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Abstract
Accurate multi-energy load prediction plays a very crucial role in integrated energy system management. To address the
load characteristics of strong relational coupling, volatility and uncertainty in user-side integrated energy systems, this paper
proposes a multi-task learning based short-term multi-energy load prediction method. Load participation factor is proposed
to portray the proportion of different loads in the total load demand, and multi-task learning method is introduced to deeply
explore the coupling relationships among them. Then, the proposed method is validated on a real-world dataset. The results
show that the method has higher prediction accuracy than the existing methods, and the prediction accuracy is improved by
at least 1.3%.

Keywords Load prediction · Integrated energy system · Load participation factor · Multi-task learning

1 Introduction

Energy is the basic driving force of economic development
in society. Various traditional energy systems, such as elec-
tricity, heating and natural gas, are designed and operated
separately. It artificially severs the connectivity between dif-
ferent types of energy source and ignores the possibility
for energy recycling, and thus to result in a serious waste
of resources. However, integrated energy system (IES)
with various energy supply and consumption systems is an
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important trend in the energy transition. IES can effectively
improve the efficiency of energy utilization, promote the
coordination and optimization between systems, and real-
ize the mutual complementation of multiple energy source.
As an important topic in the demand side management, load
forecasting of the user-side integrated energy system (UIES)
has become a primary prerequisite for system planning and
operational scheduling. Therefore, effective learning of cou-
pled information from multiple types of energy sources is
required to achieve accurate prediction of diverse energy
demands [1–3].

Deep learning has become one of the most popular
techniques at present [4, 5]. It has powerful ability to
explain nonlinear complex structures. In recent years, the
energy sector has shown a highly integrated development
of information and physics. Meanwhile, data-driven load
forecasting has become an important and widespread
application of artificial intelligence in the energy field [6].

Some scholars have conducted research on single energy
load forecasting for UIES. Due to different physical
characteristics of the load, energy sources can usually be
classified as electricity, cooling, heating and renewable
energy. For common electricity [7, 8], cooling [9] and
heating [10, 11] load forecasting, many studies focused
on combining deep learning models with traditional
methods, while considering the incorporation of integration
mechanisms or optimization methods. In addition, for
renewable energy, it tends to be more influenced by
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environmental factors. For example, Ref. [12] proposed a
learning method based on nonparametric gradient boosting
regression tree to forecast multi-site solar power from one to
six hours in the future. However, the coupling relationship
between different energy systems has not been considered
in the above studies.

The application scenarios of multi-energy load forecast-
ing (MELF) are more complex than single energy. There-
fore, accurate forecasting is required by analyzing different
energy usage information. Ref. [13] proposed an attention-
based model for the temporal and nonlinear property of
electrical loads. A hierarchical joint method based on classi-
fication and DBNwas proposed for MELF [14]. In addition,
several studies have shown that cooperative MELF can
reduce the number of models and increase efficiency of
model. A nonlinear autoregressive model was proposed for
simultaneous prediction of electricity, cooling, and heating
load in Ref. [15]. Moreover, the researchers tried to com-
bine multiple models to design an integrated approach to
improve the accuracy of the predictions. Combining ensem-
ble learning and reinforcement learning methods, Ref. [16]
proposed a dynamic integrated multivariate load forecast-
ing method based on Q-learning reinforcement learning. It
was considered that the high-dimensional temporal dynamic
and cross-coupling characteristics of load sequences in Ref.
[17].

Many traditional machine learning methods focus only
on single-task learning [18]. However, there is a large
amount of correlation information between different sub-
tasks in the MELF problem, and single-task learning meth-
ods cannot fully utilize this information. As a result, it
often leads to undertraining and underfitting during model
training. To solve the above problem, Ref. [19] proposed
a multi-task learning (MTL) mechanism, where each sub-
task can learn implicit information in parallel to support
each other. In summary, MTL can facilitate multiple related
tasks to learn together, so that each subtask can enhance
the learning of other tasks to achieve the purpose of shar-
ing information and finally obtain the optimal results of all
tasks simultaneously.

Using the MTL mechanism, some studies have con-
structed a wide range of predictive models. Ref. [20] pre-
sented a model based on deep MTL and ensemble learning.
Ref. [21] used a MTL approach to build a joint load fore-
casting model. Besides, in an industrial park of IES, a
method for electricity, heating and gas loads based on DBN
networks and multi-task regression is proposed [22]. From
the point of horizontal and vertical interaction, Ref. [23]
proposed a MTL prediction model based on parallel LSTM
networks. Ref. [24] proposed an integrated load forecasting
model based on bidirectional generative adversarial network
(GAN) and transfer learning. It demonstrated the effective-
ness of model migration. From these works we can find

that the MTL method can make full use of the fused infor-
mation between different tasks, and improve the prediction
accuracy of MELF. Nevertheless, the existing studies many
focused more on model design while ignoring the lack of
data samples and the issue of energy diversity.

In such a context, this paper proposes a short-term MTL-
based MELF approach, and the main contributions can be
summarized as follows.

