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Abstract
Crowd counting and Crowd density map estimation face several challenges, including occlusions, non-uniform density, and
intra-scene scale and perspective variations. Significant progress has been made in the development of most crowd counting
approaches in recent years, especially with the emergence of deep learning and massive crowd datasets. The purpose of this
work is to address the problem of crowd density estimatation in both sparse and crowded situations. In this paper, we propose
a multi-task attention based crowd counting network (MACC Net), which consists of three contributions: 1) density level
classification, which offers the global contextual information for the density estimation network; 2) density map estimation;
and 3) segmentation guided attention to filter out the background noise from the foreground features. The proposed MACC
Net is evaluated on four popular datasets including ShanghaiTech, UCF-CC-50, UCF-QRNF, and a recently launched dataset
HaCrowd. The MACC Net achieves the state of the art in estimation when applied to HaCrowd and UCF-CC-50, while on
the others, it obtains competitive results.

Keywords Crowd counting · Crowd classification · Crowd analysis · Attention model · Density map estimation

1 Introduction

Crowd analysis has recently received much interest because
of its wide applications, such in as video surveillance,
public safety, and traffic control. However, accurate crowd
counting has been a difficult subject in computer vision
due to issues such as occlusions, perspective distortions,
size changes, and different crowd distributions. Some early
approaches handle the challenge of crowd counting by
recognizing each individual pedestrian in a group [1,
2], while others depend on crafted multi-source features
[3]. For situations involving high levels of occlusion and
heterogeneous crowd distribution, these approaches may
perform poorly. To address this, various novel approaches
based on convolutional neural networks (CNNs) have
recently been proposed for accurate crowd density map
estimation and accurate crowd counting. These techniques
are primarily intended to address two main challenges:
substantial head size fluctuations induced by camera
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viewpoint and heterogeneous crowd distributions with
high background noise levels. In real-world applications,
population density varies drastically between areas and time
periods. Even within the same image, the population density
may be substantially larger in some places than in others
(see Fig. 1). Moreover, predicting density maps for dense
crowds is, in general, more challenging than for sparse
crowds, resulting in more training loss of the former. As
a result, sparse crowd samples are frequently overlooked
during training. Sparse crowd counting, on the other hand,
may be critical for some applications.

Since the concept of the density map was initially pre-
sented in [4], crowd counting has been heavily dominated by
density estimation-based approaches. Large-scale datasets,
which are widely available [5, 6], together with deep convo-
lutional neural networks have been utilized in density map
estimation [7]. To obtain high accuracy, various CNN-based
approaches use a multi-column or multi-resolution network
to address the issue of scale changes [8], The size and multi-
column structure of hand-crafted filters limit the solutions,
even though they increase scale variations. Each column in
MCNN [9] is dedicated to a certain level of crowded scene,
though Li et al. [10] revealed that each column in a branch
structure learns almost identical properties. Hossain et al.
2019 [11] attempted to use an attention mechanism to direct
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Fig. 1 Examples of challenging crowd counting scenarios: scale variations, occlusion and perspective distortions

the network to automatically focus on particular global and
local scales suited for the image. However, because this
system only employs the attention model to describe three
different scale levels and still relies on a multi-column
layout, it struggles to cope with congested crowd scenarios.

To overcome the aforementioned challenges, we present
the multi-task attention based crowd counting network
(MACC Net). The focus of the architecture is density
estimation. Both the classification and segmentation are
added to help the model better predict the density map.
The practical significance of our work is to extract global
and perspective information in crowd scenes. In addition,
to filter out background noise from the foreground features,
an attention layer guided by the segmentation map is used,
which in turn helps in accurately predicting the density map.
Meanwhile, the classification phase is used to offer global
contextual information to the density estimate network.
Moreover, it learns to encode global contextual information
by categorizing the density of a particular image patch
into five predefined classes inspired by the method of Gao
et al. [12]. In the meantime, the segmentation map basically
discriminates the regions of background and foreground
from the feature maps. Thus, by predicting the segmentation
map, the attention layer learns to discriminate background
regions from the foreground regions [13]. The following are
the major contributions of the current work:

1. A novel multi-task attention based crowd counting
framework is proposed that fuses information from
multiple sources to make it more resilient to scale
variations and background noise.

2. Density based classification task is proposed to capture
global contextual information for density map estimation.

3. Segmentation guided attention is proposed to filter
background noise from the scene foreground.

4. Wide range of experiments on four state of the art
benchmark datasets reveal the strength of the proposed
framework.

The rest of this paper is arranged as follows. Section 2
covers related work on crowd counting. We present our
suggested framework for multi-tasks with information
fusion in Section 3. The experiments and results on four

benchmark datasets are presented in Section 4. Finally, our
work is concluded in Section 6.

