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Abstract
Recently, many evolutionary algorithms have been proposed. Compared to other algorithms, the core of the many-objective
evolutionary algorithm using a one-by-one selection strategy is to select offspring one by one in environmental selection.
However, it does not performwell in resolving large-scale many-objective optimization problems. In addition, a large amount
of meaningful information in the population of the previous iteration is not retained. The information feedback model is an
effective strategy to reuse the information from previous populations and integrate it into the update process of the offspring.
Based on the original algorithm, this paper proposes a series of many-objective evolutionary algorithms, including six new
algorithms. Experiments were carried out in three different aspects. Using the same nine benchmark problems, we compared
the original algorithm with six new algorithms. Algorithms with excellent performance were selected and compared with the
latest studies using the information feedback model from two aspects. Then, the best one was selected for comparison with
six state-of-the-art many-objective evolutionary algorithms. Additionally, non-parametric statistical tests were conducted to
evaluate the different algorithms. The comparison, with up to 15 objectives and 1500 decision variables, showed that the
proposed algorithm achieved the best performance, indicating its strong competitiveness.

Keywords Many-objective · Information feedback model · One-by-one selection · Evolutionary algorithms · Large-scale
optimization

1 Introduction

Owing to the needs of engineering applications and scien-
tific experimental research, there are many multi-objective
optimization problems (MOPs) in real life. The main opti-
mization goal is to maximize or minimize the final value
with as few resources as possible [1]. The number of objec-
tive functions of MOPs increases to two or three, unlike
in the single-objective optimization problem [2]. However,
the objective function for many optimization problems is
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not limited to three or fewer. As a result, many-objective
optimization problems (MaOPs) with more than three goals
arise [3]. There is often no ideal solution to achieve opti-
mal values for all goals. At present, methods to solve
optimization problems are generally divided into two cate-
gories: traditional mathematical optimization methods (e.g.,
gradient descent and Newton) and evolutionary algorithms
[4].

Traditional optimization algorithms that use information
on the first derivative and second derivatives of related
functions are often unsuitable for practical application
problems and cannot guarantee that the final approximate
optimal solution set can be evenly distributed and converged
[5]. To solve this problem, many researchers have proposed
many evolutionary algorithms. These algorithms draw
inspiration from biological evolution and guide the process
of finding solutions by simulating the process of biological
evolution, using the survival of the fittest principle in
genetics [6, 7]. Such as genetic algorithm (GA) [8], particle
swarm optimization (PSO) [9], artificial bee colony (ABC)
[10], ant colony algorithm (ACO) [11] and differential
evolution (DE) [12].
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Many scholars have proposed numerous multi-objective
optimization algorithms (MOEAs) to solve MOPs. The
most famous ones are the decomposition-based multi-
objective evolutionary algorithms (MOEA/D) [13], genetic
algorithms based on non-dominated sorting and elite
selection (NSGA-II) [14], evolutionary algorithms using
neighborhood environment selection (SPEA2) [15], etc.
With the advent of 5G era and the rise of deep
learning, evolutionary algorithms have applications in
many emerging fields [16]. They are currently widely
used in economic dispatching [17], code detection [18],
engineering optimization [19], face reconstruction [20], job-
shop scheduling [21–23], high performance computing [24],
computer network [25], and other fields. These MOEAs
have been proved successful in solving most MOPs.
However, the non-dominated solution set obtained by these
algorithms often cannot effectively approximate the real
Pareto front of MaOPs with optimization goals greater than
three [26]. Therefore, considering the improvement of the
convergence and diversity of the algorithms, this paper
examines the many-objective evolutionary algorithm using
a one-by-one selection (1by1EA) [27], aiming to improve
its optimization performance in large-scale MaOPs. The
method uses a convergence index to select the solutions
in the current population one by one, adopts a distribution
index based on cosine similarity to evaluate the similarity
between solutions, and proposes the boundary maintenance
mechanism of corner solutions to maintain diversity.

However, few researchers have focused on the utility
of prior knowledge and historical information. Many have
adopted the method of retaining the best individual in the
process of each iteration and discarding all other individu-
als. This is not conducive to the development of population
diversity and the preservation of information. More impor-
tantly, most MOEAs focus on solving optimization prob-
lems with less than 100 decision variables. The problem
of more than a thousand decision variables in engineer-
ing application research may also exist. Therefore, we have
to enhance 1by1EA to improve the result. Therefore, this
paper introduces the information feedback model (IFM)
[28] into the framework of 1by1EA and proposes a new
optimization algorithm called 1by1EA-IFM, which solves
large-scale MaOPs. Unlike most existing algorithms, this
algorithm retains the historical information of individuals in
the population before selecting offspring individuals. The
experiment was carried out in three aspects. First, the perfor-
mance of the improved six algorithms was compared with
the original algorithm. Second, algorithms with excellent
performance were selected and compared with current IFM
research from two levels. Finally, we chose the one with
the best performance and compared it with the other six
state-of-the-art algorithms from a longitudinal perspective.

The main contributions of this work can be summarized
as follows:

(1) A novel framework, called 1by1EA-IFM is proposed,
where individuals from historical populations are
retained in two ways: either in a fixed location
or randomly retained. The individual performance
is determined by the fitness function value. In
each retaining approach, k individuals are selected
(k ∈{1,2,3}). Based on the value of k, IFM includes six
models (i.e., M-F1, M-F2, M-F3, M-R1, M-R2, and
M-R3), which are combined with 1by1EA to present
six algorithms, namely 1by1EA-F1, 1by1EA-F2,
1by1EA-F3, 1by1EA-R1, 1by1EA-R2, and 1by1EA-
R3. An advantage of IFM is that it can efficiently
enhance the diversity of the population by reusing
some information from historical populations.

(2) Experiments were performed on large-scale MaOPs,
where the number of decision variables reaches up
to 1500. By controlling the number of decision vari-
ables, we can improve the scale of the problem, so as
to test whether the algorithms can effectively target
large-scale problems. In all the validation experiments,
the comparison of the indicator values involving the
different algorithms was carried out using the Mann-
Whitney-Wilcoxon rank-sum test, which can deter-
mine whether one algorithm has statistical difference
with other algorithms. In addition, with the intention
of obtaining rigorous conclusions, two different statis-
tical tests, Friedman’s non-parametric test and Holm’s
post-hoc test, were conducted.

The rest of this paper is organized as follows. In Section 2,
we introduce the work related to this research. Section 3
provides some basic concepts about multi/many-objective
optimization, as well as the original 1by1EA and IFM. The
proposed 1by1EA-IFM is described in detail in Section 4.
The settings and results related to the experiment are
described in Section 5. Section 6 provides a summary of this
paper.

2 Related work

There are a variety of optimization problems with more
than three objectives in social life, and the corresponding
solution is the many-objective evolutionary algorithms
(MaOEAs). For most evolutionary algorithms that rely on
Pareto dominance, the non-dominant solution sets often
cannot effectively approximate the real Pareto front of
MaOPs. Therefore, redefining the dominance relationship is
an effective measure to solve MaOPs for MOEAs. The main
studies were ε domination [29], fuzzy Pareto domination
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[30] and so on. Chhabra et al. [31] proposed a fuzzy Pareto-
driven artificial swarm algorithm (FP-ABC) to better solve
for MaOPs. In the FP-ABC algorithm, two external files
are combined into the artificial bee colony algorithm to
improve the performance of the ABC algorithm. In 2022,
Wu et al. [29] introduced a new ε dominance relation and
proposed a new MaOEAs (ε-Two Arch2) to update the
individuals in diversity archive. The common problem with
these algorithms is that they may cause the population to
converge to a sub-region of the Pareto optimal front.

Unlike the above algorithms based on improving domi-
nance relationship, decomposition-based MaOEAs decom-
pose MaOPs into several sub-problems for simultaneous
optimization, and the goal of the problem is aggregated into
different scalar functions. These algorithms guide the indi-
vidual to search in the direction near the Pareto front by
minimizing these scalar function values. In 2018, Zheng
et al. [32] redesigned the weight vectors used in the
sub-problem and proposed a new weighted mixture-style
method to enhance MOEA/D. Lucas et al. [33] introduced
a new MOEA/D with uniformly randomly adaptive weights
(MOEA/D-URAW) to deal with the limitation of algo-
rithm independent of problem geometry. However, when the
Pareto front of the problem is too complex and inconsistent
with the distribution of the weight vector, the distribution of
the population obtained by MOEAs is often poor.

Different from the above algorithms, MaOEA/IGD
[34] is a many-objective evolutionary algorithm based
on the IGD index. This algorithm first used a single-
objective evolutionary algorithm to estimate the range
of Pareto front, and then established a hyper-plane in
the target space according to this range. Bader et al.
[35] used Monte Carlo approximation based hypervolume
indicators for environmental selection, and proposed a
hypervolume estimation algorithm (HypE). One of the
biggest problems with the above indicator-based methods is
that the computational complexity of the indicator can be
too high, thus, the algorithm speed may be generally slower
than that of ordinary algorithms.

In addition to MaOEAs covered in the above classi-
fications, the many-objective evolutionary methods have
shown some new characteristics in recent years. The selec-
tion phrase plays a key role in most algorithms, taking into
account both the convergence and the distribution of the
solution. However, the increase in the number of objec-
tives and decision variables has brought huge challenge to
MaOEAs, such as Pareto dominance ineffectiveness and the
conflict problem of convergence and diversity [36].

2.1 Selection strategy

Many scholars have studied MaOEAs based on selection
strategies. In the first few years of evolutionary algorithms’

development, in order to avoid loss of external solutions
leading to reduced diversity, Zitzler et al. [15] proposed
a strength Pareto evolutionary algorithm (SPEA2), which
used density estimation, archive truncation, and fine-grained
fitness allocation as environmental selection to solve MaOPs.
Deb et al. [37] used a reference point strategy-based non-
dominated sorting algorithm (NSGA-III) to improve the
selection process of NSGA-II to choose individuals with good
convergence by using a set of pre-defined references point
as the standard. Recently, many novel studies have emerged
one after another. In 2021, Liu et al. [38] proposed a many-
objective evolutionary algorithm based on decomposition with
correlative selection mechanism (MOEA/D-CSM) to find
its correlative individuals for each reference point as soon
as possible to maintain the diversity of the population. In
the same year, Palakonda et al. [39] proposed an ensemble
framework (ENMOEA) in which mating and environmental
selections of diverse MOEAs are combined. The framework
demonstrates the scalability of the algorithm with the
addition of a selection strategy. In this year, in order to
solve discrete MaOPs, Zhao et al. [40] adopted an adaptive
selection strategy to improve the convergence performance
of decomposition-based ACO by using different reference
points. In the end, this algorithm can effectively improve the
quality of optimization.

Although the improvement of the selection strategy
makes the overall performance of the algorithm better,
trying more strategies can further improve the universality
of the algorithm. However, the majority of researchers have
not considered the scale of the problem, but have only
solved the problem of the number of variables in small-
and medium-scale decisions. Therefore, in-depth study of
large-scale problems is needs.