(1) This paper innovatively introduces participation factor
in multi-energy load forecasting to represent the
coupling between each kind of load and the total
demand. It can reflect the relative change of each load
in the whole system more effectively.

(2) The correlation between weather factors and each
load is analyzed and the weather matrix is further
constructed. Based on feature engineering, the suitable
features GHI, DP, PW, RH and TMP are selected for
feature construction.

(3) A method combining MTL with temporal convolu-
tional network is proposed. The MTL approach fully
mines the coupling relationship between different pre-
diction subtasks, while the temporal convolutional net-
work has good performance in the total load demand
prediction.

The remainder of the paper is organized as follows:
Section 2 introduces the UIES and the prediction problem
of multiple time series. Section 3 analyzes the relevant
load characteristics. Section 4 details the prediction model.
Section 5 focuses on the analysis of experimental results.
Section 6 summarizes our work.

2 Description of the problem

2.1 User-level integrated energy system

IES integrates multiple energy resources in a certain area.
It achieves the coordination and optimization between
different subsystems and the complementarity of multi-
energy sources. It puts more emphasis on the development
model of moving from individual energy sources to the
joint dispatch of multiple types of resources. Then, it
will help to meet diversified energy demands and improve
utilization efficiency [25]. Based on geographical factors,
energy characteristics and conversion difficulties, IES can
be divided into three levels: inter-regional level, regional
level and user-side level. Among them, the user-side
systems tend to meet different energy demands of customers
at the distribution and consumption levels, and the demand
is generally influenced by customer behavior. Moreover,
this behavior is generally regulated. Each energy source has
different physical dynamic characteristics, which further
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makes the multi-source load more unstable. Figure 1 shows
the energy interaction of UIES. The system is centered
on the power system, and it enables the cooperative
management and interaction between different energy
systems through energy supply devices, energy conversion
devices and energy storage devices. Thus, it improves the
economy and flexibility of system operation [26].

The dataset can be retrieved from the IES of Arizona
State University’s Tempe campus. The platform records
the data of four campuses, and we choose the Tempe
campus because of its large scale buildings and diverse
energy types. After selecting the Tempe campus, the data
can be downloaded easily according to different energy
resource types and time scale needs by pressing the ‘CSV
Export’ button. The region has hot summer and warm
winter with abundant light and low rainfall, resulting in
high demand for electricity and cooling energy from local
customers. The experimental data are retrieved from the
2018 Campus Metabolism Project web platform with a
temporal resolution of 1 hour [27]. Due to those data have
different units of measure, KW, Ton/hrs, and mmBtu/hr,
respectively, the units of the different loads were normalized
before the experiments. According to the unit conversion
formula 1 KW = 0.284 Ton/hrs = 0.0034 mmBtu/hr, the
units of heating and cooling loads are standardized to KW.
The graph of load demand curves is shown in Fig. 2.
It can be seen that the curve shows a trend of high
in the middle period and low on both sides, with some
local randomness and volatility. The peak usage is mainly
concentrated in summer. The heating load is stable and less
volatile compared with the electricity load. Obviously, the
climate change has a direct impact on the energy demand
of customers and is distinctly seasonal in nature. Therefore,
the climatic factors should be considered, which helps to
achieve accurate multiple energy demand forecasting.

Fig. 2 The load demand curve of Tempe campus in 2018

2.2 Multiple time series problem

Time series forecasting plays a critical role in many fields.
It is a technique for predicting the future states of an
object by analyzing its historical data patterns. In UIES, a
multi-energy load sequence is composed of load sequences
from several different energy sources. Therefore, the multi-
energy load forecasting problem is essentially a time series
forecasting problem [28–30].

In many cases, the change pattern of the predicted object
will be influenced by other factors. Hence, in addition
to considering the change pattern of the object itself, the
relationship between the object and other related factors
should also be explored. From the perspective of time series
analysis, the basic idea of multi-energy load forecasting
problem is shown in Fig. 3, where t is the amount of
time, which can be hours or minutes, etc. It is generally
determined by the specific problem. Usually, on the basis
of obtaining historical sample data yt , it is necessary to
forecast the future time period T +P � t � T +Q based on

Fig. 1 The schematic diagram of
the energy interaction of UIES
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Fig. 3 The diagram of multiple
time series forecasting problem

the development pattern of the object y, where t ∈ [1, T ],
and T is the last period of known data. P andQ are a certain
time point in the future, respectively.

In general, let the abstract expression of the prediction
model be

y = f (S, Xt , t) (1)

where X is a vector of m relevant factors; t is the time
series number; y is the predicted object; and S is the
parameter vector of this prediction model. The parameter
S = [s1, s2, ..., sn] characterizes the set of parameters to be
determined for the prediction model, and n is the number
of parameters. In Fig. 3, the factors of relevance for each
time period are marked under the horizontal axis. Assuming
that a total of m factors related to the predicted object y are
collected, the vector X = [x1, x2, ..., xm]T is constructed.
For t ∈ [1, T ], which is called the historical time period, the
relevant factors take the values Xt = [x1,t , x2,t , ..., xm,t ]T .
After the model is fitted to the known historical data yt

and xt , yt is obtained, during which the model digs deeper
into the change pattern of the object and related factors. For
t ∈ [T + P, T + Q], which is called the prediction period,
the predicted quantity yt is obtained by using the established
prediction model.

