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Abstract
Crowd flow prediction is an important problem of urban computing with many applications, such as public security. Inspired
by the success of deep learning, various deep learning models have been proposed to solve this problem. Although existing
methods have achieved good prediction performance, they cannot effectively capture richer spatial-temporal correlations
that are important for crowd flow prediction. To address the limitation of existing methods, we propose a novel 2D CNN-
based (convolutional neural networks) model via multiple perspectives called the MPCNN to capture richer spatial-temporal
correlations. In particular, three perspective CNNs are included in the MPCNN: the front CNN, the side CNN and the top
CNN. Then, we propose a fusion layer to combine the results of the three CNNs. In addition, in the MPCNN, we use external
factors to enhance prediction performance. Based on four real-world datasets, we performed a series of experiments to
compare the proposed method with existing methods, and experimental results demonstrate the effectiveness and efficiency
of the proposed method.

Keywords Crowd flow prediction · Multi-perspective · Spatial-temporal data · Deep learning

1 Introduction

Crowd flow prediction is an important problem of urban
computing with many applications, such as public security
and urban management [8, 27, 36, 37]. For example, a
stampede disaster occurred in Shanghai on New Year’s Eve
in 2015, when a large crowd of people gathered for the
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celebration of the New Year. Thirty-six people were killed,
and forty-nine people were injured, making this incident
one of the largest disasters in China in recent years. If
crowd flows can be predicted, early warnings and advance
measurements can be taken, and accidents can be prevented.
Thus, public security requires a fast response because time
is critical to effective application of preventive measures in
public security.

Crowd flow prediction is challenging because it is
affected by many complex factors, such as the spatial-
temporal correlations among different regions of a city and
external factors, including weather conditions and holidays.

Inspired by the success of deep learning, various deep
learning models have been proposed for the problem.
Existing methods can be grouped into two categories:
graph-based methods and CNN-based (convolutional neural
networks) methods. Graph-based methods [6, 12, 20] model
a city map as a graph and apply graph neural networks
(GNN) from a spatial perspective and recurrent neural
networks (RNN) from a temporal perspective to capture
spatial-temporal correlations. However, GNN and RNN
capture spatial and temporal correlations separately and
neglect the correlations between different types of flows.
In addition, these methods are often time-consuming to
perform. Thus, in this study, we focus on CNN-based
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methods to simultaneously capture the spatial-temporal
correlations of crowd flows with balancing effectiveness
and efficiency.

There are many CNN-based methods that achieve good
prediction performance, such as the 2D CNN-based meth-
ods ST-ResNet [37], DeepLGR [14], and the 3D CNN-based
methods MST3D [2]. However, these methods cannot effi-
ciently capture the richer spatial-temporal correlations, which
are important for crowd flows prediction. Below, we use an
example to show the limitations of the existing methods.

We now consider a map that is divided into 3×3 regions
of equal size. As shown in Fig. 1, objects are located in
regions. For example, there is a stadium (S) in region r1
and a taxi stand (T) in region r3. Each region is associated
with two types of crowd flows, new-flow and end-flow [7].
Specifically, the new-flow is the crowd flows starting from
a given region (e.g., people start driving from a parking
spot). The end-flow is the crowd flow that arrives at a
given region (e.g., people stop driving and park their cars).
Each curve between two objects denotes a spatial trajectory
(i.e., the movement of an individual). For example, the
curve between S in region r1 and T in region r3 shows the
movement from the stadium to the taxi stand.

We assume that there is a football game held in the
stadium in the region r1. When the football game ends at
9:00 P.M. (t1), people rush out of the stadium, and then,
the new-flow of r1 grows. By 9:30 P.M. (t2), many people
have reached nearby regions r2 and r3. Thus, the end-flows
of r2 and r3 become larger at t2, and the new-flow of r1
at t1 has a strong influence on the end-flows of its nearby
regions r2 and r3 at t2. Effectively capturing such spatial-
temporal correlations among different regions is important
when predicting crowd flows.

However, existing methods cannot effectively capture
such spatial-temporal correlations. Specifically, the existing

Fig. 1 Example of complex spatial-temporal correlation of crowd
flows among different regions

3D CNN-based methods can only capture the spatial-
temporal correlations among regions with the same type of
flows. For example, using existing methods, we know that
the new-flow of r1 at t1 will increase the new-flow of r2 at
t2, but we cannot know that the new-flow of r1 at t1 will
also increase the end-flow of r2 at t2. Existing 2D CNN
methods lack an explicit way to capture the correlations
with different types of flows. More specifically, they make
a weighted summation of all time channels, which cannot
effectively capture complex correlations.

To address the limitations of the existing methods,
we propose a novel 2D CNN-based model via multiple
perspectives called MPCNN to explicitly capture the richer
spatial-temporal correlations among different regions (e.g.,
the correlations with different types of flows). In particular,
Fig. 2 shows an example of three perspectives for the
proposed model. In this figure, crowd flow data are modeled
as a cube, including 3×3 regions and their new-flow at
t1 and t2 and their end-flow at t2. Each grid in the cube
represents the crowd flow of a region, and each slice
represents the crowd flow of the entire region at a time step.
As shown in Fig. 2, we consider three perspectives, the front
perspective, the side perspective, and the top perspective.
The front perspective corresponds to the front view of the
cube slices, the three slices with the new-flow at t1 and the
end-flow and new-flow at t2. Similarly, as shown in Fig. 2,
the side perspective corresponds to the side view of the cube
slices, and the top perspective corresponds to the top view
of the cube slices. The front view of cube slices contains
the spatial information of different regions, and the side and
top views of the cube slices contain the spatial-temporal
information of the new-flow and end-flow. The front view of
cube slices is also identical to the back view of cube slices;
the left side view is identical to the right side view; and the
top view is identical to the bottom view. Thus, we propose
three perspective CNNs: the front CNN, the side CNN, and
the top CNN.