2.2 Large-scale optimization

In order to deal with the problem of a large number of
decision variables in practical, many researchers have made
relevant studies. Chen et al. [41] introduced a scalable
small subpopulations based covariance matrix adaptation
evolution strategy (S3-CMA-ES). The algorithm used a
series of small subpopulations to approximate the Pareto
optimal solution, and introduced a variety of diversity
improvement strategy to solve the MaOPs of large-scale
decision variables. He et al. [42] embedded adaptive
offspring generation method in a MOEA framework
(DGEA) and proposed a pre-selection strategy to select
parents and used them to construct a direction vector in
the decision space to propagate offspring. Tian et al. [43]
combined a competitive swarm optimizer with large-scale
multi-objective optimization (LMOCSO), the proposed
algorithm used a new particle update strategy based on two
stages to update the particles.
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The focus of previous research has been on the scale
of the problem, but the operation of the specific details
of the algorithm has not been studied in-depth, such as
how to better coordinate the environmental selection and
mating selection, or how to use historical information more
effectively. However, the emergence of the above algorithms
provides an idea for the development of this paper.

Considering the influence of selection strategy, this paper
introduces IFM into 1by1EA. Instead of selecting the best
individual each time, IFM selects individuals from the
previous iteration in a fixed or random manner, and then,
they are used for the generation of offspring, thus increasing
the diversity of the population. Prior to this, researchers have
conducted research on IFM. For example, Gu et al. [44]
and Zhang et al. [45] used IFM to improve NSGA-III and
MOEA/D, respectively. The proposed algorithms are used
to solve large-scale MaOPs. Therefore, the new algorithm
is compared with those in the two above mentioned studies.
For large-scale research, we chose DGEA and LMOCSO
which are also used to solve large-scale problems, and
the remaining four state-of-the-art algorithms, which have
been proposed in the last 3 years. IFM improves the
competitiveness and persuasiveness of 1by1EA to solve
problems with large-scale decision variables.

3 Preliminaries

3.1 Basic definitions

MOPs are a common problem in many areas of the real
world. Assuming they are a minimization problem, the
optimization goal is to minimize all objective functions as
much as possible. MOPs can be defined as [46]:

minF(x) = [f1(x), f2(x), . . . , fm(x)]T
s.t .x ∈ �, f ∈ Rm (1)

where m is the number of objective functions and � is
decision space. x is an n-dimensional decision variable, that
is, x = [x1, x2, . . . , xn]T ∈ �, it includes possible solutions
to the problem. For the set of m-dimensional objective
functions F : f → Rm, it matches the n-dimensional
decision space and the m-dimensional objective space.
When m > 3, this problem can be defined as an MaOP.

The following concepts have been widely popularized:

• Pareto dominance: For any two solutions x1, x2 in
(1), x1 Pareto dominates x2 if they satisfy the following
conditions, denoted as x1 ≺ x2.

fi(x1) ≤ fi(x2),∀i ∈ {1, 2, . . . , m}
fj (x1) < fj (x2), ∃j ∈ {1, 2, . . . , m} (2)

• Pareto optimal set: For x∗ ∈ � in (1), if there is no
solution x1 ∈ � satisfying x1 ≺ x∗, then x∗ is known as
the Pareto optimal solution. All of these solutions come
together to form the Pareto optimal set (PS).

• Pareto optimal front: The set of objective value
vectors corresponding to each solution in PS is called
Pareto optimal front (PF).

PF = {F(x) | x ∈ PS} (3)

3.2 1by1EA

In order to balance the convergence and diversity of
solutions in the high-dimensional target space, 1by1EA was
proposed [27] and used to solve MaOPs.

The main contribution of this algorithm is that it uses
a convergence index to select the solutions in the current
population one by one, and proposes a distribution index
instead of the Euclidean distance to evaluate the distance
between the solutions in the high-dimensional space. It can
be used to choose the neighboring solution of the selected
solution, so as to weaken it by using niche technology.
Unlike most MaOEAs, a boundary maintenance mechanism
ensures that the corner solution is not easily discarded.
A corner solution can be defined as the individual with
the smallest scalar value aggregated by k objectives in the
current population, and the number of k is less than the total
number of objectives. The general operating framework of
the algorithm is given in Algorithm 1. First, N individuals
are randomly generated to form the initial parent population
(P ). Then, mating selection is performed on P to select
parents for producing offspring, which iterates until N

offspring are produced. The offspring form the offspring
population Q. After the variation operations are performed
on Q, Q1 is obtained, and P and Q1 are combined to
form K . The convergence index and distribution index of
each solution are calculated in K , and then, the one-by-one
selection method is used to select N individuals from K to
constitute the initial population of the next generation.
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When calculating the convergence index, each target in the
high-dimensional space is treated equally and aggregated
into a scalar. The equation is as follows [27]:

c(x) = agg(f1(x), f2(x), . . . , fm(x)) (4)

the distribution index takes the form of a vector, where
each element represents the distance between a solution
and other solutions in the population. Based on the fact
that Euclidean distance is unsuitable for the distribution
in high-dimensional space, cosine similarity can use the
cosine value of the angle between two vectors to measure
the similarity. The distribution index can be expressed as
follows [47]:

d(xi) = (d1(xi), . . . , d|k|(xi)), i = 1, . . . , |k| (5)

where

dj (xi) = 1 − cos(θij ), j = 1, . . . , |k| (6)

is the distance between xi and xj . The smaller the value,
the more similar the distribution between the two solutions.
This indicator can effectively remove points close to the
coordinate axis instead of on the PF.

As the key operation of 1by1EA, the execution process of
the one-by-one selection strategy in environment selection
can be described as follows:

Step 1 Boundary maintenance. Corner individuals are
selected from K in set Ks .

Step 2 Determine the set Ks .
Step 2.1 The convergence index is calculated for the

remaining individuals in K and they are put into Ks one
by one according to the one-by-one selection strategy.

Step 2.2 The distribution index is used to measure which
solutions are close to the individuals in Ks , and then,
the solutions and those dominated by these solutions are
de-emphasized. Thus, the non-dominated solutions are
retained.

Step 2.3 Stopping criterion. If K is not null, repeat Step
2.1 and Step 2.2, and if K is null, go to Step 2.4.

Step 2.4 Selection. If the number of solutions in Ks is
greater than N , then the first N individuals are the initial
parents of the next generation. If the number of solutions
in Ks is less than N , the de-emphasized and dominated
solutions will be selected and filled into Ks according to
the principle of survival of the fittest until the number is
N .

Step 3 P = Ks . Ks is the next generation of parents.

Before calculating the two index values, the normal-
ization of each individual in K ensures that only corner
solutions are retained in K . Previous studies have shown
that the normalization operation can effectively deal with
the problem of dimensionality curse [37]. For other details
about the algorithm, please refer to the original paper [27].

3.3 Information feedbackmodel

As mentioned before, IFM can use a simple fitness
weighting method to extract and fully use the information
in the previous iteration. In the previous iteration, a
fixed position or random method can be used to select k

individuals from the population. The method of selecting
individuals in a fixed manner is classified as F, and selecting
individuals in a random manner is classified as R. If k is
1, the model can be defined as M-F1, and six IFMs can be
obtained.

In M-F, individuals are selected in a fixed manner,
which means that for individuals who need to be updated
at the current generation, individuals are selected at the
same position at the current and previous generations. Here
are three models for selecting individuals based on fixed
methods: M-F1, M-F2, and M-F3. In M-R, individuals
are selected in a random manner, which means that
for individuals who need to be updated at the current
generation, the location of individuals selected from the
previous generation is random. Therefore, three models for
selecting individuals based on random methods are M-R1,
M-R2, and M-R3.

Suppose that the current generation is t , the position
of the next generation individual is i, xt

i is the i-th
individual of the t-th generation, f t

i is the fitness value
corresponding to the i-th individual of the t-th generation,
and yi is the individual generated by the basic algorithm.
The corresponding fitness value is F t+1. λ and μk are the
weight vectors, satisfy , λ >0, and μk >0, where the value
of k is 1, 2, or 3, λ + �μk = 1, λ >0, and μ >0. jm is a
randomly selected individual position, i and j are not equal,
and then, m is between 1 and the population size N . These
six models can be defined as follows:

• For the individual to be generated at the (t + 1)-th
generation, we select an individual from the random
position j of the previous generation and combine with
the individual at the current (t + 1)-th generation to
update individual at the next generation. The model is
expressed as follows [28]:

xt+1
i = λyt+1

i + μxt
j

λ = f t
j

F t+1 + f t
j

μ = F t+1

F t+1 + f t
j

(7)

when i = j , this model can be defined as M-F1.
• We randomly select an individual from the t-th

generation and the (t - 1)-th generation. A total of two
individuals are selected to update the next-generation
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individuals. The model is expressed as follows [44]:

xt+1
i = λyt+1

i + μ1x
t
j1

+ μ2x
t−1
j2

λ = 1
2 · f t−1

j2
+f t

j1

F t+1+f t
j1

+f t−1
j2

μ1 = 1
2 · F t+1+f t−1

j2

F t+1+f t
j1

+f t−1
j2

μ2 = 1
2 · F t+1+f t

j1

F t+1+f t
j1

+f t−1
j2

(8)

where xt
j1

and xt−1
j2

are individuals selected from
random positions at the t-th and (t - 1)-th generations.
The corresponding fitness function values are f t

j1
and

f t−1
j2

. When i = j1 = j2, this model can be defined as
M-F2.

• We randomly select three individuals from the t-th, (t -
1)-th, and (t - 2)-th generations to update individuals at
the next generation. The model is expressed as follows
[45]:

xt+1
i = λyt+1

i + μ1x
t
j1

+ μ2x
t−1
j2

+ μ3x
t−2
j3

λ = 1
3 · f t−2

j3
+f t−1

j2
+f t

j1

F t+1+f t
j1

+f t−1
j2

+f t−2
j3

μ1 = 1
3 · F t+1+f t−2

j3
+f t−1

j2

F t+1+f t
j1

+f t−1
j2

+f t−2
j3

μ2 = 1
3 · F t+1+f t−2

j3
+f t

j1

F t+1+f t
j1

+f t−1
j2

+f t−2
j3

μ3 = 1
3 · f t−1

j2
+f t

j1
+F t+1

F t+1+f t
j1

+f t−1
j2

+f t−2
j3

(9)

where xt
j1
, xt−1

j2
, and xt−2

j3
are individuals selected from

random positions at the t-th, (t - 1)-th and (t - 2)-th
generations. The corresponding fitness function values
are f t

j1
, f t−1

j2
, and f t−2

j3
. When i = j1 = j2 = j3, this

model can be defined as M-F3.

3.4 Motivation

As mentioned earlier, MOEAs have difficulty in dealing
with MaOPs. The main reason is that a sharp increase in
the number of non-dominated solutions in high-dimensional
objective spaces can lead to greater convergence pressure;
so, traditional MOEAs tend to stagnate in terms of con-
vergence. Moreover, with the explosion of dimensions, the
order of magnitude of MaOPs has become large. Although
many researchers have tried to adopt MOEAs such as
NSGA-II and MOEA/D to solve MaOPs, experiments show
that owing to the curse of dimensions, MOEAs cannot bal-
ance the relationship between convergence and diversity.
Recently, many studies have been conducted to modify the
dominance relationship so as to enhance the ability to dis-
tinguish solutions [29–31]. Convergence is an important

property of solutions, and many researchers have used this
property to make distinguishing solutions easier by improv-
ing a specific stage of the evolutionary process. In this
improvement, the excellent solutions are selected one by
one, thus increasing the selection pressure toward the Pareto
front. The convergence indicator used in the 1by1EA is
driven by this idea, which logically resembles the aggre-
gate function in MOEA/D, but without a pre-defined weight
vector. MOEA/D can optimize N standard quantum prob-
lems simultaneously, rather than by directly solving MOPs
as a whole. The same idea applies to solving MaOPs, with
1by1EA being an example.

