4.3 Experimental settings

We adopt mini-batch gradient descent to train our deep
model since its cost of training time will be decreased

with a good performance. The batch size is 512. The
initial learning rate is 0.001. If the training data is only
filled with observed item, the deep model we propose
will just learn the positive preferences which could not
make correct prediction when facing a location that users
do not like. Hence, we take some negative samples for
each observed data. The size of each sampling is 2, 3, 4,
5 and 6. The window-size of local embedding will also
have influence on our deep model. We set the window-
size to 100, 200, 300, 400 and 500. To comprehensively
demonstrate the effectiveness of our model, we compare it
with the following recommendation algorithms.

POP: A basic model that only recommends
popular POIs.

NMF: A classical non-negative matrix factor-
ization.

DMF [27]: The deep matrix factorization that
is designed for recommendation system,
which learns a common low-dimensional
space for users and recommendations.

Fig. 6 Experiment on Negative-Sampling Size
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NCF [9]: Neural collaborative filtering that is a
general framework based on neural net-
works and could model the latent features
of users and recommendation items.

FastHNBF [15]: This novel hierarchical negative bino-
mial factorization models data disper-
sion via a hierarchical Bayesian struc-
ture, thus alleviating the effect of data
overdispersion to help with perfor-
mance gain for recommendation.

POP is a normal baseline in most recommendation system.
It is still common in our daily mobile applications which have
service of recommending. DMF and NCF are representative
work of different types of recommendation based on deep
neural network. Our deep model is inspired by DMF and
NCF. Moreover, NCF is a highly-cited model which proposes
a novel deep framework and is adopted in many papers.
FastHNBF is a novel recently-published recommendation
model based on hierarchical Bayesian structure.

In addition, since there are two components to achieve
the recommendation goal, we add ablation experiment to

prove the effectiveness of them. One is potential correlation
mining, which is the core in our model, and the other is deep
matrix factorization that aims to enhance the former part.
Meanwhile, the combination of them, conducting our final
model, will also be compared with them.

4.4 Results

The experiment of negative sampling is shown in Fig. 6. For
Los Angeles dataset, the optimal negative-sampling size is 3.
For Seattle dataset, the optimal negative-sampling size is 5.

Generally speaking, with the increase of K , the
evaluation matrices of both datasets will also increase. This
is because we expand the range of recommending locations
and it will bring more chance to hit the locations that users
are interested in. In Los Angeles dataset, the NDCG of all
different K begin to decline significantly after the negative-
sampling size reaches 3. The Recall is the same. However,
while K = 20, size 6 is a little better than size 5 and it is
still not outperform size 3. Hence, it does necessary to set
negative-sampling size to 3 for Los Angeles dataset since

Fig. 7 Experiment on Window-Size
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Fig. 8 Experiment on Performance Comparison

there is no need to capture more negative preferences on
users of that city.

In Seattle dataset, when negative-sampling size increases
from 2 to 4, the NDCG of all K shows downward trend.
While size reaches 5, NDCG goes up obviously. Size 5
is the best situation of K = 20 and K = 30, which
outperforms all other sizes. Moreover, for Recall, the best
size is 6 when K = 10, and size 5 is most suitable for

other K . In a word, more negative-sampling size could help
to improve the performance of our deep model on Seattle
dataset. Therefore, we set its negative-sampling size to 5
that is optimal in most cases.

The experiment of window size is shown in Fig. 7. For
Los Angeles, the optimal window-size of local embedding
is 300. For Seattle dataset, the optimal window-size is
200.

Table 2 Contrast Experiments on Los Angeles Dataset

Model NDCG@10 NDCG@20 NDCG@30 Recall@10 Recall@20 Recall@30

Neu-PCM 0.12470 0.13801 0.14695 0.14643 0.19090 0.22383

FastHNBF 0.113252 0.126309 0.134801 0.125944 0.170241 0.200182

NCF 0.09737 0.11159 0.12073 0.11863 0.16691 0.19899

DMF 0.09479 0.10724 0.11608 0.10324 0.14254 0.17390

NMF 0.08111 0.09410 0.10116 0.09998 0.14543 0.17146

POP 0.10581 0.11425 0.12052 0.11241 0.14372 0.16597

The bold entries are best performances in corresponding conditions
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Table 3 Contrast Experiments on Seattle Dataset

Model NDCG@10 NDCG@20 NDCG@30 Recall@10 Recall@20 Recall@30

Neu-PCM 0.09587 0.10914 0.11801 0.09458 0.14576 0.17974
FastHNBF 0.09322 0.10112 0.10862 0.09842 0.13119 0.15855

NCF 0.08801 0.09594 0.10333 0.08968 0.12521 0.15445

DMF 0.06391 0.07254 0.08038 0.07550 0.10689 0.13503

NMF 0.08613 0.09285 0.09724 0.08372 0.11583 0.13318

POP 0.07364 0.07981 0.08407 0.07451 0.10046 0.11784

The bold entries are best performances in corresponding conditions

In Los Angeles dataset, as the window-size increases
from 100 to 300, the NDCG of all K goes up and reaches
peak at size 300. Size 500 is better than size 400. For Recall,
all situations under different K indicate the same pattern.
They first go up and then go down significantly. Size 300
makes the best Recall for each situation. Hence, we set
window-size to 300 for Los Angeles since it is appropriate
and will not be too large to lead a wide-scale learning or
too small to make embedding limited. In Seattle dataset, the
NDCG and the Recall both have fluctuation under different
K . When K = 10, size 500 makes NDCG best but when
K = 20 or K = 30, size 200 is the optimal choice.
Meanwhile, the Recall under size 300 reaches peak of K =
10. Size 200 makes Recall best of K = 20 or K = 30.
Therefore, in terms of avoiding large-scale learning, we set
window-size to 200 for Seattle dataset. There are many
differences between datasets and the size 200 is enough.