3Characteristic analysis ofmulti-energy load

Prior to conducting research work, the load characteristics
of the energy system should be analyzed in advance.
Starting from the mechanisms of load components, it is
necessary to reveal the regulation of intrinsic changes in the
loads themselves. On this basis, this section will analyze
the load participation factors, the coupling relations between
loads, the correlation of load series itself, and the influence
of weather factors. Among them, the data used for analysis

in this section are the same as Section 2, which come from
the Campus Metabolism Project.

3.1 Load participation factor

The traditional MELF only considers the demand of various
loads, and ignores the proportion of each load in the total
load demand. By describing the proportion of different
loads in the total demand, the variation of each energy
demand can be depicted visually and clearly. Based on the
understanding of the real load demand pattern, the coupling
relationship between various energy sources can be further
grasped. Therefore, the load participation factor (LPF) is
introduced to describe the share of various loads in the total
load.

The load participation factor are defined as follows,

LPFe = Le(t)

T (t)
(2)

LPFc = Lc(t)

T (t)
(3)

LPFh = Lh(t)

T (t)
(4)

where e, c, h denote electricity, cooling and heating loads,
respectively; LPFe, LPFc, LPFh denote the participation
factors of electricity, cooling and heating loads, respectively;
L(t) denotes the load value at time t ; T (t) denotes the total
load value at time t , i.e., the sum of all load demands.

In order to analyze the specific usage of the various loads
and their proportion in the total load, Fig. 4 shows the curves
of participation factor for the Tempe campus in 2018. It
can be observed that the heating load has the lowest share,
but its sequence shows stronger volatility. In contrast, the
electricity load starts with the highest share. As the season
changes, the share of the cooling load gradually increases,
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Fig. 4 The curves of load participation factors

which leads to a decrease in the share of the electricity
and heating loads. This confirms the above analysis of
the load demand situation, and it also shows that the load
participation factor can describe the change pattern of load
demand more intuitively.

3.2 The coupling relationship between loads

In addition, these loads are sensitive to climate. To further
analyze the influence of the loads and their conversion
relationship with each other, a scatter plot analysis of LPF is
performed, as shown in Fig. 5. It shows that the electricity
load and the cooling load have a negative correlation.
Specifically, when the demand of electricity load increases,
the demand of cold load decreases. Conversely, electricity
and heating loads have a positive relationship. This indicates
that there is a close correlation between load demands,
where a change of one load will directly affect the
other loads. This also verifies the existence of coupling
relationship between loads.

xt =

⎡
⎢⎢⎣

xe
1,t xc

1,t xh
1,t

xe
2,t xc

2,t xh
2,t

... ... ...
xe
n,t xc

n,t xh
n,t

⎤
⎥⎥⎦ (5)

Based on the above analysis, a matrix xt is constructed
and listed in Eq. (5). It contains electricity xe

n,t , cooling
xc
n,t and heating xh

n,t LPF feature values at time t , where
n represents the number of samples. In conclusion, from
the perspective of LPF, it can portray the usage of different
energy sources more comprehensively and intuitively, and
it can also understand the conversion relationship between
different energy sources more clearly.

3.3 The correlation of load series

To investigate the temporal correlation of the load series,
Figs. 6 and 7 show the autocorrelation function (ACF) and
partial autocorrelation function (PACF) analysis of LPF for
February and July 2018, respectively. The ACF and PACF
measure the dependence of present samples on the past
samples of the same series, which can be calculated by
Eqs. (6) and (7), respectively.

ρk =
∑N

t=k+1(yt − ȳ)(yt−k − ȳ)∑N
t=1(yt − ȳ)2

, 0 < k < N (6)

ϕkk =
⎧⎨
⎩

ρ1, k = 1
ρk−∑k−1

j=1ϕk−1,j ρk−j

1−∑k−1
j=1ϕk−1,j ρj

, k > 1
(7)

In the above equations, N is the series length, yt is the
value at moment t of the series, ȳ is mean of the series,
and ϕk,j = ϕk−1,j − ϕkkϕk−1,k−j , j = 1, 2, ..., k − 1.
In this case, the blue cone-shaded area is the confidence
interval of 0.95. From the figures, the ACF analyses
for the various load series has a significant periodicity.
This indicates that each load series is strongly correlated
with adjacent times and adjacent days. Meanwhile, the
autocorrelation of the series gradually decreases when the
time interval increases. It reflects the change pattern of the
load series. By comparing the correlation analysis plots of
February and July, it can be found that there are obvious
differences between different seasons. These differences
also demonstrate that the changes in weather environment
can have an impact on customers’ consumption behavior.
However the behavior of individual customer is often

Fig. 5 The scatter plot of participation factors for different loads
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Fig. 6 The ACF and PACF of electricity, cooling and heating loads in February 2018

uncertain, which may make a significant impact on the load
level of the overall system.