However, if only the effect of convergence is considered,
the algorithm may be more likely to fall into local
optimization. To solve this problem, the distribution of
solutions in MaOPs also needs to be considered; generally,
density estimation and niche techniques are more popular
methods. The density estimation method estimates the
neighborhood density value for each individual, selects
individuals with smaller density value in the next evolution,
and then deletes individuals with a larger density value.
The characteristic of niche techniques is to form several
stable sub-groups, namely niches, and then let individuals
evolve in a specific environment. Jiang et al. [48] improved
SPEA by introducing an efficient reference direction-based
density estimator, which can maintain the distribution of the
population. The series of NSGA proposed by Deb et al. is
a concrete embodiment of this technology, but the difficulty
lies in determining the scope of the niche. Motivated by
the above ideas, a distribution threshold is defined in the
1by1EA. Once a solution is selected by the convergence
indicator, all solutions with distance to the selected one is
less than the threshold are abandoned.

Based on the above description, 1by1EA can effectively
balance the convergence and diversity of the solution, and it
is theoretically feasible to select this algorithm for research
in this paper. But this algorithm still has the following two
limitations:

• 1by1EA has a certain absoluteness in the process of
iteration, that is, to retain the best individuals at each
iteration and discard all remaining individuals.

• 1by1EA does not perform as well when dealing with
large-scale problems.

One of the main reasons why 1by1EA has difficulty in
solving large-scale many-objective problems is that it only
considers the relationship between different solutions. In
the one-by-one selection strategy of the algorithm, once a
solution is selected, all solutions with distribution distance
from the selected solution less than the specified threshold
are not valued. When the number of decision variables
increases significantly, although this method can select
the solutions one by one according to the convergence
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and distribution indicators, because the distribution of the
solutions is very random, the effect of removing a lot
of solutions within the threshold range of each selected
solution may still be relatively large.

Therefore, to resolve the issues discussed above, this
paper uses IFM to enhance 1by1EA and applies the
enhanced algorithm to solve large-scale MaOPs. We
preserve part of the historical information in the population
in a fixed or random way, so that the transfer of information
between different generations promotes the inheritance of
population diversity by 1by1EA. While the individuals that
are preserved are not necessarily the best, they can be used
for the next renewal of the population, which allows for the
continuous use of much useful information. Furthermore,
this inheritance is of great significance for the solution
set approaching the Pareto optimal front of large-scale
MaOPs. After theoretical analysis, follow-up experiments
also verified our idea. Thus, while ensuring the good
coverage of Pareto optimal front, 1by1EA-IFM enhances
the ability of the algorithm to solve large-scale problems.
In addition, given the NSGA-III-IFM and MOEA/D-IFM
proposed by Gu et al. [44] and Zhang et al. [45], the role
of IFM is more effectively reflected in our research results
than in previous research. The similarity between these
several algorithms is that they all adopt the information
retention mechanism of IFM, the difference is that our
proposed 1by1EA-IFM is more convincing in the selection
of candidate solutions. The details of 1by1EA-IFM are
introduced in the next section.

4 1by1EA-IFM

In this section, in order to save the information in the
historical iteration, we integrated IFM into 1by1EA. First,
we introduce the overall framework of the proposed
1by1EA-IFM, and then explain the details. Finally, we
choose one from the six algorithms as an example to
describe the execution flow of the new algorithm in detail.

4.1 General framework of 1by1EA-IFM

To use the historical information in the previous iteration,
we introduce the information feedback mechanism after
producing new offspring individuals by the mutation
operator before environmental selection and then updating
these individuals. The approximate operation process of the
algorithm based on 1by1EA is as follows. First, initialize
the entire population and ideal points randomly, and then
update the individuals in the population; this mainly
includes three steps: parent mating selection to produce
new offspring, operation operators for variation operations,
and IFM to update individuals after variation. Finally, in

the environment selection stage, the next generation parent
population (P ) is selected according to the one-by-one
selection strategy. For more details about the algorithm, see
Section 4.3.

4.2 Operators

A binary tournament selection strategy is proposed in
mating selection. Density estimation based on distribution
index and information ranking based on one-by-one
selection are used as tournament strategies. Promising
individuals can then be produced to form a mating pool.
First, two individuals are randomly selected from the
parent population. The lower ranked individual is selected
from the two individuals, whose ranking value rank(x)
can be obtained from the one-by-one selection results of
previous generations. If the two individuals are equally
ranked, individuals with lower density estimates tend to
be preferred, and density values can be calculated in
conjunction with (5) and (6) according to the following
formula [27]:

dk(x) = 1

�k
i=1d

min
i (x) + 1

(10)

where dmin
i (x), i = 1, . . . , k is one of the k smallest values

in {d1(x), . . . , d|k|(x)}. Finally, if no amount of density
estimation can distinguish between the two individuals, then
a random selection is made between them.

The crossover operator used in this algorithm is a
simulated binary crossover, which inherits useful genetic
information from two or more offspring in the form of a
single point crossover [49]. In this operator, p1 and p2

are two parents, c1 and c2 are two children, they satisfy
(p1 + p2)/2 = (c1 + c2)/2. β is a spread factor, which
is defined as |(c2 − c1)/(p2 − p1)|. If there is a random
number ε in the range [0,1], then the range of value of ε will
determine which of the following formulas will solve for β.

c1 = (p1 + p2) − 0.5β(p2 − p1)

c2 = (p1 + p2) + 0.5β(p2 − p1)

c(β) =
{
0.5(ε + 1)βε, ε ≤ 0.5
0.5(ε + 1) 1

βε+2 , ε > 0.5 (11)

After the crossover operator is executed, the individual is
updated by the polynomial mutation [50]. In this operator,
pm is defined as a parent, and qm is the offspring produced
by mutation operator. σ is a random number in the range
[0,1]. η is a distribution index. um and lm are the upper and
lower bounds of m-dimensional decision variables. Thus,
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the form of this mutation operator is qm = pm +δ(um − lm).
The following formula can be referred to calculate δ:

δ =
{

[2σ + (1 − 2σ)(1 − δ1)
1

η+1 ] − 1, σ ≤ 0.5

1 − [2(1 − σ) + 2(σ − 0.5)(1 − δ2)
η+1] 1

η+1 , σ > 0.5

δ1 = (pm − lm)/(um − lm)

δ2 = (um − pm)/(um − lm) (12)

4.3 1by1EA-F1

Here, we describe in detail how 1by1EA is combined with
IFM and give detailed workflow. We mainly chose the
model of selecting an individual in a fixed way from the
previous generation as an example. The new algorithm after
their combination was named 1by1EA-F1. The remaining
five algorithms (1by1EA-F2, 1by1EA-F3, 1by1EA-R1,
1by1EA-R2, and 1by1EA-R3) all performed the same as
this algorithm. The main execution of 1by1EA-F1 can be
interpreted as the following process:

Step 1 Initialization. Generate random population P and
ideal point Zmin. Rank of each solution in one-by-one
selection and initialize distribute threshold.

Step 2 Update. Supposing the current generation is t and
i = 0 (i is the subscript of the individual).

Step 2.1 Generate offspring Y t+1 by using the crossover
and mutation operator of the original 1by1EA. yt+1

i

produced by the above process and constitute Y t+1, and
then, their fitness value will be calculated by functions.

Step 2.2 Calculate xt+1
i by combining yt+1 with xt

i

according to (7). Kt is the set of xt+1
i .

Step 2.3 Determine whether the calculation has been
completed for each individual. If it is satisfied, perform
Step 2.4. If not, i = i + 1 and repeat Step 2.1 and Step 2.2.

Step 2.4 Environmental selection.
Step 2.4.1 Normalize each solution in Kt .
Step 2.4.2 Calculate the convergence indicator c(x) and

distribution indicator d(x) of each solution xεKt , select
some excellent one by one and put them into Ks .

Step 2.4.3 The corner solution is chosen to form set Ks .
Step 2.4.4 Guarantee the number of individuals in Ks to

be N , which is the population size.
Step 2.4.5 Update the distribution threshold.
Step 2.4.6 Verify whether termination condition is met.

The termination condition is the maximum number of
iterations defined in advance. If it is satisfied, go to Step
3. If not, t = t + 1 and repeat Step 2.

Step 3 Output. Output P t+1 to be equal to Ks .

The flow chart of 1by1EA-F1 can be shown in Fig. 1.

4.4 Complexity

In this subsection, the complexity of the algorithm is
analyzed. For convenience, assuming that the problem to
be optimized has m objectives and n decision variables,
the decision-maker requires n solutions. Its complexity
is analyzed according to Algorithm 1 and the above
steps. In addition, it is assumed that the size of the
population is set to N , and the generation is set to
be t . Therefore, in the initialization process (Step 1),
the computational complexity of generating the ideal
point is O(mN). This is because in the process of
generating the ideal point, an aggregation function is
used to aggregate all the objectives, and each component
in the ideal point corresponds to the minimum value
of each sub-objective. Furthermore, generating a random
population and ranking of each solution require O(nN)
and O(mN) computations, respectively. As the convergence
indicator and the distribution indicator need to be calculated
according to the ideal point and the solution needed by the
decision maker, the computational complexity in Step 2.4.2
is O(mN2) and O(nN2), respectively. Then, generation of
offspring (Step 2.1) requires O(N

2 (n + n)), because the size
of the mating pool is set to N . In Step 2.2 and Step 2.3,
IFM begins to work, because each generation in the iterative
process needs information from the historical generation,
the computational complexity is about O(N

2 nmt). During
environmental selection, owing to the introduction of one-
by-one selection strategy, the best case of computational
complexity is O(N2), while the worst case is O(N3), and
N individuals are linearly assignment to the ideal points.
Furthermore, it is fact that generally N 	 m and N 	 n in
MaOPs. Therefore, when the iteration termination condition
is reached, the complexity of the proposed algorithm is
O(tN3).

5 Experiments

In this section, we describe the verification process of
the proposed 1by1EA-IFM in detail. The experiment
was divided into three stages. First, we compared the
performance of the proposed 1by1EA-IFM with 1by1EA
in dealing with large-scale multi-objective test problems
(LSMOPs) with different decision variables. Then we
focused on the work of previous researchers based on IFM
and compared the outstanding algorithms in 1by1EA-IFM
(selected in the first stage) with the excellent algorithms in
NSGA-III-IFM and MOEA/D-IFM on the same indicators
and test issues. In addition, we focused on MOKP and
selected two other comparison algorithms to obtain the
verification results. In the last stage, we chose an algorithm
specifically designed to solve the large-scale problem and
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Fig. 1 The flow chart of
1by1EA-F1

the other five state-art-of MaOEAs to measure our work
from a vertical perspective. In order to avoid contingency, all
algorithms had been verified to deal with LSMOPs [51] with

different numbers of decision variables. In these problems,
the parameters that had to be set included the number of
objectives (m), the dimension of the decision variable (n),
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and the number of subcomponents in each variable group
(nk). Here, we took n = m * 100, nk = 5. These settings
proved valid when LSMOPs were proposed as test functions
[51].

As a test suite, LSMOPs were composed of optimization
problems of linear problems, convex problems, multi-
model problems, and the disconnected Pareto optimal front,
which were defined by specified functions. The different
characteristics of these fronts are shown in Table 1. In
this paper, the objective number m did not exceed 15,
and most experiments used m values of 3, 5, 8, 10,
and 15. The inverted generational distance (IGD) [52]
and the generational distance (GD) [53] were adopted
as performance indicators in most experiments. GD was
used to evaluate the convergence of the algorithm. It was
mainly used to express the separation distance between the
approximate PF and the real PF. Its calculation formula is as
follows [54]:

GD = (�n
i=1d

m
i )

1
m

n
(13)

where n is the number of points on the approximate PF, m is
the number of dimensions of the objective, and di represents
the average value of the nearest Euclidean distance between
each point on the approximate PF and the reference point on
the true PF. The smaller the value, the better the convergence
of the algorithm.