In the front CNN, we use a 2D CNN to capture the
spatial-temporal correlations on the front view of the cube
slices. The correlations among the new flows of r1, r2, and
r3 can be captured on the slice with t1, as shown in Fig. 2.
Similarly, in the side CNN, we can capture the spatial-
temporal correlations with different types of flows (e.g., the
new-flow of r1 and the end-flow of r3). In the top CNN,
we can capture the spatial-temporal correlations among the
new-flow of r1 and the end-flow of r2 and the new-flow
of r2. In the following experiments, we present a real case
study to show that the MPCNN can effectively capture
correlations among the regions with different types of flows
for crowd flow prediction.

In general, the contributions of this study can be
summarized as follows:
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Fig. 2 Example of three perspectives for the proposed model

• Considering existing methods’ inability to fully exploit
the spatial-temporal correlations in crowd flow data, we
propose a novel 2D CNN-based model called MPCNN
for crowd flow prediction. In MPCNN, we propose the
front CNN, the side CNN, and the top CNN to capture
the richer spatial-temporal correlations hidden in the
crowd flows. Then, we design a fusion layer to combine
the results of the three CNNs. In addition, we use
external factors such as metadata and weather condition
to enhance prediction performance.

• We perform extensive experimental evaluations on
four real-world datasets. Experimental results have
demonstrated that the proposed MPCNN can achieve
the best prediction performance and is the most efficient
among all methods with high-quality performance.

2 Related work

Crowd flow prediction Crowd flow prediction has been
extensively studied in recent decades. In general, there
are two types of methods: micro-level and macro-level.
The former focuses on the prediction of each individual
movement based on their history trajectories [30], and
traffic conditions on roadsegments [24]. Auto-regressive
integrated moving average (ARIMA) is a well-known
method that is commonly used to predict future values
in time series. Kumar proposed a method [10] based on
the Kalman filtering technique to predict future traffic
conditions. However, these methods are not suitable for
public security, which requires a citywide perspective. The
latter [7, 17, 36] focuses on the prediction of citywide crowd
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flows. Thus, in this study, we investigate the macro-level
view of crowd flow prediction by predicting two types of
crowd flows in every region of a city: the new-flow and the-
end flow [7]. These two flows summarize the movements of
a crowd and are sufficient for traffic management and social
safety precaution.

Recently, some researchers have used deep learning
methods [1, 3, 5, 13, 15–19, 23, 25, 26, 28, 35, 38, 39,
41] to solve this problem. Deep learning methods have
a strong ability of model expression due to nonlinear
activation. Recurrent neural networks (RNNs) and their
variants, including long short-term memory (LSTM) [31–
33] have been proposed to capture the temporal features of
flows. Poon et al. [18] proposed a time-series method with
LSTM for crowd prediction with a long time gap. Singh [19]
proposed an LSTM-based forecasting model on WiFi data
for crowd forecasting. However, RNN-based methods have
certain disadvantages, such as time-consuming iterations
and complex gate mechanisms [34]. Compared with RNN-
based methods, CNNs [11] are characterized by fast training
times, simple structures, and excellent performance when
extracting spatial features. Recently, graph neural networks
[4, 6, 9, 12, 20, 28] have been proposed and have achieved
good performance. Zhou et al. [40] proposed a multi-
graph convolution operator to capture multiple spatial
dependencies of urban crowd flow and used RNN to model
the temporal dependency. MVGCN [22] was proposed to
forecast crowd flows in irregular regions. MVGCN is a
variant of GNN and a fully connected neural network
that can effectively capture spatial correlations and global
information. However, these methods are designed for
graph-based data and ignore correlations between regions
with different types of flows.

CNN-based methods In general, there are two types of
CNN-based methods: 2D CNN-based methods and 3D
CNN-based methods. For example, Zhang et al. [36]
presented a method based on CNNs for crowd flow
prediction that uses several CNN layers to capture distant
spatial correlations. The performance of the method is
limited by the number of CNN layers. However, too many
layers will cause the gradient to disappear. To overcome
this limitation, Zhang et al. [37] introduced residual learning
into the model. To solve the inefficiency in capturing the
long-distant spatial correlation of CNN methods, Liang
et al. [14] combines CNNs and spatial pyramid pooling.
Yao et al. [32] proposed a local CNN model that captures
local characteristics of regions in relation to their neighbors.
MST3D [2] uses 3D CNN to learn spatial-temporal
correlations for crowd flows prediction. Different from
the above CNN-based methods, the MPCNN captures the
richer spatial-temporal correlations via multiple perspective
CNNs. In addition, multi-view CNNs [21, 29] are proposed

for 3D shape recognition. In essence, they still use the
additional 2D CNN, which is different from the proposed
model.

3 Preliminaries

In this section, we describe related concepts and provide
the problem definition investigated in this study, which are
similar to [7].

Definition 1 (Region) Given a map of a city, we can divide
the map into N × M equal-size disjoint grid cells, where N

and M are given positive integers. Each cell r(i, j) denotes
a region, where 1 ≤ i ≤ N and 1 ≤ j ≤ M .