In addition, multi-source load has obvious time-series
characteristics, and its load demand at the previous moment
has a great influence on the load demand forecast at the next
moment. At the same time, multi-energy load forecasting
has certain weekly and daily characteristics, i.e., the load
data at the moment to be forecast has a great correlation with
the load of the previous week and the previous day. Therefore,
three matrices xe

t , xc
t , xh

t are constructed. They represent
electricity, cooling and heating LPF feature matrix, respec-
tively. Based on Eq. (5), xW

t and xD
t are created. The former

represents the feature matrix for the week before the predic-
tion moment t . The latter represents the feature matrix for
the day before the prediction moment t . W and D denote
the week and the day before the predicted day, respectively.
xW
t is calculated by shifting xt forward by 7*24 time units,

and xD
t is calculated by shifting xt forward by 24 time units.

xe
t =

⎡
⎢⎢⎣

xe
1,t

xe
2,t
...

xe
n,t

⎤
⎥⎥⎦ , xc

t =

⎡
⎢⎢⎣

xc
1,t

xc
2,t
...

xc
n,t

⎤
⎥⎥⎦ , xh

t =

⎡
⎢⎢⎣

xh
1,t

xh
2,t
...

xh
n,t

⎤
⎥⎥⎦ (8)

xW
t =

⎡
⎢⎢⎢⎣

x
W,e
1,t x

W,c
1,t x

W,h
1,t

x
W,e
2,t x

W,c
2,t x

W,h
2,t

... ... ...
x

W,e
n,t x

W,c
n,t x

W,h
n,t

⎤
⎥⎥⎥⎦ , xD

t =

⎡
⎢⎢⎢⎣

x
D,e
1,t x

D,c
1,t x

D,h
1,t

x
D,e
2,t x

D,c
2,t x

D,h
2,t

... ... ...
x

D,e
n,t x

D,c
n,t x

D,h
n,t

⎤
⎥⎥⎥⎦ (9)

3.4 The impact of weather

Considering the impact of weather factors, climate informa-
tion of one year is collected and shown in Fig. 8. Those
data mainly include Global Horizontal Irradiance (GHI),
Dew Point (DP), Precipitable Water (PW), Relative Humid-
ity (RH), and Temperature (TMP). The data can be retrieved
from the National Solar Radiation Database in the offi-
cial website of the National Renewable Energy Laboratory
[31]. To better understand the relationship between various
loads and weather variations, correlations between differ-
ent loads and between load and weather information were
analyzed. Figure 9 shows the heat map of load and weather
factors. The shades of color in the heat map correspond to
the strength of the correlation, where the values indicate the
magnitude of the correlation coefficient.

The coefficients between electricity, cooling and heating
loads are -0.99, 0.88 and -0.94 respectively, which indicates
that different loads have a strong correlation with each

Fig. 7 The ACF and PACF of electricity, cooling and heating loads in July 2018
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Fig. 8 The graph of climate data of Tempe campus in 2018

other. For the meteorological data, the correlation between
temperature and load data is the highest, and its value
can reach about 0.92. The second highest correlation is
the precipitable water, while the lowest correlation is the
relative humidity.

From the above analysis, it can be seen that there is a
strong correlation between load and weather information,
and that changes in climate in turn have a very important
impact on the demand for different loads. The first step
in setting up the input characteristics is to determine the
composition and the necessary relevant information for each
type of load. Then, the weather matrix E is constructed
in Eq. (10). hn,t denotes the climate features at moment t ;

Fig. 9 The heat map of loads and weather factors

sm denotes the climate features; m denotes the number of
climate features.

E =

⎡
⎢⎢⎣

h
s1
1,t h

s2
1,t ... h

sm
1,t

h
s1
2,t h

s2
2,t ... h

sm
2,t

... ... ... ...
h

s1
n,t h

s2
n,t ... h

sm
n,t

⎤
⎥⎥⎦ (10)

Through the analysis above, it can be summarized as
follows.

1. The load participation factor can portray the proportion
of different loads in the total load, and it describes the
law of load demand change more intuitively.

2. The demands of different loads are closely related.
The conversion relationship between different energy
sources verifies the existence of coupling relationship
between loads.

3. There is a clear pattern of temporal changes in the
load series, and the correlation of the series varies in
different seasons.

4. The change of climate has an important influence on the
demand of different loads.

4 Proposedmodel

Through the above analysis of UIES load characteristics,
a prediction method based on MTL is proposed in
combination with the special characteristics of multi-energy
load demand variation. The whole prediction framework
is shown in Fig. 10. Firstly, data pre-processing will be
performed on the obtained raw multi-energy load data
and its corresponding meteorological data. Secondly, the
processed load data are divided into load participation
factor data and total load data. Again, the load participation
factor data feature matrix is constructed and relevant
meteorological features are added to jointly form the input
feature set. Then, the LSTM based multi-task learning
network (LSTM-MTL) predicts the load participation
factors, while the temporal convolutional network (TCN)
predicts the total load demand. Finally, the outputs of
LSTM-MTL and TCN network are combined to obtain the
electricity, cooling and heating load prediction results.