However, as GD can only evaluate the convergence
of the algorithm, in order to simultaneously evaluate the
convergence and diversity of the algorithm, IGD was used,
it is the solution obtained by mapping the reference point
on the real PF to the algorithm. The main idea was to take
points uniformly from the real PF, find the closest point on
the known PF to the point on the real PF for each point on
the real PF, and then add the distances between these points

Table 1 The characteristics of LSMOPs

Problem Characteristics Modality

LSMOP1 Linear Unimodal

LSMOP2 Linear Mixed

LSMOP3 Linear Multi-modal

LSMOP4 Linear Mixed

LSMOP5 Convex Unimodal

LSMOP6 Convex Mixed

LSMOP7 Convex Multi-modal

LSMOP8 Convex Mixed

LSMOP9 Disconnected Mixed

and average them. The calculation formula is as follows
[55]:

IGD = �n
i=1 | di |

n
(14)

where n is the number of points on the true PF. The
smaller the value is, the better the overall performance of
the algorithm is.

All experiments in this paper were implemented in Mat-
lab on PlatEMO with two Intel G3204 CPUs. Consider-
ing the characteristics of evolutionary algorithms, the IGD
and GD values shown in all the following tables were
the results of indicators after 20 independent iterations on
specific problems, taking the average and standard devia-
tion. More importantly, in terms of statistical method, the
Mann-Whitney-Wilcoxon rank-sum test [56] was used to
determine whether there is a statistically significant dif-
ference in indicators between one algorithm and another
algorithm, and the null hypothesis was rejected at a sig-
nificance level of 5%. Note that the datasets on which
statistical tests relied contain a set of values that the algo-
rithm calculates indicators for on the LSMOPs’ test suite
with different objectives. All the above settings were used
in all subsequent experiments.

5.1 Comparison of 1by1EAwith 1by1EA-IFM

5.1.1 Parameter settings

For the fairness of the results, in the simulated binary
crossover and polynomial mutation, the two distribution
index values were set to 20. The probability of crossover
and mutation were 1.0 and 1/n, respectively, where n was
the number of decision variables. The parameter settings of
these evolutionary operator were the same as those in recent
studies, and these settings proved to be able to generate
good offspring in [34, 42, 45, 57, 58]. From the historical
research on evolutionary algorithms, we know that when
the above parameters are set to other values, the results
are more insensitive to the parameters; so, the values of
these parameters were selected in this work to mitigate the
impact of parameter settings on the results. The maximum
number of iterations of the algorithm was 10000, and their
population sizes were the same. In all algorithms, the value
of k in (10) was set to 1/N to balance the computational
cost and accuracy in density estimation, and the threshold
of the number of individuals (R) selected in advance was
set to 1 to enable the population to balance the distribution
and convergence of the population. The setting of these
two experimental parameters in the original algorithm was
proved in their own experiments. When the threshold was 1,
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the convergence and diversity of the solution could be
properly balanced. The population size was set from 100 to
200 according to the different dimensions of the objective
space.

5.1.2 Experimental results and analysis

Table 2 lists the average and standard deviation of the IGD
values for each algorithm running on LSMOP1-9 with 3,
5, 8, 10, and 15 objectives. The best result in each row of
this table is bolded, which applies in all the similar rest
of tables below. The symbols “+” and “-” indicate whether
the null hypothesis was accepted by the Mann-Whitney-
Wilcoxon rank-sum test at the significance of 5% level,
that is, whether the IGD and GD results of 1by1EA-IFM
were better or worse than those of 1by1EA. Further, the
symbol “=” indicates that the corresponding null hypothesis
was rejected. Note that the number of “+”, “-”, and “=”
in the last row respectively indicates how many times
1by1EA-IFM was obviously better, obviously worse, and
similar to 1by1EA over each test problem on different
objectives. The best results in each row of the table are
emphasized.

In all 45 test instances, the sum of the best results
achieved by the six algorithms in 1by1EA-IFM was 32,
while the best results of 1by1EA could only reach 13. In
the test example with a lower objective of less than 10
targets, 1by1EA-F1 and 1by1EA-F2 performed extremely
well. The sum of the best results obtained by the two
was 15, which accounts for almost 50% of the number
of best results. Among the three-objective test problems,
1by1EA-F1 could obtain the best results of the average IGD
value on LSMOP1/3/5/6/8/9, and the other three best results
were respectively obtained by 1by1EA-R1 and 1by1EA-
F3. Among the five-objective test functions, 1by1EA-F1
and 1by1EA-R1 could obtain the best results of six out
of LSMOP1-9. Among the eight-objective test functions,
1by1EA-F1 and 1by1EA-F2 had a similar performance.
In the 10- and 15-objective test functions, the best results
were obtained more by 1by1EA-F2 and later algorithms.
The last row of the table shows that the values that were
superior to 1by1EA were 29, 26, 25, 22, 24, and 23,
respectively. This shows that our proposed algorithm could
beyoud 1by1EA on most test functions from the perspective
of the number of objectives. From the level of the test suite,
motivated by the IGD results, it can be seen from the last
column in the table that the best results obtained by 1by1EA
algorithmwere concentrated on LSMOP2-4, whose PF were
linear. Therefore, to some extent, it can be considered
that 1by1EA is more suitable for the linear PF, and our
proposed algorithm has wider application scope, which can
be interpreted that the sampled points from the Utopian PF
for the proposed algorithm are the Pareto-optimal solutions

owing to the mixed feature of the PF, and the information
retaining in IFM has good effects.

The findings obtained above are more obvious in the
results of the GD value. As shown in Table 3, in all 45
test examples, 43 best results were achieved, and 1by1EA
could only achieve two. Unlike the result obtained by the
IGD value, the best result of the GD value was evenly
distributed among the six algorithms proposed. As can
be seen from the last row in the table, the sum of the
numbers of different objective problems obtained by the
six algorithms with significantly superior performance was
36, 38, 37, 31, 40, and 38 respectively. Compared with
the IGD, GD could be further improved. As an indicator
to consider the convergence, GD could not measure the
quality of the solution set more comprehensively than
IGD, but it could also reflect the performance of the
algorithm. We previously mentioned that IFM can increase
the diversity of solutions in the population at the next
iteration through information feedback mechanism. The
experimental results of the GD value confirm the conclusion
that some information of the solution is retained the next
time through the information reuse strategy, which can
improve the convergence of the algorithm by increasing the
diversity of the solution set. There is no relevant strategy
in 1by1EA; so, 1by1EA-IFM had better convergence.
Moreover, when the dimensionality of the problem was
enhanced, when the decision variable increased to 1500, the
performance of our proposed algorithm was not affected.
Moreover, excellent results could be more evenly distributed
in various LSMOPs with different characteristics, that
is, the algorithm could effectively face complex PF, and
1by1EA can hardly solve diverse problems. This finding
still relies on the role of information retention mechanisms;
in complex environmental situations that are simulated, the
continuous reuse of historical information can make the
evolution of the population more suitable for environmental
changes.

In order to show the results more clearly, here, we
used 10-objective problem as an example to illustrate
the performance of the six algorithms and the 1by1EA.
Figure 2 shows the performance of the seven algorithms on
LSMOP1-9 when m = 10 along with the iteration. It can
be clearly found that on LSMOP1/5/7/8/9, the index values
of 1by1EA were all significantly higher than those of the
proposed algorithm, which shows that in most LSMOPs, our
algorithm was capable of solving these problems.

5.1.3 Statistical analysis of the results

We performed two statistical tests with the above obtained
results. It should be emphasized that these two tests can
further illustrate the superiority of our algorithms from a
statistical point of view. As we knew, the results obtained
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Fig. 2 The mean of IGD and GD values on LSMOP1-9 with 10 objectives
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from our experiments were the mean and standard deviation
of IGD and GD. We chose the standard deviation of metrics
as the statistic to be measured because the magnitude
of the standard deviation directly measures the degree of
dispersion of the data, so that all data characteristics are
adequately reflected rather than making the positive and
negative extremes cancel each other out as in the case of the
mean.

First, after integrating the data in tables before, Fried-
man’s non-parametric test was applied to check whether
there were difference among all algorithms. The results in
Tables 2 and 3 are further analyzed using Friedman test,
as shown in Table 4. Since the confidence interval is 95%,
in a χ2 distribution with 6 degrees of freedom, we gained
a p-value of 0.000006, which was significantly below the
significance level (α=0.05). The results of this statistical
test showed that our proposed six algorithms were signifi-
cantly different from 1by1EA. The best rank was obtained
by 1by1EA-F1, however, 1by1EA reached the worst rank.

After obtaining the above results, Holm post-hoc test was
performed to verify the statistical significance of the six new
algorithms. Since the proposed 1byEA-F1 obtained the best
ranking, it was considered as control algorithm, and by pair-
wise and multiple comparisons, we obtained the adjusted
p-values after using Holm post-hoc procedure, as shown
in Table 5. In this table, the algorithms were assigned an
ordinal number i that indicated the degree of excellence of
the algorithm, with the first column of the table representing
from the best to the worst from top to bottom. The null
hypothesis was rejected on the premise that the p-value
obtained by Holm post-hoc procedure need to be less than
the adjusted α(α = α/i). Therefore, we can conclude
with a high degree of certainty that there is not significant
difference among our proposed six algorithms, and they are
significantly better than 1by1EA.

5.2 Comparison with NSGA-III-IFM andMOEA/D-IFM

In the first phase of the experiment, we verified the
performance of 1by1EA-IFM. As there are many models,

Table 4 Friedman test ranking for 1by1EA-F1, 1by1EA-F2, 1by1EA-
F3, 1by1EA-R1, 1by1EA-R2, 1by1EA-R3, and 1by1EA

Algorithm Average ranking

1by1EA-F1 2.68

1by1EA-F2 2.97

1by1EA-F3 3.90

1by1EA-R1 4.25

1by1EA-R2 3.12

1by1EA-R3 3.75

1by1EA 5.10

Table 5 Results obtained using Holm’s post-hoc test

i Algorithm α/i p-value of Holms Null hypothesis

1 1by1EA-F2 0.05/1 = 0.0500 1.000 Not reject

2 1by1EA-R2 0.05/2 = 0.0250 1.000 Not reject

3 1by1EA-R1 0.05/3 = 0.0166 0.022 Not reject

4 1by1EA-R3 0.05/4 = 0.0125 0.013 Not reject

5 1by1EA-F3 0.05/5 = 0.0100 0.012 Not reject

6 1by1EA 0.05/6 = 0.0083 0.003 Reject

1by1EA-F1 used as control algorithm

here, we counted the sum of the number of GD and IGD
indicators that were significantly better than the original
algorithm in Experiment 1. As shown in Table 6, the best
algorithm was 1by1EA-F1, because the final results of
1by1EA-F2 and 1by1EA-R2 were both 64. Thus, we chose
these three algorithms for subsequent experiments.

5.2.1 Comparison of 1by1EA-IFMwith NSGA-III-IFM

In order to avoid the contingency of the results, we also
used the same combination as in the original paper. The
rest of the parameter settings, the number of iterations,
and indicator selection were also the same as those in
Experiment 1. We chose the best two algorithms, NSGA-III-
F1 and NSGA-III-R1, for comparison to reflect the accuracy
of our results.