Definition 2 (New-flow and end-flow) New-flow and end-
flow are two types of crowd flows. The movement of an
individual can be recorded as a spatial trajectory tr , which is
a sequence of time-ordered points, tr : p1 → p2 → . . . →
p|tr|, where each point pi = (ai, bi, ti) has a geospatial
coordinate position (ai, bi) and a timestamp ti , and |tr| is
the number of points in tr . Given a set of trajectories P at
the t-th time interval, we split time into n nonoverlapping
time intervals with the same length (e.g., an hour). For a
region r , the new-flow and end-flow at the t-th time interval
are defined as follows:

x
new,r
t = |tr ∈ P : (a1, b1) ∈ r, t1 = t | (1)

x
end,r
t = |tr ∈ P : (a|tr|, b|tr|) ∈ r, t|tr| = t | (2)

where (a1, b1) ∈ r means that point lies within region r .

For example, as shown in Fig. 1, the map is divided into
3×3 regions. Because there are four trajectories starting
from the stadium (S) in r1, namely, S→T, S→P, S→C and
S→R, the new-flow of r1 is equal to 4. Similarly, the end-
flow of r1 is equal to 1 because there is one trajectory ending
at r1, that is, M→S. In particular, the new-flow and end-
flow of r2 are equal to 1 and 3, respectively. The trajectory
H→R in r2 is counted as the new-flow and end-flow of
r2. In general, the end-flow and new-flow in all N × M

regions at the t-th time interval can be denoted as a cube
Xt ∈ R

2×N×M .

Definition 3 (Problem definition) Given the historical
observations {Xt |t = 0, . . . , n}, we try to predict {Xt |t =
n + 1, . . . , n + k} for the next k time intervals.

4Method

In this section, we first provide an overview of the proposed
framework and then present the key components. Then,
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Fig. 3 Overview of the proposed
MPCNN model includes three
major components. FC denotes
the fully connected layer

we compare the proposed method with existing methods
and describe the results of the complexity analysis of the
proposed model.

4.1 Overview

The overview of the proposed MPCNN model is shown
in Fig. 3, which consists of three major components,
the component of modeling, the component of multi-
perspective CNNs, and the external component. Historical
crowd flow data are first fed into the modeling component.
In this component, we try to capture the temporal properties
of the crowd flows by three temporal cubes (i.e., closeness
cube, period cube and trend cube). These flows can be
extracted from the historical flow data according to different
time granularity requirements (e.g., a day or a week).
Then, the three temporal cubes are combined into one
cube and are fed into the component of multi-perspective
CNNs. This component contains three perspective CNNs:
the front CNN, the top CNN, and the side CNN. Using
these perspective CNNs, we can explicitly capture spatial-
temporal correlations with different types of flows, as
shown in Fig. 2. In addition, we propose a fusion layer to
combine the results of the three perspective CNNs. Then, we
use an external component to combine the external factors
to enhance the prediction performance.

4.2 Modeling

As shown in Section 3, we can compute the new-flow and
end-flow in all N × M regions at the t-th time interval (i.e.,
the cube Xt with the size of 2×N ×M). Similar to [37], we
try to capture the temporal properties (i.e.,closeness, period,
trend) hidden in the crowd flows by the temporal cubes with
three time granularities (i.e., recent, near, distant), denoted
as Ic, Ip and Iq , respectively.

We extract some cubes that can represent the three
temporal properties. Specifically, crowd flows at adjacent
time intervals can be input to simulate closeness; flows at
the same time intervals every day can be input to simulate
period; and flows concurrently intervals every week can
be input to simulate trend. The closeness cube Ic =
[Xt−lc , Xt−(lc−1), ..., Xt−1] is extracted as the closeness
sequence, where lc is the length of the closeness sequence.
The period cube Ip =[Xt−lp...p, Xt−(lp−1)dotsp, . . . , Xt−p]
is extracted as the period sequence, where lp is the length
of the period sequence and p is the period span. The trend
cube Iq = [Xt−lq ...q , Xt−(lq−1)...q , . . . , Xt−q ] is extracted
as the trend sequence, where lq is the length of the trend
sequence and q is the trend span. The period span p and
trend span q can be customized as required. In the proposed
method, we empirically set p as one day and q as one
week. Then, we combine Ic, Ip and Iq as the input cube

Fig. 4 Modeling process
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Iinput ∈ R
(2lc+2lp+2lq )×N×M . For simplicity, we set (2lc +

2lp + 2lq) as L. Figure 4 represents the modeling process.
Then, the input cube Iinput ∈ R

L×N×M is fed into the
multi-perspective CNN component.

4.3 Multi-perspective CNN component

Inspired by the advantage of the 2D CNN in capturing the
correlations in a plain, we design a multi-perspective CNN
component to explicitly capture the rich spatial-temporal
correlations. As shown in Fig. 2, from the front perspective,
the new-flows of r1, r2 and r3 are on one plain. Thus, the
correlations among the new-flows of r1, r2 and r3 (i.e.,
the red lines) can be captured by the CNN from the front
perspective. From the side perspective, the new-flow of r1
at t1 and t2 and the end-flow and new-flow of r3 at t2 are on
the same plain. Thus, the correlations between r1 at different
times (i.e., the green line) and the correlations between r1
and r3 can be explicitly captured by the CNN from the
side perspective. Specifically, the correlations between r1
and r3 include the correlations of the new-flows of r1 at
t1 and the end-flows of r3 at t2 (i.e., the blue line), the
correlations of the new-flows of r1 at t1 and the new-flows
of r3 at t2 (i.e., the yellow line). Similarly, from the top
perspective, the new-flow of r1 at t1 and t2 and the end-flow
and new-flow of r2 at t2 are on the same plain. Thus, the
complex spatial-temporal correlations between r1 and r2 can
be explicitly captured by the CNN from the top perspective.
Note that, from the side and the top perspective, because the
two flows are stacked together, the new-flow and end-flow
are associated with the same plain. Thus, the new-flow and
end-flow are computed simultaneously, and the correlations
between them can be captured by the CNNs.