4.1 Multi-task learning

The load participation factor reflects the proportion and
variation of different loads. Effective load participation
factor forecasting can accurately capture the changing
patterns of different load demands and thus adjust the
system to meet the energy consumption demand. Usually,
the set of input and output features is the key to determine
the performance capability of the model, where the input
features are often various relevant attributes that affect
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Fig. 10 The whole framework of the prediction model

load forecasting. When setting the input features, it is first
necessary to determine the composition of various types
of loads and the necessary related information, such as
meteorological factors like temperature and rainfall.

Xe = [
xW
t−1 xW

t xW
t+1 xD

t−1 xD
t xD

t+1 xe
t−1 xe

t

]

Xc = [
xW
t−1 xW

t xW
t+1 xD

t−1 xD
t xD

t+1 xc
t−1 xc

t

]
(11)

Xh = [
xW
t−1 xW

t xW
t+1 xD

t−1 xD
t xD

t+1 xh
t−1 xh

t

]

X
e = {Xe, E} Y e = [

xe
t+1

]

X
c = {Xc, E}, Y c = [

xc
t+1

]
(12)

X
h = {Xh, E} Yh =

[
xh
t+1

]

In addition, multi-source load has obvious time-series
characteristics, and its load demand at the previous moment
has a great influence on the load demand forecast at the next
moment. At the same time, multi-energy load forecasting
has certain weekly and daily characteristics, i.e., the load
data at the moment to be forecast has a great correlation
with the load of the previous week and the previous day.
Therefore, multi-energy load data X and meteorological
dataE are jointly selected as the input feature X. The output
feature Y is the actual multi-energy load data at the time to
be measured. The input feature X and the output feature Y

together form the sample datasets {X, Y }.

In UIES, different energy systems have their own
physical characteristics. They are often coupled to each
other in the energy flow through energy conversion devices.
For example, a cogeneration units converts natural gas
into electricity and heating, and an electric boilers can
convert electricity into heating. Therefore, there is a strong
coupling relationship between different energy systems.
Energy systems generate a large amount of usage data
during operation, and much energy conversion information
is hidden in them. However, the characteristics of these
conversion information are difficult to be generalized by
traditional manual feature extraction methods. When multi-
task learning is considered, it can effectively utilize the
complex shared information of energy conversion. Also, it
can help to train the model to extract high-level abstract
features, which can describe the coupling relationship
between loads more comprehensively and improve the
prediction accuracy [32].

MTL is a classical inductive migration mechanism. Its
main goal is to improve the generalization ability of a model
by using information behind multiple related tasks [19]. The
schematic diagram of MTL is shown in Fig. 11. The fusion
layer is composed by LSTM network [33]. Specifically,
it achieves the goal by training multiple learning tasks
in parallel through a shared mechanism. It can learn one
problem while learning and gaining knowledge from other
related problems by using shared information, which helps
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Fig. 11 The schematic diagram of multi-task learning

to dig out the correlation between different tasks and thus
improve the accuracy of the respective tasks.

4.2 Temporal convolutional network

When predicting the load participation factors, the model
is able to fully explore the coupling relationships between
the loads to obtain the share of each load in the total
load. However, in order to obtain the final predicted load
value, the total load needs to be predicted. In fact, once
time series data or time-series related data are mentioned,
the neural network models that usually come to mind are
recurrent neural networks (RNN), LSTM and GRU, etc.
These models are built under the framework of RNN,
because the recurrent autoregressive structure inherent in
RNN is a good representation of time series data [28].
Meanwhile, CNN was first applied to image processing

and it is also used to deal with time-series problems. As a
variant of CNN, temporal convolutional network (TCN) was
proposed in Ref. [34]. It has been demonstrated that TCN
also has good performance. The structure graph of TCN is
shown in Fig. 12

TCN utilizes a unique dilation causal convolution to
ensure causality, avoid future data leakage, and expand
the perceptual field at the same time. It can achieve the
overall perception of the specified length sequence data by
adjusting the parameters of convolution kernel, number of
convolution layers, and expansion coefficients, and ensure
that the information length of each hidden layer is the same
as the input sequence. It ensures that the sequence as a
whole can exert influence on the deep network [35, 36].

5 Experiments

5.1 Evaluation index

In order to evaluate the prediction effect of the model,
this paper uses Mean Absolute Percentage Error (MAPE),
Mean Absolute Error (MAE) and Root Mean Square
Error (RMSE) to jointly evaluate the prediction error. The
formulas for MAPE, MAE and RMSE are shown below.

At the same time, the constructed models need to predict
multiple subtasks simultaneously. Given that each load has
different characteristics, this often makes it difficult to set the
same hyperparameters to satisfy the simultaneous optimal
prediction effect of multiple types of loads. Therefore, the
evaluation metrics are developed based on the loads that
dominate in UIES. In addition to the Mean Accuracy (MA)
metric, the Weighted Mean Accuracy (WMA) metric is also
added to evaluate the performance of the prediction model.
The expressions for MA and WMA are specified as below.