Table 7 shows the statistical results from the Mann-
Whitney-Wilcoxon rank test. Among all the best results
highlighted, 1by1EA-IFM accounted for 39, and only six
of them appeared in NSGA-III-IFM. It can be seen from
Table 7 that the number with better results by 1by1EA-
F1, 1by1EA-F2, and 1by1EA-R2 on LSMOPs was 35,
25, and 23, respectively. 1by1EA-F1 still had the best
performance among these five algorithms. 1by1EA-F2 was
second, while 1by1EA-R2 did not seem to have much of an
effect. Furthermore, as listed in Table 8, all the best results
were obtained by our proposed algorithm. Unexpectedly,
1by1EA-R2 performed the best on the GD indicator, and
the results with superior performance could cover all test
example. The performance of the remaining two algorithms
on this indicator was the same. Therefore, in general, the
performance of 1by1EA-IFM was better. The introduction
of the one-by-one selection strategy may have made
1by1EA-IFM superior to NSGA-III-IFM based on reference
point selection in terms of convergence. In addition, when
we examined the role of the same model, the results of
this horizontal comparison were more likely to show the
scalability of IFM. Although 1by1EA makes a significant
effort to balance convergence and distribution, the retention
of information can further improve the utilization of
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Table 6 The GD and IGD values

Metric M N 1by1EA-F1 1by1EA-F2 1by1EA-F3 1by1EA-R1 1by1EA-R2 1by1EA-R3

GD 3 300 7 7 6 0 9 7

5 500 6 6 6 7 6 6

8 800 6 7 7 7 7 7

10 1000 8 9 9 8 9 9

15 1500 9 9 9 9 9 9

IGD 3 300 7 5 6 0 5 5

5 500 5 5 4 5 4 3

8 800 6 5 5 6 5 5

10 1000 6 6 5 6 5 5

15 1500 5 5 5 5 5 5

Total 65 64 62 53 64 61

Table 7 IGD values of 1by1EA-F1, 1by1EA-F2, 1by1EA-R2, NSGA-III-F1, and NSGA-III-R1 on LSMOP1-9 with 3, 5, 8, 10, and 15 objectives

Problem M N 1by1EA-F1 1by1EA-F2 1by1EA-R2 NSGA-III-F1 NSGA-III-R1

LSMOP1 3 300 1.0273e+0 (4.88e-2) = 1.1435e+0 (6.29e-2) - 1.1825e+0 (7.86e-2) - 1.0453e+0 (4.69e-2) = 1.0485e+0 (4.76e-2)

5 500 9.2042e-1 (5.56e-2) + 9.4811e-1 (3.14e-2) + 9.4932e-1 (3.49e-2) + 1.0693e+0 (1.01e-1) + 1.1699e+0 (1.27e-1)

8 800 6.6122e-1 (1.50e-2) + 6.4347e-1 (1.60e-2) + 6.6271e-1 (1.59e-2) + 1.0583e+0 (1.16e-1) = 1.0376e+0 (8.24e-2)

10 1000 6.2582e-1 (1.52e-2) + 6.1395e-1 (1.92e-2) + 6.3015e-1 (1.65e-2) + 1.1957e+0 (2.34e-1) = 1.1639e+0 (2.31e-1)

15 1500 7.4998e-1 (3.45e-2) + 7.5195e-1 (4.90e-2) + 7.7725e-1 (5.80e-2) + 2.2478e+0 (4.22e-1) = 2.1306e+0 (7.61e-1)

LSMOP2 3 300 1.9083e-1 (1.25e-2) - 1.8251e-1 (1.58e-2) - 2.1225e-1 (1.40e-2) - 6.8109e-2 (5.18e-4) = 6.8110e-2 (6.07e-4)

5 500 3.0197e-1 (2.37e-2) - 2.8183e-1 (2.76e-2) - 3.1779e-1 (1.89e-2) - 1.2029e-1 (1.86e-3) = 1.2152e-1 (2.32e-3)

8 800 3.9283e-1 (1.65e-2) - 3.7473e-1 (2.18e-2) - 4.0209e-1 (1.49e-2) - 3.0726e-1 (1.45e-2) = 3.0994e-1 (1.87e-2)

10 1000 4.2611e-1 (1.59e-2) - 4.3228e-1 (1.95e-2) - 4.3854e-1 (2.00e-2) - 4.0550e-1 (2.29e-2) - 3.9116e-1 (1.73e-2)

15 1500 4.8316e-1 (1.88e-2) + 4.9747e-1 (2.07e-2) + 5.0454e-1 (1.61e-2) + 5.3309e-1 (3.51e-2) = 5.3142e-1 (2.38e-2)

LSMOP3 3 300 9.5898e+0 (5.54e-1) - 1.2575e+1 (3.49e+0) - 1.1988e+1 (2.66e+0) - 8.9814e+0 (3.46e-1) = 9.0812e+0 (4.27e-1)

5 500 4.8262e+1 (2.34e+1) + 5.1596e+1 (9.89e+0) + 6.6021e+1 (1.40e+1) + 9.0602e+1 (2.69e+1) = 8.6216e+1 (3.33e+1)

8 800 4.6693e+1 (2.18e+1) + 7.9864e+1 (1.77e+1) + 9.1538e+1 (2.08e+1) + 4.7459e+2 (1.36e+2) = 5.5250e+2 (1.44e+2)

10 1000 3.4609e+1 (1.60e+1) + 6.7181e+1 (1.15e+1) + 8.3233e+1 (1.53e+1) + 4.5996e+2 (2.06e+2) = 5.1145e+2 (1.53e+2)

15 1500 6.6509e+1 (3.26e+1) + 1.0632e+2 (2.32e+1) = 1.0508e+2 (3.26e+1) = 1.1549e+2 (4.77e+1) = 1.1344e+2 (1.02e+1)

LSMOP4 3 300 2.4401e-1 (2.15e-2) - 2.4535e-1 (1.74e-2) - 2.5523e-1 (1.78e-2) - 2.2612e-1 (2.00e-3) = 2.2528e-1 (2.46e-3)

5 500 2.3851e-1 (1.02e-2) + 2.4559e-1 (1.02e-2) + 2.5619e-1 (9.29e-3) = 2.5620e-1 (6.54e-3) = 2.5633e-1 (5.20e-3)

8 800 4.2701e-1 (1.45e-2) - 4.1679e-1 (2.54e-2) - 4.2712e-1 (1.87e-2) - 3.1562e-1 (1.96e-2) = 3.1129e-1 (1.22e-2)

10 1000 4.4769e-1 (1.14e-2) - 4.6010e-1 (1.17e-2) - 4.6261e-1 (1.31e-2) - 3.7820e-1 (1.58e-2) = 3.8126e-1 (1.72e-2)

15 1500 4.9092e-1 (1.75e-2) + 4.9804e-1 (1.58e-2) + 5.1110e-1 (1.62e-2) + 5.4992e-1 (3.30e-2) = 5.4695e-1 (2.95e-2)

LSMOP5 3 300 2.2473e+0 (9.26e-2) + 2.5014e+0 (1.09e-1) = 2.5628e+0 (1.61e-1) - 2.3765e+0 (1.28e-1) = 2.4715e+0 (1.61e-1)

5 500 1.7891e+0 (1.39e-1) + 2.1628e+0 (1.23e-1) = 2.3186e+0 (1.27e-1) - 2.1866e+0 (1.58e-1) = 2.1600e+0 (2.52e-1)

8 800 1.6916e+0 (7.27e-2) + 1.9175e+0 (1.25e-1) + 2.0469e+0 (1.34e-1) + 2.9444e+0 (5.61e-1) = 3.2412e+0 (7.78e-1)

10 1000 1.8122e+0 (1.47e-1) + 1.9166e+0 (1.03e-1) + 2.0812e+0 (1.32e-1) + 2.9828e+0 (5.05e-1) = 2.8702e+0 (6.32e-1)

15 1500 1.8019e+0 (1.71e-1) + 1.7658e+0 (1.37e-1) + 1.8532e+0 (1.18e-1) + 2.3661e+0 (3.30e-1) = 2.4879e+0 (5.56e-1)

LSMOP6 3 300 2.5953e+2 (6.56e+1) + 4.7076e+2 (8.37e+1) + 4.9206e+2 (5.96e+1) + 7.1614e+2 (1.54e+2) = 7.5420e+2 (1.61e+2)

5 500 9.6749e+1 (3.46e+1) + 3.2791e+2 (6.85e+1) - 3.2751e+2 (6.23e+1) - 1.7423e+2 (1.09e+2) = 1.6136e+2 (9.04e+1)

8 800 1.6173e+0 (2.19e-2) + 5.4252e+1 (1.13e+2) = 4.5663e+1 (9.34e+1) = 1.7930e+0 (4.37e-2) = 1.7884e+0 (5.49e-2)

10 1000 1.3991e+0 (9.82e-3) + 4.1835e+1 (8.30e+1) - 8.2547e+1 (1.04e+2) - 1.4414e+0 (8.92e-3) = 3.2920e+0 (8.27e+0)

15 1500 1.5010e+2 (3.46e+1) + 2.2178e+2 (3.97e+1) = 2.3648e+2 (5.17e+1) = 1.8455e+2 (6.26e+1) = 2.1850e+2 (9.49e+1)

LSMOP7 3 300 1.2945e+0 (5.16e-2) + 1.3644e+0 (4.28e-2) + 8.1187e+0 (2.09e+1) = 1.4939e+0 (1.58e-2) = 1.4931e+0 (1.77e-2)

11456 Y. Wang et al.



Table 7 (continued)

Problem M N 1by1EA-F1 1by1EA-F2 1by1EA-R2 NSGA-III-F1 NSGA-III-R1

5 500 2.5773e+0 (8.27e-2) + 4.1687e+1 (1.02e+2) = 3.0486e+1 (6.40e+1) - 2.9911e+0 (1.01e-1) = 2.9614e+0 (7.70e-2)

8 800 9.2911e+1 (2.47e+1) + 2.2766e+2 (3.78e+1) = 2.7649e+2 (4.60e+1) - 2.1632e+2 (5.98e+1) = 2.1857e+2 (7.20e+1)

10 1000 1.4373e+2 (2.62e+1) = 2.6070e+2 (3.51e+1) - 2.7778e+2 (3.84e+1) - 1.8380e+2 (5.80e+1) = 1.7117e+2 (5.13e+1)

15 1500 1.7255e+0 (1.26e-2) + 7.6932e+1 (8.02e+1) - 1.1294e+2 (8.30e+1) - 1.7629e+0 (1.19e-2) = 1.4130e+1 (5.53e+1)

LSMOP8 3 300 5.5532e-1 (4.53e-3) + 5.5460e-1 (2.76e-3) + 5.5830e-1 (3.88e-3) + 9.7049e-1 (1.63e-2) + 9.7692e-1 (9.28e-3)

5 500 9.3379e-1 (2.97e-2) + 9.2392e-1 (1.66e-2) + 9.3039e-1 (1.57e-2) + 1.1704e+0 (5.29e-2) = 1.1809e+0 (3.82e-2)

8 800 1.1235e+0 (2.43e-2) + 1.2413e+0 (4.84e-2) + 1.3282e+0 (4.81e-2) + 1.8535e+0 (4.39e-1) = 1.9196e+0 (3.58e-1)

10 1000 1.2435e+0 (4.00e-2) + 1.2981e+0 (4.41e-2) + 1.3400e+0 (5.73e-2) + 1.8709e+0 (2.63e-1) = 1.9739e+0 (2.14e-1)