The architecture of the multi-perspective CNN compo-
nent is given in Fig. 5. The component consists of three

perspective CNNs, i.e., the front CNN, the side CNN and the
top CNN, a fusion layer, and a convolution layer. First, for
the input cube Iinput , we first obtain its three perspectives:

the front perspective of slices X
(0)
f ront ∈ R

L×N×M , the side

perspective of slices X
(0)
side ∈ R

M×N×L, and the top perspec-

tive of slices X
(0)
top ∈ R

N×L×M . Then, we feed the perspec-
tives into the front CNN, the side CNN, and the top CNN.

The three perspective CNNs share a similar network
structure, which consists of a convolution Conv 1 and
several residual units [37]. Considering the front CNN as an
example, the transformation at Conv 1 is defined as follows:

X
(1)
f ront = f (W

(1)
f ront ∗ X

(0)
f ront + b

(1)
f ront ) (3)

where ∗ denotes the convolution operation, and f is
the ReLU activation function. W

(1)
f ront and b

(1)
f ront are all

learnable parameters in the first convolutional layer.
The crowd flows of a region are affected by nearby

regions and by long-distance regions, such as the regions
connected by subways or highways. Thus, we use multi-
layer CNNs to capture the correlations of the long-distance
regions. However, too many convolutional layers make
model training difficult. Therefore, we introduce residual
units [37] into the proposed method. The residual unit
consists of two combinations of “ReLU and convolution”,
as shown in Fig. 5. The transformation at the i-th residual
unit is defined as follows:

X
(i+1)
f ront = X

(i)
f ront+F(ω

(i)
f ront , X

(i)
f ront ), i = 1, 2, . . . , K (4)

where the function F represents the residual function and
ω

(i)
f ront represents learnable parameters in the i-th residual

unit of the front CNN. In addition, the proposed method uses
zero-padding in the convolutional layers of the residual unit,
and the number of convolution kernels used in the residual
unit is equal to the depth of its input. For example, in the

Fig. 5 The left figure shows the architecture of the multi-perspective CNN component, and the right figure shows the details of the residual unit
in each perspective CNN
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front CNN, the number of convolution kernels used in the
residual unit is L, and in the side and top CNNs, they are
M and N , respectively. Thus, the output and input of each
perspective CNN have the same size (i.e., L × N × M).

Next, we introduce the fusion layer that can fuse
the results of three perspective CNNs. In particular, the
influence on crowd flows among regions changes over time.
For example, we consider the example of Fig. 1 again. When
the football game ends at 9:00 P.M., the crowd flows in
region r1 will become large soon. Then, the crowd flows
in the nearby regions r2 and r3 are strongly influenced by
r1. However, after a long time, the crow flows in r1 may
decrease, and their influence will also gradually decrease.
To learn such a correlation between different regions, we
propose a weight-matrix-based fusion as follows:

Xf usion = Wf ◦ Xf ront + Ws ◦ Xside + Wt ◦ Xtop (5)

where ◦ denotes elementwise multiplication, Wf , Ws , and
Wt are learnable parameters, and Xf ront , Xside, and Xtop

are outputs of the three perspective CNNs.
Next, we apply a convolutional layer (i.e., Conv 2 shown

in Fig. 5) to the fusion cube Xf usion. In particular, we use
two convolutional kernels in the Conv 2 layer; thus, the
final output of the multi-perspective CNN component is
Xoutput ∈ R

2×N×M .

4.4 External component

Crowd flows can be affected by many external factors, such
as metadata (e.g., weekday/weekend), holiday information
and meteorological features. Specifically, the crowd flows
during weekdays can be different from those on week-
ends. The flows during the holidays are different from
those during normal days. Compared to the same day in
the recent week, heavy rains often cause a sharp decrease
in crowd flows. Therefore, we consider metadata (e.g.,
weekday/weekend), holiday information and meteorologi-
cal features (i.e., weather condition, temperature and wind
speed) as the external factors.

Similar to the method of [37], we turn the metadata,
holiday information and weather conditions into vectors
by one-hot coding. In addition, we normalized the values
of wind speed and temperature into [0,1] by min-max
normalization. Then, the external features are fed into two
fully connected layers. The first layer is regarded as an
embedding layer, and the second layer maps low to high
dimensions that have the same shape as Xoutput . The output
of the external component is Xext .

4.5 Prediction and training

To obtain the predicted value, we merge the output of the
external component Xext with the output Xoutput of the

multi-perspective CNN component. Then, the aggregation
is mapped into [-1,1] by the tanh function as the predicted
value.

To learn the model parameters, we optimize the mean-
square error (MSE) as follows:

L(θ) = ‖Xt − ̂Xt‖22 (6)

where θ means all learnable parameters in the method,
and Xt and ̂Xt are the ground truth and predicted value,
respectively. Algorithm 1 describes the training scheme of
the MPCNN, including the construction of training instance
sets (lines 2-8) and backpropagation training (lines 10-14).

4.6 Discussion and analysis

First, we compare the proposed model with the existing
methods. Then, we present the complexity analysis of the
proposed model.

4.6.1 Comparison with existing 2D CNN-basedmethods

The challenge of crowd flow prediction is how to
capture the complex spatial-temporal correlations between
crowd flows, i.e., the correlations between (x1, y1, t1) and
(x2, y2, t2), where (xi, yi, ti) denotes the crowd flows of
region r(xi, yi) at time ti . In fact, existing 2D CNN-based
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methods, such as [14, 37], are essentially equivalent to
the proposed front CNN, which often captures the spatial
correlations, i.e., the correlation between r(x1, y1) and
r(x2, y2). As shown in Fig. 2, the front CNNworks on slices
with the same temporal information (e.g., t1 or t2). Thus,
the front CNN often captures the correlations between two
regions with the same temporal information. In MPCNN,
we add two additional perspectives. Because the cubes with
the side and top perspectives contain spatial and temporal
information about the new and end flows, the spatial and
temporal information can be learned simultaneously by the
CNNs. Specifically, the side CNN can explicitly capture
the correlation between (y1, t1) and (y2, t2), and the top
CNN can explicitly capture the correlation between (x1, t1)

and (x2, t2). Then, the fusion layer can capture the spatial-
temporal correlations between (x1, y1, t1) and (x2, y2, t2) by
fusing the results of three perspective CNNs.