MAPE = 100%

n

n∑
i=1

‖yi − ŷi

yi

‖ (13)

MAE = 1

n

n∑
i=1

‖yi − ŷi‖ (14)

Fig. 12 The schematic diagram
of causal convolution and
dilated causal convolution
structures in TCN

10281Multi-task learning based multi-energy load prediction...



RMSE =
√√√√1

n

n∑
i=1

(yi − ŷi )2 (15)

MA = 1 − MAPE (16)

WMA = βeMAe + βcMAc + βhMAh (17)

In the equations above, ŷi and yi are the predicted and
true values of the load at the i moment, respectively; n

is the number of samples; MAe, MAc and MAh are the
MA values of the electricity, cooling, and heating loads,
respectively; βe, βc and βh are the weights occupied by
the electricity, cooling, and heating loads, respectively.
Considering that the studied UIES is dominated by
electricity and cooling loads, the weight coefficients in
Eq. (10) are taken as 0.3, 0.5 and 0.2, respectively [32].

5.2 Experimental data

The data recorded on the web platform of the Campus
Metabolism project for 24 hours per day from January
2018 to December 2019, which has a temporal resolution
of 1 hour, are used for the experiments [27]. Based on the
prediction framework of Fig. 10, the training set, validation
set and test set are divided according to 85%, 10% and 5%
to predict the electricity, cooling and heating loads for the
next 1 hour.

5.3 Parameters setting of models

During the course of the experiments, several time series
forecasting models, including Multi-task Learning based on
LSTM (MTL-LSTM) [32], combined convolutional neural
network (CNN) and LSTM (CNN-LSTM) [37], DBN with
three layers of Restricted Boltzmann Machine (RBM-DBN)
and RFR with 100 regression trees, are used for comparison
with the proposed model. The specific parameter settings of
all models are shown in Table 1. It is worth noting that the
MTL-LSTM, CNN-LSTM, RBM-DBN, and RFR models
use load demand data for training and prediction, whereas
our model uses LPF and total load data.

5.4 Experimental results

To analyze the prediction performance, the evaluation
results are shown in Tables 2 and 3. For more visually
displaying the prediction effect of the model, the prediction
curves, scatter plot and percentage relative error plot are
depicted in Figs. 13, 14, and 15, respectively.

In the process of deep learning modeling, k-fold cross-
validation can be used for limited data in order to prevent
problems such as overfitting during the training process. It
can effectively use the experimental data so as to obtain

Table 1 Parameter settings of models

Models Parameters Setting

MTL-LSTM [32] ni=[32,32], nlstm=[96,96,96], no=[32,32],

ah=sigmoid, ao=linear, op=Adam

CNN-LSTM [37] nf =[10,20], sk=[3,3], sp=[2,2], wd=[0.25,0.25],

acnn=relu, nlstm=[24,16,32,16,16,16],

alstm=sigmoid, ao=linear, op=Adam

RBM-DBN nh=[250,500,200], ah=sigmoid, ao=linear

RFR nt=100, nv=5

Ours ni=[32,32], nlstm=[96], no=[32], ah=sigmoid,

ao=linear, nf =14, sk=4, sd=[1,2,4,8], op=Adam

∗ ni -number of input layer units, nlstm-number of lstm layer units, no-
number of output layer units, ah-activation function of hidden layer,
ao-activation function of output layer, op-optimizer, nf -number of
filters, sk-size of kernel, sp-size of pool, wd -weight of dropout, acnn-
activation function of cnn layer, alstm-activation function of lstm layer,
nh-number of hidden layer units, nt -number of trees, nv-number of
variables randomly sampled at each split, sd -size of dilation factors

evaluation results with low bias and variance, and can be
used as a model optimization metric for improving the
performance of the model. In this paper, a 5-fold cross-
validation was performed. By partitioning datasets, subsets
K1 to K5 was formed. Those models were trained and
validated on each of five subsets. The experimental results
of the prediction model are presented in Tables 2 and
3, respectively. The experimental results reveal that the
prediction effects of different model for electricity, cooling
and heating load are different on the same dataset. At the
same time, the prediction results of the same model for
different loads have the same trend in different subsets.
Specifically, the prediction effect of the proposed model
and MTL-LSTM for electricity and cooling loads is better
than that for heating loads. This is mainly due to the strong
randomness of heating load data and its variable pattern,
while electricity and cooling load data tend to have a certain
trend of change and are relatively stable. Such an essential
distinction makes it easier for the prediction models to
uncover the change patterns of the data. In view of the
differences between the models, it can be found that the
models RBM-DBN and RFR are slightly less effective in
predicting the cooling load, while the model CNN-LSTM
has a better prediction effect for the electricity load. This
is due to the fact that different divisions of dataset will
have a certain degree of influence on the prediction results
of the model. Especially, time is a crucial factor when
considering the time series prediction problem. In this way,
the order of data selection for the test set is bound to produce
some noise to the model. Besides, the variability among
the models themselves will be reflected in the datasets.
Combining the prediction effects of K1 to K5, the WMA
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Table 3 The MA and WMA evaluation of prediction models