Based on all optimal parameters of Los Angeles dataset
and Seattle dataset, we conduct experiments to compare
our model with some popular recommendation algorithms.
Our deep model is called Neu-PCM. The result is shown in
Fig. 8. In a word, Neu-PCM outperforms other models.

In Los Angeles dataset, POP has a better NDCG than
NCF and DMF, which tells us sorting locations according
to their popularity is suitable for this famous city. However,
expect K=10, the Recall of POP is not relatively high
and it may be much limited to recommend locations only
based on popularity. DMF depends on the common space
between users and locations, but it uses cosine similarity
to calculate the final prediction. NMF is the worst model,
which indicates original matrix factorization could not
capture the preferences of users correctly. Except our model,

FastHNBF is superior to others, which demonstrates it has
the ability to alleviate the effect of data overdispersion to
help with performance for recommendation system, while it
outperforms NCF slightly in terms of Recall.

In Seattle dataset, the NDCG of NMF is just inferior
to NCF and better than other comparison models, which
is most likely due to the differences between datasets.
Meanwhile, DMF has the worst NDCG, which shows its
ability based on deep learning to sort locations is weak.
POP has the worst Recall and it could not hit the locations
that users will be interested in. NCF that combines matrix
factorization and collaborative filtering by neural networks
has excellent performance on both datasets. On the other
hand, the Recall of FastHNBF is only a little better than our
model when K=10, which is an exception since our model
outperforms it in terms of both NDCG and Recall for all
other situations.

In short, The Neu-PCM we propose outperforms other
popular recommendation algorithms on Los Angeles dataset
and Seattle dataset. Hence, our Neu-PCM could be applied
into POI recommendation system to complete location-
based services. The Tables 2 and 3 show the real values of
Recall and NDCG, which corresponds to the Fig. 8 and has
been performed for statistical analysis.

The result of ablation experiments are shown in Tables 4
and 5. ‘No’ means ‘without’. Hence, No-PCM only
includes the simple deep matrix factorization and No-MF
only contains our core potential correlation mining. Full-
Comb is our final model which consists of those two
parts. In generally speaking, it is the PCM which has
significant influence on both datasets. Deep MF enhances
the recommendation result by its unique measurement.

Table 4 Ablation Experiments of Neu-PCM on Los Angeles Dataset

Model NDCG@10 NDCG@20 NDCG@30 Recall@10 Recall@20 Recall@30

No-PCM 0.02056 0.02736 0.03164 0.03053 0.04987 0.06451

No-MF 0.10879 0.11904 0.12657 0.12166 0.15793 0.18559

Full-Comb 0.12470 0.13801 0.14695 0.14643 0.19090 0.22383

The bold entries are best performances in corresponding conditions
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Table 5 Ablation Experiments of Neu-PCM on Seattle Dataset

Model NDCG@10 NDCG@20 NDCG@30 Recall@10 Recall@20 Recall@30

No-PCM 0.02711 0.03311 0.04201 0.02700 0.04668 0.07557

No-MF 0.08112 0.08771 0.09371 0.08457 0.11592 0.13924

Full-Comb 0.09587 0.10914 0.11801 0.09458 0.14576 0.17974

The bold entries are best performances in corresponding conditions

However, the Recall and NDCG of No-PCM in Seattle
dataset are quite larger than those in Los Angeles dataset,
which indicates the deep MF are more suitable to improve
our deep model on that dataset. Although core PCM cannot
be replaced and deep MF could be regarded as an optional
choice, the numbers of Recall and NDCG still increase to
a certain extent. So, our final model Full-Comb combines
them and then achieves better result. This demonstrates it is
accurate to conduct those deep parts for our Neu-PCM, and
the core PCM that contributes a lot is worthy to be applied
to other fields.

5 Conclusion

Existing classical POI recommendation methods face the
challenge where they could not capture the preference
of users deeply and effectively. Meanwhile, they are
also suffered from the problem of data sparsity. Hence,
in this paper, we propose a deep neural-based potential
correlation mining model for POI recommendation, which
is called Neu-PCM. Firstly, we present local embedding
and dimension-reduction network for core high-level
information hidden under the original user-POI matrix.
Secondly, we mine the potential correlation between users
and locations for capturing the implicit preference of users.
Thirdly, we construct a deep matrix factorization to combine
potential correlation with it for further improving Neu-
PCM. Finally, we compare our model with some popular
recommendation algorithms and the results demonstrate
Neu-PCM outperforms them. In the future, we will take
some contexts of users or locations into Neu-PCM since
we have already realized the POI model based on deep
learning. There are many methods to transform original
contexts into the inputs that our Neu-PCM could accept
and we will find how different contexts influence the Neu-
PCM. Meanwhile, the real-world check-in datasets we use
in this paper do not occupy much storage and memory, we
will use richer datasets and compare the computational cost
of different hyper-parameters to further improve the model
performance.
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