The side and top CNN capture the correlations between
regions of the same latitude and longitude at different
times. The front CNN in MPCNN can adequately capture
the spatial relationship between different regions to
complement the side and top CNNs. The fusion layer
can regulate the influence of different spatial-temporal
correlations in different regions. Thus, compared with
existing 2D CNN-based methods, the proposed method can
capture more complex spatial-temporal correlations.

4.6.2 Comparison with existing 3D CNN-basedmethods

In 3D CNN, the convolution operation is performed in the
spatial dimension and temporal dimension. However, the
different types of channels are separately handled in 3D
CNN. Thus, the correlations between the different channels
cannot be handled. In other words, the correlations among
the regions with different types of flows cannot be captured
by 3D CNN.

4.6.3 Comparison with existing multi-viewmethods

There are some multi-view CNN-based methods, such as
[21, 29], that have been proposed for 3D shape recognition.
In general, these methods use multiple data sources, such
as multiple photos taken from cameras at multiple angles.
Thus, multi-view methods often use multiple data inputs.
However, these methods still use traditional 2D CNN
convolution with only one single perspective, while multi-
perspective CNNs are used on the crowd flow data in the
proposed model.

4.6.4 Complexity analysis

We now describe the complexity analysis of the proposed
model from the following two perspectives.

• Model size: In the MPCNN, there are three major
components that require the parameters. In the multi-
perspective CNN component, each perspective CNN
contains qhg parameters, where q is the number of
CNN layers, h is the number of convolution kernels
used in each CNN layer and g is the number of
parameters in one convolution kernel. In the MPCNN,
h is set to L, M and N in the front CNN, the side
CNN and the top CNN, respectively. Then, the fusion
layer contains 3LNM parameters, and the external
factor component contains f1f2NM parameters, where
f1 and f2 denote the output dimensions in two fully
connected layers. Thus, the model size of the MPCNN
is equal to qg(L + N + M) + 3LNM + f1f2NM .

• Time complexity: The primary time cost of the model
contains the time for both the multiple perspective CNN
component and the fusion layer. The multi-perspective
CNN component contains the stacking of multiple CNN
layers. Thus, the time cost of the component is O(qc),
where q is the number of CNN layers, and c is the time
cost of each CNN layer. The time cost of the fusion
layer is O(LNM). Thus, the time cost of the MPCNN
is O(qc + LNM).

5 Experiments

In this section, we describe empirical studies of the proposed
model, including the experimental setup, the experimental
results on the effectiveness and efficiency, and the case study.

5.1 Experimental setup

The experimental environment is an Intel Xeon CPU E5-
2620 2.10GHz*8 CPU and 64 GB memory, and one
GeForce RTX 2080Ti GPU. The proposed model is
implemented with Keras and TensorFlow.

5.1.1 Datasets

In these experiments, we use four real-world datasets:
BikeNYC01, BikeNYC02, TaxiNYC and TaxiBJ. Each
dataset contains crowd flows data and external factor data.
The details are as follows.

• BikeNYC01.1 BikeNYC01 is taken from Citi Bike,
New York’s bike sharing system, which includes bike
rent records and metadata (i.e., weekdays or weekends).
The time span of BikeNYC01 is from 4/1/2014 to
9/30/2014, and the time interval is one hour. The map is
divided into 20×20 regions. The size of BikeNYC01 is
27 MB.

1https://www.citibikenyc.com/system-data
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• BikeNYC02. These trajectory data are also collected
from New York’s bike share system, spanning from
4/1/2014 to 9/30/2014, and the time interval is one hour.
Different from BikeNYC01, the map of BikeNYC02 is
divided into 16×8 regions. The size of BikeNYC02 is 9
MB.

• TaxiNYC2. These trajectory data are generated by
taxicabs in New York. The time span of TaxiNYC is
from 4/1/2015 to 9/30/2015, and the time interval is an
hour. The external factor data are metadata. The map
of TaxiNYC is divided into 20×20 regions. The size of
TaxiNYC is 27 MB.

• TaxiBJ [37]. This dataset contains taxicab trajectory
data, meteorology data and metadata in Beijing from
four time intervals: 7/1/2013 - 10/30/2013, 3/1/2014
- 6/30/2014, 3/1/2015 - 6/30/2015 and 11/1/2015 -
4/10/2016. The time interval is half an hour. The
external data include metadata, holiday data and
meteorology data. The map of TaxiBJ is divided into
32×32 regions. The size of TaxiBJ is 1069 MB.

For BikeNYC01, BikeNYC02 and TaxiNYC, we choose the
last 10 days as testing data. For TaxiBJ, we choose the last
four weeks as testing data and the other data as training data.
Ten percent of the training data are chosen to be validation
data. In addition, the data are scaled to the range [-1, 1]
by the min-max normalization method, re-scaled to normal
values and compared with the ground truth in the evaluation.

5.1.2 Comparisonmethods

To demonstrate the effectiveness of the proposed model, we
compare the proposed method with the following methods.

• HA:We predict new-flow and end-flow of crowds using
the average value of historical new-flow and end-flow
in the corresponding periods.