K-Fold Subset Models MA WMA

Electricity Cooling Heating

K1 MTL-LSTM 0.96663 0.95107 0.96048 0.95762

CNN-LSTM 0.93617 0.78836 0.93176 0.86138

RBM-DBN 0.95952 0.93505 0.94891 0.94516

RFR 0.93126 0.91497 0.93140 0.92315

Ours 0.97702 0.96909 0.96505 0.97066

K2 MTL-LSTM 0.97520 0.97367 0.92129 0.96365

CNN-LSTM 0.94090 0.92168 0.95316 0.93374

RBM-DBN 0.92592 0.92232 0.95406 0.92975

RFR 0.94687 0.94692 0.96346 0.95021

Ours 0.97837 0.97730 0.96026 0.97422

K3 MTL-LSTM 0.96717 0.94727 0.88191 0.94017

CNN-LSTM 0.94533 0.83942 0.92624 0.88855

RBM-DBN 0.94360 0.86138 0.91855 0.89748

RFR 0.95417 0.86356 0.93332 0.90469

Ours 0.97421 0.96246 0.95308 0.96411

K4 MTL-LSTM 0.96714 0.96870 0.96446 0.96738

CNN-LSTM 0.88780 0.89523 0.87579 0.88911

RBM-DBN 0.94797 0.88829 0.91198 0.91093

RFR 0.93482 0.91022 0.95241 0.92604

Ours 0.97453 0.97182 0.93459 0.96519

K5 MTL-LSTM 0.96389 0.95704 0.96017 0.95972

CNN-LSTM 0.94981 0.91445 0.86353 0.91487

RBM-DBN 0.96396 0.94866 0.93810 0.95114

RFR 0.95773 0.92788 0.94037 0.93933

Ours 0.97195 0.97196 0.95933 0.96943

value of the proposed model is 0.96872, which has the best
prediction accuracy. In general, the proposed model has a
great prediction effects in K1 to K5. In the following, the
experimental results of K1 are analyzed and illustrated in
detail.

For electricity load, the MAPE values of CNN-LSTM
and RFR models are 6.38% and 6.87%, respectively, while
the value of the proposed model is only 2.29%. Compared
with the worst RFR model, the prediction error of our model
is reduced by 4.58%. Among the three load prediction
curves, the cooling load curve is less volatile and more
stable, while the opposite is true for the electricity and
heating load curves. Their periodicity is also not obvious.
However, for each load, the proposed model has better
stability and the prediction curves are closer to the real
load curves compared to other models. Specifically, the
prediction curves of both the CNN-LSTM and RFR models
are higher than the actual curves, which indicates that
the predicted values of peak and valley are higher than

the actual values, but the predicted peaks of the CNN-
LSTM model tend to deviate more from the real values.
For cooling load, the prediction trends of several models
are basically the same. This indicates that the models have
better performance for time series with obvious regularity
and small period variation, and the models can quickly
dig out the characteristics of the series. However, a careful
comparison reveals that the predicted peak values of CNN-
LSTM model are too high compared with the true values,
will result in large prediction errors. In addition, the more
popular RBM-DBN in recent years has improved the
prediction accuracy compared with CNN-LSTM and RFR
models. However the MAPE, MAE and RMSE indexes of
cooling load are still 3.404%, 385.8079 KW and 494.7266
KW respectively, higher than the proposed model. The
prediction effect of the MTL-LSTM model is closest to the
proposed model. The heating load prediction graph shows
that the demand is much smaller than the demand of cooling
and electricity load. The prediction effect of the proposed
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Fig. 13 The prediction curves of
different loads

model is better than several other models for the peak point
of load. The other models have better effect in predicting
the overall trend of the load curve, but the predictions of
the peak and valley values are often higher or lower than
the real values, which results in the more prediction errors.
The WMA of the proposed model reaches 97.066%, which
are higher than other models, the minimum improvement is
1.3%. Through the above analysis, it can be seen that our
model is all lower than the other four models in terms of
prediction error and higher than them in terms of prediction
accuracy.

In visual data analysis, scatter plots depict how well
a model performs in prediction by plotting the degree
of deviation between the overall distribution of prediction
results and the true values. And it provides a more intuitive
view of the strengths and weaknesses of the model. As
shown in the scatter plots, the distribution of the prediction
results of the proposed model is more aggregated, tighter
and closer to the real load value, in which there are fewer
outliers and the prediction results are real and reliable.
Compared with the performance of the other models, it
can be seen that the prediction results of the other models
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Fig. 14 The scatter plots of load forecasting

have more scattered distribution and are far from the true
load values. Besides, there are even local deviation and

truncation phenomena, which show that their prediction
effects are not good.
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Fig. 15 The percentage relative
error plots for different loads

In addition to the above analysis, Fig. 15 represent
the percentage relative error plots of the one-day load
forecasting results, respectively. The percentage relative
error is defined as follows

δt = ‖xt − x̂t‖
xt

× 100% (18)

where xt denotes the true value, x̂t denotes the predicted
value, and t denotes the time series number. The load
prediction results of a day in the test dataset is selected and
the percentage relative error of different loads is calculated.
It can be more intuitive to understand the prediction effect

of the model. From the Fig. 15, the relative errors of the
proposed model always remain at a low level, while the
relative errors of the CNN-LSTM and RBM-DBN models
are more fluctuating and less stable, and the errors of the
RFR and MTL-LSTM models are relatively low.