15 1500 1.2713e+0 (2.41e-2) + 1.2770e+0 (1.80e-2) + 1.2824e+0 (3.73e-2) + 1.3047e+0 (1.38e-2) = 1.3023e+0 (1.75e-2)

LSMOP9 3 300 1.3354e+1 (8.07e-1) + 1.4615e+1 (9.20e-1) + 1.5528e+1 (1.14e+0) + 3.0398e+1 (3.97e+0) = 2.9282e+1 (5.20e+0)

5 500 3.8021e+1 (1.96e+0) + 4.0998e+1 (1.68e+0) + 4.3014e+1 (1.48e+0) + 1.0937e+2 (1.42e+1) = 1.1027e+2 (1.41e+1)

8 800 7.1140e+1 (2.18e+0) + 7.2537e+1 (2.38e+0) + 7.4044e+1 (2.51e+0) + 2.5767e+2 (4.68e+1) = 2.6664e+2 (4.12e+1)

10 1000 1.0992e+2 (5.01e+0) + 1.0806e+2 (2.94e+0) + 1.1229e+2 (4.63e+0) + 6.0376e+2 (9.30e+1) = 5.9636e+2 (1.89e+2)

15 1500 4.1853e+2 (2.22e+1) + 3.9874e+2 (1.20e+1) + 4.0824e+2 (1.44e+1) + 2.2210e+3 (7.61e+2) = 2.1716e+3 (8.94e+2)

+/-/= 35/8/2 25/13/7 23/17/5 2/1/42

Table 8 GD values of 1by1EA-F1, 1by1EA-F2, 1by1EA-R2, NSGA-III-F1, and NSGA-III-R1 on LSMOP1-9 with 3, 5, 8, 10, and 15 objectives

Problem M N 1by1EA-F1 1by1EA-F2 1by1EA-R2 NSGA-III-F1 NSGA-III-R1

LSMOP1 3 300 1.6184e-1 (3.76e-2) + 2.9020e-1 (1.27e-1) + 2.6997e-1 (4.00e-2) + 9.0971e-1 (2.09e-1) = 8.3689e-1 (1.58e-1)

5 500 3.8119e-1 (8.63e-2) + 4.1140e-1 (8.54e-2) + 3.8886e-1 (1.02e-1) + 9.4192e-1 (2.65e-1) = 1.0119e+0 (2.12e-1)

8 800 2.7851e-1 (1.15e-1) + 1.7653e-1 (7.32e-2) + 1.5364e-1 (7.19e-2) + 1.2041e+0 (1.27e-1) = 1.2109e+0 (1.20e-1)

10 1000 2.1363e-1 (1.26e-1) + 7.7347e-2 (6.99e-2) + 1.3753e-1 (1.26e-1) + 1.6113e+0 (1.64e-1) = 1.6072e+0 (1.73e-1)

15 1500 3.6464e-2 (2.89e-2) + 6.5306e-2 (1.25e-1) + 3.1818e-2 (1.57e-2) + 2.5016e+0 (4.97e-1) = 2.5979e+0 (3.30e-1)

LSMOP2 3 300 2.6948e-3 (8.60e-5) + 2.8613e-3 (7.88e-5) + 2.5176e-3 (7.10e-5) + 4.4770e-3 (8.34e-5) = 4.4072e-3 (1.30e-4)

5 500 2.5967e-3 (1.24e-4) + 2.5828e-3 (1.60e-4) + 2.5749e-3 (2.23e-4) + 4.7158e-3 (5.60e-5) = 4.7328e-3 (5.41e-5)

8 800 5.9498e-3 (6.23e-4) + 6.1259e-3 (6.01e-4) + 6.1439e-3 (8.32e-4) + 1.5432e-2 (1.05e-3) = 1.5372e-2 (9.12e-4)

10 1000 6.8418e-3 (8.43e-4) + 6.9215e-3 (3.79e-4) + 7.0820e-3 (5.48e-4) + 1.2402e-2 (4.22e-4) = 1.2254e-2 (3.24e-4)

15 1500 1.4453e-2 (1.17e-3) + 1.5040e-2 (1.16e-3) + 1.5368e-2 (9.44e-4) + 2.1152e-2 (8.53e-4) = 2.1250e-2 (8.11e-4)

LSMOP3 3 300 3.1789e+2 (5.83e+2) + 3.3676e+2 (5.15e+2) + 3.9333e+2 (4.42e+2) + 9.5366e+2 (2.60e+2) = 8.3266e+2 (2.44e+2)

5 500 2.6523e+2 (2.19e+2) + 3.4093e+2 (2.08e+2) + 3.9361e+2 (2.49e+2) + 1.4103e+3 (2.16e+2) = 1.3414e+3 (2.14e+2)

8 800 8.5257e+2 (2.79e+2) + 8.2769e+2 (2.15e+2) + 7.9454e+2 (2.25e+2) + 1.8104e+4 (3.02e+3) = 1.8420e+4 (2.96e+3)

10 1000 7.3123e+2 (5.41e+2) + 7.4292e+2 (4.01e+2) + 6.8144e+2 (3.07e+2) + 2.4132e+4 (4.66e+3) = 2.4468e+4 (3.51e+3)

15 1500 3.5586e+2 (3.21e+2) + 5.8771e+2 (4.00e+2) + 4.3635e+2 (4.34e+2) + 2.6844e+3 (4.54e+2) = 2.7774e+3 (6.31e+2)

LSMOP4 3 300 1.4892e-2 (1.40e-3) + 1.5686e-2 (9.71e-4) + 1.4019e-2 (1.59e-3) + 2.5877e-2 (4.84e-4) - 2.5508e-2 (4.89e-4)

5 500 1.3676e-2 (8.81e-4) + 1.4196e-2 (1.87e-3) + 1.2872e-2 (1.59e-3) + 3.7311e-2 (8.85e-4) = 3.7339e-2 (8.84e-4)

8 800 7.3241e-3 (5.18e-4) + 7.0675e-3 (6.62e-4) + 6.6224e-3 (4.83e-4) + 1.3433e-2 (1.58e-3) = 1.2792e-2 (1.02e-3)

10 1000 7.1250e-3 (5.71e-4) + 7.7519e-3 (7.53e-4) + 7.8968e-3 (4.73e-4) + 1.1199e-2 (4.33e-4) = 1.1336e-2 (4.13e-4)

15 1500 1.5939e-2 (8.83e-4) + 1.6279e-2 (8.53e-4) + 1.6288e-2 (1.17e-3) + 2.1412e-2 (6.75e-4) = 2.1245e-2 (8.65e-4)

LSMOP5 3 300 9.6195e-1 (7.92e-1) + 1.1971e+0 (7.77e-1) + 1.5247e+0 (1.20e+0) + 2.7926e+0 (6.41e-1) = 2.5381e+0 (3.84e-1)

5 500 1.1530e+0 (6.78e-1) + 7.4897e-1 (2.83e-1) + 6.4139e-1 (1.30e-1) + 2.1483e+0 (6.24e-1) = 2.3819e+0 (7.55e-1)

8 800 2.9728e-1 (1.99e-1) + 2.3698e-1 (1.28e-1) + 2.3654e-1 (1.71e-1) + 3.6491e+0 (5.67e-1) = 3.8068e+0 (8.83e-1)

10 1000 1.2450e-1 (6.34e-2) + 1.5344e-1 (1.25e-1) + 1.1036e-1 (4.64e-2) + 4.2818e+0 (1.34e+0) = 3.9150e+0 (1.29e+0)

15 1500 1.1428e-1 (2.09e-2) + 1.0781e-1 (2.03e-2) + 1.1878e-1 (1.72e-2) + 4.1968e+0 (2.11e+0) = 3.8565e+0 (1.84e+0)

LSMOP6 3 300 1.1403e+4 (3.21e+4) + 8.6914e+3 (1.55e+4) + 1.2947e+4 (1.86e+4) + 1.4837e+4 (6.64e+3) = 1.5253e+4 (7.91e+3)

5 500 4.4019e+3 (3.58e+3) + 1.9114e+3 (6.19e+2) + 1.5406e+3 (6.95e+2) + 2.7382e+4 (2.01e+4) = 3.8639e+4 (2.87e+4)
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Table 8 (continued)

Problem M N 1by1EA-F1 1by1EA-F2 1by1EA-R2 NSGA-III-F1 NSGA-III-R1

8 800 1.4922e+3 (5.01e+2) + 2.1797e+3 (1.18e+3) + 2.2034e+3 (1.22e+3) + 1.9157e+4 (3.03e+3) = 1.7568e+4 (2.94e+3)

10 1000 2.2099e+3 (2.39e+3) + 1.7140e+3 (8.87e+2) + 1.6686e+3 (1.21e+3) + 1.8553e+4 (3.13e+3) - 1.6380e+4 (2.53e+3)

15 1500 1.2483e+2 (1.91e+2) + 1.1133e+2 (1.59e+2) + 2.0001e+2 (1.63e+2) + 6.6275e+3 (4.26e+3) = 6.5575e+3 (3.17e+3)

LSMOP7 3 300 2.7269e+4 (4.45e+4) = 1.7125e+4 (1.30e+4) = 7.0977e+3 (6.49e+3) + 1.6920e+4 (5.04e+3) = 1.8431e+4 (4.80e+3)

5 500 3.7531e+3 (2.85e+3) + 3.1387e+3 (2.31e+3) + 3.6840e+3 (2.58e+3) + 2.4817e+4 (3.02e+3) = 2.4705e+4 (2.86e+3)

8 800 4.1069e+3 (6.32e+3) + 2.1661e+3 (1.67e+3) + 1.3687e+3 (7.03e+2) + 9.4245e+3 (3.65e+3) = 1.2134e+4 (6.19e+3)

10 1000 1.0429e+3 (7.15e+2) + 6.2992e+2 (5.12e+2) + 9.2407e+2 (8.55e+2) + 6.5978e+3 (2.95e+3) = 7.1982e+3 (2.27e+3)

15 1500 6.3652e+2 (4.68e+2) + 9.1699e+2 (5.45e+2) + 6.8123e+2 (8.52e+2) + 1.1949e+4 (4.27e+3) = 1.3725e+4 (5.05e+3)

LSMOP8 3 300 3.9742e-1 (1.82e-1) + 4.1292e-1 (1.32e-1) + 4.1424e-1 (2.09e-1) + 2.5623e+0 (1.49e-1) = 2.5990e+0 (8.89e-2)

5 500 2.9053e-1 (4.58e-2) + 3.2536e-1 (3.66e-2) + 3.9153e-1 (1.01e-1) + 2.3747e+0 (5.12e-1) = 2.3150e+0 (5.09e-1)

8 800 7.2672e-2 (8.75e-2) + 7.8257e-2 (9.40e-2) + 7.6169e-2 (5.46e-2) + 1.8299e+0 (4.78e-1) = 1.7515e+0 (3.38e-1)

10 1000 4.3347e-2 (9.67e-3) + 4.9099e-2 (6.52e-3) + 5.0076e-2 (6.17e-3) + 1.9415e+0 (5.05e-1) = 1.9976e+0 (6.66e-1)

15 1500 2.1524e-1 (1.33e-1) + 1.7652e-1 (1.70e-1) + 1.9728e-1 (2.02e-1) + 2.3494e+0 (2.52e-1) - 2.1471e+0 (2.68e-1)

LSMOP9 3 300 1.8356e+0 (2.48e-1) + 1.8567e+0 (2.38e-1) + 2.1751e+0 (3.46e-1) + 1.1567e+1 (1.03e+0) = 1.1867e+1 (8.53e-1)

5 500 3.0919e+0 (2.78e-1) + 3.8580e+0 (1.31e+0) + 3.7487e+0 (6.11e-1) + 3.2890e+1 (1.53e+0) = 3.2860e+1 (1.15e+0)

8 800 4.1608e+0 (5.41e-1) + 4.0801e+0 (3.11e-1) + 4.2141e+0 (2.71e-1) + 7.2421e+1 (2.90e+0) = 7.1084e+1 (2.77e+0)

10 1000 6.5997e+0 (3.40e-1) + 6.5371e+0 (3.56e-1) + 6.7200e+0 (3.50e-1) + 1.3015e+2 (6.42e+0) = 1.3077e+2 (1.01e+1)

15 1500 3.5964e+1 (2.03e+0) + 3.4105e+1 (1.06e+0) + 3.5000e+1 (1.34e+0) + 3.7324e+2 (7.59e+1) = 3.5508e+2 (6.94e+1)

+/-/= 44/0/1 44/0/1 45/0/0 0/2/43

solutions in populations. As a general information feedback
framework, historical research can guide us to further
optimize the evolutionary direction of algorithms.