• VAR: Vector auto-regression is an advanced spatial-
temporal model that can capture pairwise relationships
among all flows.

• Deepst [36]: This DNN-based prediction model uses
four CNN layers for crowd flows prediction.

• ST-ResNet [37]: This deep learning model uses ResNet
to model spatial-temporal correlations in grid-based
spatial-temporal prediction.

• MST3D [2]: This method uses 3D CNNs to learn the
spatial-temporal features jointly for prediction.

• DeepLGR [14]: This method combines CNN and
spatial pyramid pooling for crowd flows prediction.

• GCN+LSTM. This method stacks a graph convolution
layer [9] with an LSTM layer. In the method, the graph
G = (V , E) is constructed, where V and E represent

2https://www1.nyc.gov/site/tlc/about/tlc-triprecord-data.page

the sets of vertices and edges, respectively. Each vertex
in graph G indicates an individual region, and the
edge between two vertices denotes the two regions
geographically adjacent to each other. Besides, the
external components are not considered in the method.

5.1.3 Evaluation metrics

We use two common criteria to evaluate the proposed
model, including root mean square error (RMSE) and mean
absolute error (MAE), which are are defined as follows:

RMSE =
√

√

√

√

1

n

n
∑

i

(xi − x̂i )2 (7)

MAE = 1

n

n
∑

i

|xi − x̂i | (8)

where n is the number of all predicted values, and xi and
x̂i are the ground truth and predicted values, respectively.
RMSE is used to measure the standard deviation of
differences between the ground truth and predicted value,
and MAE is used to compute the average of the absolute
errors between the ground truth and predicted value.

5.1.4 Parameters

For all baselines, we use the implementations provided
by either their authors or open source libraries. All deep
models are trained end-to-end by the Adam optimizer. For
the MPCNN, the convolution kernel size is 3 × 3 for the
three datasets. The number of residual units in the front
CNNs, side CNNs, and top CNNs are empirically set to
4, 2, and 3 for BikeNYC01; 4, 3, and 2 for BikeNYC02;
4, 3, and 3 for TaxiNYC; and 12, 12 and 12 for TaxiBJ,
respectively. The last convolutional layer (i.e., Conv 2) uses
2 convolution kernels. We tune the batch size in {16, 32, 64,
128} and the learning rate in {0.0001, 0.0002, 0.0005, 0.001,
0.005, 0.01}. We set p and q to one day and one week, and
lc = 3, lp = 4, lq = 4. We also use early stopping in the
training process and then continue to train the model on the
full training data for a fixed number of epochs (e.g., 100
epochs).

5.2 Performance comparison

Performance comparisons include single-step prediction
and multistep prediction. The single-step head prediction
indicates that we make predictions of a single time step
ahead. The multistep prediction denotes that we make
predictions of multiple time steps ahead. Table 1 reports
the performance comparison of single-step prediction with
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Table 1 Comparison with different baselines

Methods BikeNYC01 BikeNYC02 TaxiNYC TaxiBJ

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

HA 6.93 4.21 11.33 6.56 7.53 3.72 45.77 24.50

VAR 5.58 3.78 9.5 6.12 6.87 2.98 20.55 12.22

Deepst 4.17 1.99 7.29 3.95 4.26 1.59 20.96 13.45

ST-ResNet 3.91 1.65 6.33 3.03 3.65 1.24 16.76 9.58

MST3D 3.83 1.67 6.32 3.07 3.65 1.23 16.63 9.79

DeepLGR 3.88 2.22 6.21 3.39 5.05 2.43 19.07 12.23

GCN+LSTM 3.70 1.81 6.68 3.37 3.93 1.49 16.51 9.84

MPCNN 3.61 1.59 6.11 2.99 3.50 1.15 16.44 9.66

all baselines on four datasets. We make the following
observations:

• The conventional methods (i.e., HA and VAR) cannot
accurately predict crowd flows because they cannot
capture complex spatial-temporal correlations.

• Deepst does not perform better than the other deep
learning methods because its framework is too simple
to sufficiently capture spatial-temporal correlations.

• MST3D generally achieves better performance than
Deepst, ST-ResNet and DeepLGR. Such improvement
is attributed to the 3D CNN, which can capture the
spatial-temporal correlations, while Deepst, ST-ResNet
and DeepLGR adopt the 2D CNN, which focuses
on capturing the spatial correlations. Thus, MST3D
achieves better performance than these methods.

• GCN+LSTM does not perform better than MPCNN
because GCN+LSTM addresses spatial and temporal
correlations separately and neglects the correlations
between different types of flows.

• The proposed MPCNN outperforms other baselines.
Using multiple perspective CNNs, MPCNN can
efficiently capture rich spatial-temporal correlations
explicitly and uses a fusion layer to efficiently combine
the results of the three perspective CNNs.

To evaluate the performance of the MPCNN in more
detail, Table 2 reports the results of multistep prediction
with other deep learning methods on BikeNYC02. As
shown in Table 2, the MPCNN outperforms the other
methods as the step number varies from 2 to 4. The RMSE
and MAE of all methods also increase as the predicted
time step increases. This is because, as the predicted time
step increases, simulating the propagation of crowd flows
becomes more difficult. Deepst performs the worst because
it only uses a few layers, making it difficult to capture long-
range dependencies. Thus, the MPCNN achieves better
performance compared with existing methods of crowd flow
prediction, which demonstrates its superiority in capturing
rich spatial-temporal correlations.