In order to verify the validity of the model, this
paper analyzes the impact and effect of each part
of the model. Based on this, the parts of the pro-
posed model (MTL-LSTM TCN) are replaced to form
Model 1 (LSTM TCN), Model 2 (MTL-LSTM LSTM),
and Model 3 (LSTM LSTM), respectively. Among them,
the LSTM network model is used for all the replacement
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Table 4 Accuracy evaluation of ablation prediction model for MAPE, MAE and RMSE

Models MAPE MAE RMSE

Electricity Cooling Heating Electricity Cooling Heating Electricity Cooling Heating

Model 1 2.441 3.402 3.771 415.682 362.097 115.575 570.185 497.679 152.961

Model 2 4.687 4.938 8.251 768.493 525.988 257.240 877.491 688.089 308.940

Model 3 4.535 3.739 3.838 750.191 389.279 116.099 870.474 525.141 154.126

Model 4 2.765 4.495 4.151 457.958 435.248 123.753 610.478 551.996 163.495

Ours 2.298 3.091 3.495 385.192 326.057 105.679 528.538 451.123 142.154

parts. The MAPE, MAE and RMSE evaluation metrics of
the four models are listed in Table 4. As can be seen from the
table, the MAPE metrics of the proposed model is 2.30%,
3.09%, and 3.50% for electricity, cooling, and heating loads,
respectively. The electricity load has the lowest prediction
error,while the heating load has the highest error. This sit-
uation is also reflected in the MAE and RMSE indexes.
Meanwhile, comparing the other models, it can be found
that Model 1 and Model 2 also have the lowest prediction
error on the electricity load, followed by the cooling load,
and the highest error is still the heating load. However, the
prediction effect of Model 3 is different. The Model 3 has
the lowest error for the cooling load and the highest error
for the electricity load. From the above results, it can be
found that the prediction results of models are different.
Specifically, the focus is a problem of the model itself and
it depends on the initial design of the model. Thereby, in
order to evaluate the models more objectively, the MA and
WMA evaluation metrics for the models is listed Table 5.
The WMA index of the proposed model is 0.97066, and the
values are higher than the other three models.

Changes in weather often have an impact on people’s
load usage, and thus it is necessary to consider climate
change in multi-energy load forecasting. Therefore, this
paper conducts a comparison experiment with or without
including weather data. To ensure the fairness, the model
settings of the proposed model and the comparative
Model 4 are exactly same, where the data input of Model 4
does not include the meteorological data component. The

Table 5 The MA and WMA evaluation of ablation prediction model

Models MA WMA

Electricity Cooling Heating

Model 1 0.97559 0.96598 0.96229 0.96813

Model 2 0.95313 0.95062 0.91749 0.94474

Model 3 0.95465 0.96261 0.96162 0.96002

Model 4 0.97235 0.95505 0.95849 0.96093

Ours 0.97702 0.96909 0.96505 0.97066

results are shown in Tables 4 and 5. In terms of MAPE
index, the prediction results of the proposed model are all
lower than Model 4. This result reflects that meteorological
data can help to improve the prediction performance
of the model, and there is a close correlation between
meteorological data and multivariate load data from the
level of data analysis.

Based on this analysis, it can be seen that the proposed
model has a better prediction effect. Among them, MTL-
LSTM module uses the fusion layer to explore the coupling
relationship between different loads, so that the model can
better grasp the usage characteristics of different loads,
which is more conducive to the demand prediction of
different loads. At the same time, the results show that
the prediction effect of TCN module is better than that
of LSTM network, which reflects the reasonableness and
effectiveness of the model design in this paper.

6 Conclusion

Given the problems such as strong volatility and stochastic-
ity of load demand in UIES, multi-energy load forecasting
puts forward higher requirements for the reliability and
accuracy. In this paper, a short-term multi-energy load fore-
casting method based on MTL method is proposed. It well
portrays the degree of load participation and deeply explores
the complex coupling relationships among loads. By inte-
grating and sharing the data information among different
loads, the proposed method effectively improves the predic-
tion accuracy. Comparing with current methods, the results
show that the proposed MTL method has certain advan-
tages, and the weighted average accuracy is improved by at
least 1.3%, which is significant for the load prediction of
integrated energy systems. Therefore, this method can pro-
vide an accurate and stable forecasting for UIES and support
reliable decision making for market participants.
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