Similarly, in order to more clearly illustrate the results,
we took LSMOP5 as an example to show the changes
in the IGD and GD values on different objectives with
iterations. Figure 3 shows the performance of the five
algorithms related to this section. Our algorithm had the
best overall performance for all high-dimensional problems.
The average value of LSMOP5 in 1by1EA-IFM was lower
than that of NSGA-III-IFM. One research focuse of this
work was to test whether the algorithm has the ability to
solve large-scale MaOPs, and the high-dimensional results
were very promising. The results of the comparison of
our proposed algorithm with NSGA-III-IFM verify that our
algorithm has strong competitiveness in solving the same
large-scale MaOPs.

5.2.2 Comparison of 1by1EA-IFM with MOEA/D-IFM

In the experiment at this stage, the value of the objective
number m was 5, 10, and 15. The test problem was still
LSMOPs. The other parameters in our algorithm were the
same as those used in previous experiments. We also used
a HyperVolume (HV) [59] indicator to evaluate the results.
It measures the size of the area volume value in the target
space enclosed by the non-dominated solution set and the
reference point obtained by the algorithm. The larger the

value, the better the overall performance of the algorithm
that was considered. As the best one, MOEA/D-R1 was
selected for comparison.

Table 9 shows the best results in each row with emphasis.
From all the statistics obtained from the Mann-Whitney-
Wilcoxon rank test with the best IGD indicator values, our
proposed algorithm occupied 21 of the 27 test examples,
while MOEA/D-R1 only occupied six. In particular, 14
were obtained by 1by1EA-F1, which is relatively high,
accounting for almost 50% of all test examples. Combined
with the HV results shown in Table 10, we could still
make this observation. Here, we only provided statistics
on the number of HV results that were better than the
MOEA/D-R1. From the table, in terms of all objective test
problems, 1by1EA-F1 had the best performance, followed
by 1by1EA-F2. For the nine test questions with three, five,
and 10 objectives, the number of excellent results that the
1by1EA-IFM algorithm could achieve was eight, six, and
nine, respectively. Similarly, the results of 1by1EA-F1 in
these dimensions were seven, five, and seven, respectively.
Therefore, the comprehensive performance of our proposed
1by1EA-IFM was better than that of MOEA/D-IFM.
MOEA/D-IFM uses a predefined objective search to solve
the problem of a slow search process in a high-dimensional
space. Individual selection and retention in IFM improve
the sensitivity of predefined targets, especially in a large-
scale high-dimensional space. For LSMOP with different
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Fig. 3 The mean of IGD and GD values on LSMOP5 with 3, 5, 8, 10, and 15 objectives

fronts, 1by1EA-IFM could solve linear problems more
effectively than MOEA/D-IFM, which may have been
caused by target decomposition in MOEA/D. However,
for the high-dimensional problems of 15 objectives,
MOEA/D-IFM could also play a better role; so, the
enhancement of the connection between solutions in IFM

effectively improved the performance of the evolutionary
algorithm.

In order to demonstrate the ability of our proposed
algorithm to solve higher-dimensional problems, here, we
took LSMOP1-9 with 15 objectives as an example to
show the changes in the IGD values obtained by the
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Table 10 The optimal HV result of 1by1EA-F1, 1by1EA-F2, 1by1EA-R2, and MOEA/D-R1 on LSMOP1-9 with 5, 10, and 15 objectives

M N 1by1EA-F1 1by1EA-F2 1by1EA-R2 MOEA/D-R1

5 500 7 0 1 1

10 1000 5 1 0 3

15 1500 7 2 0 0

above algorithm as it iterated. As shown in Fig. 4, on
LSMOP2/3/4/7/8, the performance of 1by1EA-IFM was
significantly better than that of MOEA/D-R1, that is, in the
nine test functions, for more than half of the problems, the
algorithms we proposed all outperformed those in previous
research. However, it is undeniable that, MOEA/D-IFM
was more suitable for solving problems characterized by
disconnected of PF, as the results of LSMOP9 demonstrate.

5.2.3 Statistical analysis of the results

Based on the IGD and GD values obtained by all above
comparison, we performed the same statistical analysis
in two steps. As shown in Tables 11 and 12, the
computed ranking by using Friedman’s test for the above
two comparison were displayed respectively. In two χ2

distributions with 4 and 3 degrees of freedom respectively,
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Fig. 4 The mean of IGD values on LSMOP1-9 with 15 objectives
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Table 11 Friedman test ranking for 1by1EA-F1, 1by1EA-F2,
1by1EA-R2, NSGA-III-F1, and NSGA-III-R1

Algorithm Average ranking

1by1EA-F1 2.45

1by1EA-F2 2.59

1by1EA-R2 2.70

NSGA-III-F1 3.69

NSGA-III-R1 3.56

these average ranking demonstrated that 1by1EA-IFM was
different from NSGA-III and MOEA/D-IFM with a p-value
= 0.000000008 under the significance level α = 0.05.
The best ranking was obtained by 1by1EA-IFM, and the
performance of our proposed algorithms were close to and
generally better than NSGA-III-IFM and MOEA/D-IFM.
These ranking were helpful for us to determine the order
number in Holm’s test.

When we achieved Friedman’s test, Holm’s method
was used to compare the best ranking algorithm with the
remaing algorithms. Since the proposed 1byEA-F1 obtained
the best ranking, it was considered as control algorithm.
Tables 13 and 14 respectively displayed the adjusted p-
values by Holm post-hoc procedure based on above two
experiments. The null hypothesis was rejected when the
achieved p-value lower than the adjusted α (α = α/i).
After analyzing, all the p-values about NSGA-III-IFM and
MOEA/D-IFM obtained by Holm post-hoc were lower
than α. Thus, 1by1EA-F1 is statistically better than those
algorithms in NSGA-III-IFM and MOEA/D-IFM.

5.2.4 Multi-objective knapsack problem (MOKP)

Here, we adopted MOKP and selected two recently
proposed algorithms, AGE-MOEA and PREA, to compare
with the results of 1by1EA-IFM and MOEA/D-IFM on this
problem.

• AGE-MOEA [60] comprehensively considers the diver-
sity of individuals in the population and the proximity
to the ideal point. It does not have a pre-supposed PF,
but uses a quick geometry program to estimate PF. The
increase in computational complexity is more obvious.

Table 12 Friedman test ranking for 1by1EA-F1, 1by1EA-F2,
1by1EA-R2, and MOEA/D-R1

Algorithm Average ranking

1by1EA-F1 1.78

1by1EA-F2 2.41

1by1EA-R2 1.92

MOEA/D-R1 3.89

Table 13 Results obtained using Holm’s post-hoc test

i Algorithm α/i p-value of Holms Null hypothesis

1 1by1EA-F2 0.05/1 = 0.0500 1.000 Not reject

2 1by1EA-R2 0.05/2 = 0.0250 1.000 Not reject

3 NSGA-III-R1 0.05/3 = 0.0166 0.009 Reject

4 NSGA-III-F1 0.05/1 = 0.0100 0.004 Reject

1by1EA-F1 used as control algorithm

• PREA [61] is a kind of MaOEA based on probability
index. PREA introduces a ratio index with infinite norm
so that the algorithm can select a promising area in
the target space. Then, a population selection strategy
based on parallel distance selection is used to offspring
populations in this area.

In order to adapt to the problem studied in this paper, we
set M to three, five, and eight, and N was set to 300, 500,
and 700, respectively. The number of populations and the
maximum number of iterations remained unchanged. The
weight was a random number between 10 and 100. The
experimental results are shown in Table 15. It can be seen
that the average results of IGD values obtained by 1by1EA-
IFM were significantly better than those of other MaOPs.
The best part compared with other comparison algorithms
is highlighted in the table. 1by1EA-F2 could obtain the
optimal IGD value in the problem of 3 backpacks with
300 items and three backpacks with 500 items. 1by1EA-
R2 could reach the smallest IGD value in the remaining
problems. This result not only proves the advantages of
1by1EA-IFM in solving MOKP, but also shows that its
performance was superior to MOEA/D-IFM.

5.3 Comparision with other many-objective
algorithms

5.3.1 Compared algorithms

In order to evaluate the performance of the proposed new
algorithm, we selected the best performing algorithm among
the six proposed new algorithms and compared it with the
following six advanced evolutionary algorithms proposed

Table 14 Results obtained using Holm’s post-hoc test

i Algorithm α/i p-value of Holms Null hypothesis

1 1by1EA-R2 0.05/1 = 0.0500 1.000 Not reject

2 1by1EA-F2 0.05/2 = 0.0250 0.439 Not reject

3 MOEA/D-R1 0.05/3 = 0.0166 0.002 Reject

1by1EA-F1 used as control algorithm
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in recent years on LSMOP1-9: MaOEA-IGD, NSGA-II-
SDR, DGEA, DEA-GNG, LMOCSO, and MSEA. Based on
Section 5.1, we know that the best algorithm was 1by1EA-
F1, and this result could be verified in almost all subsequent
experiments. The selected comparison algorithms almost
cover the main categories of MaOEAs in Section 1, and
there are algorithms specifically for solving large-scale
MaOPs.

• MaOEA-IGD [34] is a many-objective evolutionary
algorithm based on the IGD indicator. Specifically,
it uses the IGD index at each generation and adopts
a computationally efficient advantage comparison
method through a linear allocation mechanism from
a global perspective to choose a solution with better
convergence and diversity. As the algorithm was
evaluated based on the IGD index in the whole process
and IGD was included in all the experimental indexes
in this paper, this algorithm was selected as the
comparison algorithm.

• A new algorithm based on Pareto dominance relation
NSGA-II-SDR [62] is proposed. It is an improvement
of NSGA-II, using an adaptive niche technology based
on the angle between candidate solutions to make only
the convergent optimal candidate solution in the niche
be the non-dominated solution. This algorithm has
shown effectiveness in solving MaOPs.

• DGEA [42] is an algorithm specifically proposed to
solve LSMOPs. It uses an adaptive offspring generation
method to generate promising candidate solutions in
high-dimensional spaces. However, the algorithm has
not been verified in the dimension of many-objective
problems. Based on this, we performed a comparison in
high dimensions.

• DEA-GNG [63] is a decomposition-based multi-
objective evolutionary algorithm, which is guided by
the growing neural gas network (GNG), and uses the
nodes in the GNG as reference vectors according to
an adaptive strategy. The method proposed by this
algorithm is relatively novel; so we chose this algorithm
as a comparison algorithm.