5.3 Ablation study

To verify the effectiveness of different components of
the MPCNN, we perform ablation experiments on three
datasets. In particular, we design four variants of the
MPCNN as follows: M-withF denotes that the MPCNN
model only uses the front CNN; M-withST denotes that
the MPCNN model only uses the side and top CNNs; M-
withExt denotes that the MPCNN model only uses the front

Table 2 Performance of multistep prediction

Methods step=2 step=3 step=4

RMSE MAE RMSE MAE RMSE MAE

Deepst 8.62 4.47 9.40 4.98 10.53 5.29

ST-ResNet 6.72 3.20 7.24 3.37 7.53 3.55

MST3D 7.01 3.29 7.62 3.47 8.05 3.67

DeepLGR 7.57 3.47 8.17 3.93 8.58 4.21

GCN+LSTM 6.72 3.57 7.20 3.80 7.68 4.06

MPCNN 6.61 3.20 7.02 3.32 7.49 3.51
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Table 3 Effect of different components

Methods BikeNYC01 BikeNYC02 TaxiNYC TaxiBJ

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

M-withF 3.69 1.60 6.35 3.03 3.68 1.29 17.06 9.88

M-withST 3.72 1.63 6.14 2.99 3.56 1.18 16.87 9.80

M-withExt 3.64 1.59 6.24 3.00 3.60 1.21 16.77 9.85

M-Sum 3.65 1.63 6.15 2.99 3.76 1.31 17.75 10.34

MPCNN 3.61 1.59 6.11 2.99 3.50 1.15 16.44 9.66

CNN and considers external factors; and M-Sum denotes
that the MPCNNmodel directly sums the results of the three
perspective CNNs.

Table 3 compares these variants of the MPCNN. The
MPCNN outperforms M-withF and M-withST, which
verifies that the three perspective CNNs are beneficial
for crowd flow prediction. The importance of each of
the three perspective CNNs is also different. Thus, the
performance of M-Sum, which uses equal weight addition,
is worse than that of MPCNN with a fusion layer. M-
withExt outperforms M-withF, which shows that external
factors are beneficial for prediction. We also note that
the contributions of different components are different in
different datasets. Specifically, in BikeNYC01, M-withF
outperforms M-withST, which indicates that the front CNN
component contributes more than the side and top CNNs.
In BikeNYC02, M-withST outperforms M-withF, which
indicates that the side and top CNNs contribute more than
the front CNN. In TaxiNYC and TaxiBJ, M-Sum performs
the worst among all variants, which indicates that the direct
summation fusion of different perspective CNNs yields poor
performance and highlights the importance of the fusion
mechanism. In a word, the MPCNN performs better than the
other investigated variants. The components of the MPCNN
are also shown to be effective.

5.4 Evaluation of parameter settings

Next, we study the influence of the number of residual
units in the three perspective CNNs and the impact of the
temporal closeness, period and trend length. We also study
the impact of region partition.

5.4.1 Impact of the number of residual units

We conduct experiments on the impact of the number
of residual units in the three perspective CNNs (i.e., the
number of residual units nf , ns and nt in the front CNN,
the side CNN and the top CNN, respectively). We report the
results on the BikeNYC01 dataset. We set nf , ns and nt as 4,
2 and 3, respectively, by default and obtain the performance
of the MPCNN with nf , ns, nt = {1, 2, 3, 4, 5}, as shown
in Fig. 6. Figure 6 shows that as the number of residual
units increases, the model can capture more information;
thus, the performance improves. However, too many layers
degrade the performance because trivial information may
be captured and the possibility of overfitting also increases.
Jointly analyzing Table 1 and Fig. 6, MPCNN is shown to
be consistently superior to the other methods when varying
nf , ns and nt . These results also demonstrate the robustness
and effectiveness of MPCNN.

Fig. 6 Impact of the number of residual units in the three perspective CNNs
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Fig. 7 Impact of temporal closeness, period and trend

5.4.2 Impact of temporal closeness, period and trend

We conduct experiments on the impact of temporal
closeness, period and trend on BikeNYC01, as shown in
Fig. 7. We set lc, lp and lt as 3, 4 and 4, respectively, by
default and obtain the performance of the MPCNN with
lc, lp, lt = {0, 1, 2, 3, 4, 5}. Fig. 7(a) shows the impact
of the temporal closeness parameter lc, where we fix lp
and lt but change lc. Specifically, lc=0 indicates that the
model removes the temporal closeness cube, resulting in
poor performance. This result verifies the effectiveness of
the temporal closeness cube. Figure 7(b) shows the impact
of the temporal period parameter lp. The model without
the temporal period cube (lp=0) performs the worst, which
verifies the effectiveness of the temporal period cube. As
lp increases, the RMSE and MAE first decrease and then
increase, and lp=3 has the best performance because a
long-range period may be useless and harm the model
performance. Figure 7(c) shows the impact of the temporal
trend parameter lt , which has a curve similar to that of
lp. Thus, the temporal closeness, period and trend are
demonstrated to be effective, and an excessively long period
and trend may not be helpful for prediction.

5.4.3 Impact of region partition

To evaluate the impact of the region partition, we vary the
number of regions (i.e., grid cells) divided on BikeNYC01.
We divide the city into N × M disjoint grid cells of equal
sizes, such as 5×5, 10×10, 15×15 and 20×20. N and M

control the number of regions. The larger N and M are, the

greater the number of regions divided and the smaller the
size of each region. As shown in Table 4, as the number
of regions decreases, the RMSE and MAE increase because
when the number of regions is too small, the region partition
is too coarse to capture the feature of the region. Also, when
the number of regions is too small, the size of the region is
large, and the crowd flow is large. Then, when we re-scale
the predicted values to normal values and compare them
with the ground truth, the error also increases. With more
regions, the training time and test time of the model increase
because more grids mean a larger resolution, and therefore,
more convolutions are required.

5.5 Efficiency comparison

We show the efficiency of the MPCNN from two
perspectives: model size and time consumption. For the
model size, the number of parameters for the deep models
on TaxiBJ are shown in Table 5. The number of parameters
of the MPCNN is the smallest compared to other methods
except for Deepst. Because the MPCNN can explicitly
capture richer spatial-temporal correlations from multiple
perspectives, each perspective CNN only requires a smaller
number of convolution kernels. Thus, the MPCNN requires
fewer parameters and achieves competitive prediction
performance compared with other methods. The MPCNN
is also a lightweight and effective framework. In addition,
the reason why the number of parameters of Deepst is the
smallest of the methods investigated in this study is that its
model is too simple. GCN+LSTM has the highest number of
parameters due to the complex gating mechanism of LSTM.

Table 4 Impact of region partition

The number of regions RMSE MAE Training time(s) Test time(ms)

5×5 15.14 7.89 264 3

10×10 7.13 3.48 430 9

15×15 4.53 2.12 449 12

20×20 3.61 1.59 524 33
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Table 5 Efficiency comparison on TaxiBJ dataset

Methods Training time(s) Test time(ms) Paramters

Deepst 1487 260 300k

ST-ResNet 4145 856 2697k

DeepLGR 3335 777 833k

MST3D 4618 1770 4345k

GCN+LSTM 11784 3250 9442k

MPCNN 2951 233 536k

Regarding time consumption, we compare the training time
and test time of MPCNN with other deep models on TaxiBJ.
As shown in Table 5, the proposed model is faster than the
other models except for Deepst primarily because the fusion
layer of the MPCNN model requires more time. Although
Deepst takes the least time, its prediction performance is
unsatisfactory. Thus, the MPCNN is the most efficient
among all methods with high-quality performance.

5.6 Visualization of the fusion layer

To study the fusion layer in the MPCNN in more detail,
we visualize the learned weights from (5) in the fusion
layer on BikeNYC02 to analyze the contribution of each
perspective CNN. Figure 8 shows a portion of the learning
weights for fusing the results of three perspective CNNs.
Figure 8(a), 8(b) and 8(c) are three 16×8 matrices because
the city map is divided into 16×8 grids. Each element
in each grid denotes a learned weight of a certain region
that reflects the influence degree by the three perspective
CNNs. The darker color represents the larger weight. In
different regions, the weights of the three-perspective CNNs
are different (i.e., the contributions of the three-perspective
CNNs are different). For example, the regions r1 marked by
the red circle are more affected by the front and side CNNs

than the top CNN, while the regions r2 marked by the yellow
circle are more affected by the top CNN than the front and
side CNNs. These results show that different regions are
affected differently by the three perspective CNNs, which
also confirms that the model with the fusion layer performs
better than the direct equal weight summation in ablation
experiments.

5.7 Case study

To verify the effectiveness of the MPCNN, we present a
real case study of the proposed model on the BikeNYC01
dataset. To show that the MPCNN can capture the
correlations between different types of flows, we draw six
heat maps of the prediction and ground truth of new-flow
and end-flow at 9:00 A.M and 10:00 A.M. Each grid denotes
a region. The darker color represents the larger value. As
shown in Fig. 9, by comparing Fig. 9(a) with Fig. 9(d), 9(b)
with Fig. 9(e) ,9(c) with 9(f) , we find that the predictions
are basically consistent with the ground truth. Then, we
select three representative regions: r1 marked with a red
frame, and its nearby regions r2 and r3 marked with yellow
frames. As shown in Fig. 9(d), 9(e) and 9(f), the new-flow
of r1 at 9:00 A.M is large, which indicates that the crowd
flows quickly leave r1 at 9:00 A.M. Compared with the

Fig. 8 Visualization of learned weights in the fusion layer on BikeNYC02. (a)(b)(c) denote the learned weights of the front, side and top CNNs,
respectively
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Fig. 9 Case study on the BikeNYC01 dataset. (a)(b)(c) denote the prediction of new-flows at 9:00 A.M, end-flows at 9:00 A.M and 10:00 A.M,
respectively; (d)(e)(f) denote the ground truth on new-flows at 9:00 A.M, end-flows at 9:00 A.M and 10:00 A.M., respectively

end-flows of r2 and r3 at 9:00 A.M, the end-flows of r2
and r3 at 10:00 A.M. increase markedly. The people flow
from r1 to the nearby r2 and r3 at 10:00 A.M. As shown
in Figs. 9 (b) and 9(c), the MPCNN can efficiently capture
the changes in the end-flows of r2 and r3 between 9:00
A.M. and 10:00 A.M., which verifies that the MPCNN can
capture the correlations of the new-flow of r1 at 9:00 A.M
on the end-flow of r2 and r3 at 10:00 A.M. Thus, this
case study shows that the MPCNN efficiently captures the
correlations among regions with different types of flows for
crowd flow prediction.

In addition, the predicted crowd distribution is beneficial
for risk assessment and traffic management. For example,
the heat map in Fig. 9 shows the crowd distribution, where
each grid stands for a region and the color associated with
it denotes its new-flow and end-flow. When the color of a
certain region in the predicted crowd distribution is dark, the
flows in this region are high. Some safety measures can be
taken in advance, such as sending out warnings, conducting
traffic control, or evacuating people.

6 Conclusion

In this paper, we propose a novel 2D CNN-based model
called MPCNN to predict crowd flows. In MPCNN, we
propose three perspective CNNs to effectively capture

the complex spatial-temporal correlations hidden in crowd
flows data. We also propose a fusion layer to fuse the results
of the three perspective CNNs. In addition, we combine
the external factors to enhance prediction performance.
Experimental results on real-world datasets verify the
effectiveness and efficiency of the proposed model.
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