• LMOCSO [64] combines a competitive swarm opti-
mizer (CSO)-based with LSMOPs, adopting a new
particle updating strategy that suggests a two-stage
strategy to update position, so that search efficiency is
improved. Similar to DGEA, the method is also used to
solve LSMOPs, but when the number of objectives is
increased, the performance of LMOCSO has not been
proven, which is why we chose it as a comparison
method.

• As a newly proposed algorithm, MSEA [65] also allows
populations to evolve toward PF through diversity
preservation. This method divides the optimization
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process into multiple stages, and updates the population
with different selection strategies at different stages.
Since MSEA is also based on diversity improvement
algorithm, we selected it for comparison to reflect the
performance of IFM for population diversity.

5.3.2 Parameter settings

All comparison algorithms used the following parameter
settings. In simulated binary crossover and polynomial
mutation, both distribution indexes were set to 20. The
probability of crossover and mutation was 1.0 and 1/n,
respectively, where n is the number of decision variables.
The reason for these settings is discussed in Section 5.1,
and the fixed setting could highlight the robustness and
generality of algorithms for solving various MaOPs. The
maximum number of iterations is set to 10000, and the
maximum number of iterations would not exceed 13000.
The population numbers of the algorithm were the same as
in the settings of the original paper.

For the setting of some specific parameters in the
algorithm, the performance was best when the number of
direction vectors was set to 10 in DGEA. In DEA-GNG,
the parameter α, used to determine the number of iterations
for training GNG at each generation, was set to 0.1, and
the default learning coefficient parameter eps was set to
0.314. In MaOEA-IGD, the number of evaluations for nadir
point estimation DNPE was set to 100*N . The remaining
three algorithms did not involve specific parameters. These
parameter settings were set empirically in the same manner
as in the original studies. It was verified that the settings
have achieved average performance over all the test suites
in their studies.

5.3.3 Experimental results and analysis

Tables 16 and 17 show the results of different algorithms
in terms of their average values of IGD and GD, where
the values with better results are emphasized. When
algorithm A was compared to algorithm B, “+” and “-
” indicate the number of instances in which the results
of A were significantly better and obviously worse than
B, respectively. “=” means that there was no statistically
significant number of instances between the two algorithms.
Therefore, as shown in the last row in the above tables,
all comparison algorithms were compared to our proposed
1by1EA-F1. We can see from Table 16 that 1by1EA-
F1 achieved the 22 best IGD results among the 45
test instances, and the number of best results obtained
by MaOEA-IGD, NSGA-II-SDR, DEA-GNG, DGEA,
LMOCSO, and MSEA was 5, 0, 4, 4, 8, and 2, respectively.
On LSMOP5/8/9, 1by1EA-F1 could perform optimally
in almost all objective dimensions. On LSMOP1/3/6,

our algorithm also achieved some excellent results. As
shown in Table 17, the 31 best GD results among the
45 test instances were obtained by 1by1EA-F1, while
the other algorithms only achieved 2, 10, 0, 0, 2, and
0. At the same time, 1by1EA-F1 fully demonstrated its
superiority in the problem of objectives in all dimensions
of LSMOP1/2/4/5/9. This means that 1by1EA-F1 had better
performance on most test problems.

Another observation is that 1by1EA-F1 was more
suitable for solving LSMOP5-9 where the hyperplane
was not linear in terms of convergence and diversity of
equilibrium solutions, while 1by1EA-F1 was suitable for
almost all problems in terms of the convergence of the
solution. One reason for this may be that for non-dominated
solutions with nonlinear distributions, the algorithm can
choose more randomly when selecting a single solution
in a historical iteration. As the numbers of objective
dimensions and decision variables increase, each single
solution selected can exist more dispersed in the large-scale
search space. This demonstrates the effectiveness of IFM in
solving large-scale problems and in promoting population
convergence. Another interesting point is that as LSMOP3
had the most complex multi-modal fitness landscape among
the nine test problems, 1by1EA-F1 performed poorly on
LSMOP3 with different objectives, which indicates that
IFM has difficulty in always obtaining the best performance
for large-scale test problems. This may be related to the
shape of the PF. However, as this was an extreme case, after
the above analysis, we can still conclude that 1by1EA-F1
can effectively solve large-scale MaOPs.

In the test functions for PF related to the convex
landscape, the performance of MaOEA-IGD was better than
the results of the test for the PF of linear. As MaOEA-
IGD uses reference point-based assignment and the convex
landscape has better reference point distribution, it was
competitive on LSMOP5-8 with partial dimensionality.
However, this also made it inferior to other algorithms on
LSMOP1-4.

NSGA-II-SDR uses a niching technique based on Pareto
dominance; so, it was very competitive in terms of
convergence in comparison with other algorithms. However,
for some specific LSMOPs, the inability to regulate the
niche size affected its performance.

DEA-GNG did not seem to perform well in any LSMOPs
except LSMOP2. As LSMOP2 is a partially separable
problem, and PF has a mixed modality, GNG-based
reference vectors in a complex problem can be adaptively
adjusted; so, the population diversity is better. However,
this may be because of the influence of the curvature
information around the node. So, the algorithm performance
could not be enhanced in large-scale problems.

While DGEA is also associated with large-scale prob-
lems, we found that it did not do well on almost all LSMOPs
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Fig. 5 The mean of IGD and GD values on LSMOP1-9 with 15 objectives
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other than LSMOP3. There is a pre-selection strategy in
DGEA, which means that it is difficult to always obtain
better performance using the same selection strategy on dif-
ferent testing problems. Furthermore, from the results of
IGD and GD, DGEA could effectively maintain population
diversity, but the convergence in large-scale space was still
insufficient.

LMOCSO was proposed to solve large-scale MOPs, and
it includes a novel particle update strategy that combines all
the updated particles with the original particles. However,
the results of the experiment suggest that this information
retention strategy may not have as much impact as IFM.

MSEA replaces a solution in the population by improving
the selection strategy. From the test results for LSMOPs, the
limitations of MSEA were mainly related to the diversity of
selection criteria. The normalization in 1by1EA improved
the convergence of the algorithm, but the diversity of
solution selection criteria may have made the algorithm
transform a objective into the wrong scale when solving
high-dimensional large-scale problems.

Figure 5 shows the results of IGD and GD values
calculated by these seven evolutionary algorithms in a
clearer way when m = 15. Corresponding to the above
table, when the objective number was 15, 1by1EA-F1 could
obtain the lowest IGD value on LSMOP6/7/9/10. Then this
algorithm could obtain the smaller GD value in almost
all LSMOPs with different objectives. This indicates that
1by1EA-IFM can still adapt to most of the LSMOPs in a
high-dimensional space, and performs excellently.

5.3.4 Statistical analysis of the results

Similar to the previous experiments, we still performed
statistical analysis of the obtained experimental datasets in
two steps. As shown in Table 18, the computed ranking
through Friedman’s test performed the difference among
these algorithms. The results of this statistical test showed
that 1by1EA-F1 obtained a significant difference with a p-
value tending to 0 infinitely under the significance level
α = 0.05. The best ranking was obtained by 1by1EA-
F1, followed by NSGA-II-SDR, DEAGNG, LMOCSO,
MaOEA-IGD, MSEA, and DGEA respectively. This order
was useful for the later Holm’s test.

Next, we applied Holm’s method to compare the best
ranking algorithm with the remaing algorithms. Since the
proposed 1byEA-F1 obtained the best ranking, it was
considered as control algorithm. Table 19 demonstrated the
adjusted p-values by Holm post-hoc procedure, where the
null hypothesis was rejected when the achieved p-value less
than α/i. Analyzing these results, we concluded that all the
p-values obtained by Holm post-hoc were lower than the
adjusted α (α = α/i), which confirmed that the proposed

Table 18 Friedman test ranking for MaOEA-IGD, NSGA-II-SDR,
DEA-GNG, DGEA, LMOCSO, MSEA, and 1by1EA-F1

Algorithm Average Ranking

MaOEA-IGD 4.08

NSGA-II-SDR 3.15

DEA-GNG 3.75

DGEA 6.07

LMOCSO 4.05

MSEA 4.09

1by1EA-F1 2.80

1by1EA-F1 statistically outperforms the other algorithms.
Thus, the effectiveness of 1by1EA-IFM is verified.

Here, we use the above experimental results to explain
again why the M-F1, M-F2 and M-R1 had the best
performance in our proposed algorithms. First, in most
evolutionary algorithms, the best individual in each
environmental selection is retained. The introduction of
IFM increases the uncertainty in environment selection. By
retaining one, two, or three individuals from a fixed or
random position in the historical iteration, the algorithm
can avoid falling into the local optimum to a certain extent,
thereby improving its convergence. Although the individual
retained each time may not be the best, this selection
method can indeed speed up the convergence. The above
experimental results show that the GD values in most of the
experiments were relatively low; so, 1by1EA-IFM made a
contribution to the convergence.

The performance of 1by1EA-F1 was undoubtedly
superior. This superiority comes from the fact that we only
consider the use of information at a fixed location at the
last generation, where the individuals are the closest to this
generation. Thus, the value and inheritance of information
were the highest. Moreover, selecting individuals at a fixed
position in each iteration can increase the randomness of
individual selection without making this randomness too
messy; so, the 1by1EA-F1 had the best performance.

Table 19 Results obtained using Holm’s post-hoc test

i Algorithm α/i p-value Null hypothesis

of Holms

1 NSGA-II-SDR 0.05/1 = 0.0500 0.025 Reject

2 DEAGNG 0.05/2 = 0.0250 0.024 Reject

3 LMOCSO 0.05/3 = 0.0166 0.012 Reject

4 MaOEA-IGD 0.05/4 = 0.0125 0.002 Reject

5 MSEA 0.05/5 = 0.0100 0.001 Reject

6 DGEA 0.05/6 = 0.0083 0.000 Reject

1by1EA-F1 used as control algorithm
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6 Conclusion

In previous studies, few algorithms have been proposed
that can reuse individual information in historical iteration
populations. Inevitably, a lot of valuable information often
appears in these algorithms. In this paper, a new 1by1EA
was proposed based on this mechanism. It integrates
information in historical populations and reuses them in
subsequent iterations. Furthermore, this paper adopted the
new algorithms specifically to solve the large-scale MaOPs.
According to the six models of IFM, six algorithms were
proposed. After comparing these six algorithms with the
original 1by1EA, we found that 1by1EA-F1, 1by1EA-F2,
and 1by1EA-R2 had the best overall performance. Among
them, 1by1EA-F1 performed particularly well. Therefore,
it was chosen for comparison in later experiments. By
comparing the algorithms with the best algorithms in
NSGA-III-IFM and MOEA/D-IFM on LSMOP1-9 and
MOKP, we proved that 1by1EA-IFM could achieve the
best performance in most experimental settings. Finally,
we selected six relatively state-of-the-art evolutionary
algorithms and verified them in the same large-scale
MaOPs. The results verify the strong competitiveness of
1by1EA-F1.

In future research, we will focus on exploring why
the performance of several other algorithms is not as
good as that of 1by1EA-F1, and will make improvements
to this problem on a series of MaOPs. Then, we will
combine IFM with other MaOEAs to explore its ability
to balance the diversity and convergence of algorithms. In
addition to MOKP, for other problems such as TSP and
scheduling, which have practical application value, we will
consider incorporating the improved algorithms into them
and observe whether the algorithms have the ability to
resolve these problems. For the use of selection strategies,
we will develop more strategies based on random selection
and compare them with IFM to obtain better results. In
addition, allowing the algorithm to learn adaptively to
achieve dynamic optimization of the problem is also a
direction worthy of consideration in the future.
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