2 Related work

In this part, we present and discuss some of the
most common CNN-based crowd counting and density
estimation techniques. In addition, because the proposed
MACC Net makes use of classification and attention-based
methods, a few related papers are also briefly discussed.

2.1 Crowd counting

The majority of early conventional studies rely on detection-
based approaches that use a body or part-based detector to
find and count persons in a crowd picture. However, the
efficacy of these approaches is limited by occlusions in
extremely density settings.

1. Traditional methods: Regression-based approaches are
used to learn a direct mapping from the extracted
feature to the number of objects in order to solve
the problem. Idrees et al. [3] suggested a method that
extracts features by Fourier analysis and SIFT interest
point-based counting in local patches, both of which are
related methods, whereas Lempitsky et al. [4] suggested
a technique that learns linear mapping between features
and their item density maps in the local region due to
the neglected saliency that generates erroneous findings
in local regions. Furthermore, because learning an
ideal linear mapping is challenging, Pham et al. [14]
employed random forest regression to learn a non-linear
mapping rather than a linear one.

2. CNN-based methods: Density map approaches have
recently outperformed direct regression in terms of per-
formance as a result of the crowd’s spatial distribution.
Density map methods employ a density map as an inter-
mediate representation, which is subsequently summed
to determine the count for a given region. There are
two phases in the general design of density map esti-
mating methods: 1) dot map annotations are used to
create density maps; 2) deep learning methods are used

9286 S. Aldhaheri et al.



to predict density maps from photos. Convoluting the
dot map with a fixed or adaptive Gaussian kernel is
the most common way to build a density map. Hand-
crafted density maps, on the other hand, may not be
optimal in terms of end-to-end learning. For instance,
Wan and Chan [15] proposes customized density maps
for various networks and datasets. Meanwhile, Ma
et al. [16] presents the use of Bayesian loss for calculat-
ing the difference between the dot map and the expected
density map. To tackle scale variations, enhance find-
ings, conduct domain adaptation, or leverage context
information, several deep architectures for estimating
density maps have been developed. The use of crowd
counting methods requires domain adaptation. Zhang
et al. [17] proposes a fine-tuning model with a resam-
pled dataset to adapt new scenes. A GAN-based tech-
nique for converting the synthetic dataset to actual
datasets is proposed by Wang et al. [18] as well as a
new synthetic crowd dataset. Moreover, Kang et al. [19]
provides an adaptive convolution method that includes
camera parameters as side information.

To decrease estimate error, Walach et al. [20] used
layered boosting and selective sampling approaches.
Instead of patch-based training, Shang et al. [22]
suggested a CNN-based estimate approach that accepts
the entire picture as input and directly delivers the final
crowd count. To address the issue of scale variation for
creating density maps, Boominathan et al. [2] reported
the first approach entirely employing convolutional
networks and dual-column architecture.

2.2 Attention-based approaches

Attention-based methods take advantage of the visual atten-
tion mechanism to direct the attention of the counting
network to valuable information in order to increase count-
ing accuracy [21]. Zhang et al. [22] presented the relational
attention network (RANet), which captures the interrelation

information of pixels via both local and global self-attention
methods, resulting in more informative feature represen-
tations. Moreover, Liu et al. [23] presented the attention-
injective deformable network (ADCrowdNet), which uses
an attention map generator to give areas and congestion
degrees for the estimator density map, whereas recurrent
attentive zooming network (RAZN), proposed by Liu et al.
[23], iteratively identifies locations with significant uncer-
tainty and re-evaluates them in high-resolution space. Other
concerns were addressed using visual attention methods,
such as background noise in crowded cluster circumstances
and different density levels due to size changes [24].

2.3 Crowd classification

The term “crowd density level” is defined as the degree
of crowd congestion present in a crowded situation. A
continuous (0.0-1.0) or discrete (0-N) value is often used
to describe elements of a crowded environment. Wu
et al. presented texture analysis characteristics to construct
a continuous density level estimation [25]. Meanwhile, for
discrete density level classification, Fu et al. produced
a deep convolutional neural network [26]. The amount
of uncertainty associated with a particular density level
estimate is the most significant challenge with this endeavor.
There is no consistent system for assigning density level
labels and the precise meanings that accompany them
across datasets. The most responsive technique is that in
which discrete density level labels are directly inferred
from authentic crowd count estimate data, culminating
in a histogram-style distribution with subjectivity and
mishandling minimized to a bare minimum (Fig. 2).

3 Proposedmethod

Based on the success of cascaded convolutional networks
for related multiple tasks [6, 27], we propose two related

Fig. 2 Examples of scenarios where both sparse and crowded situations occur at the same time. The red boxes represent the sparse part while the
yellow boxes refer to the crowded parts
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sub-tasks in a cascaded method, as illustrated in Fig. 3. In
this section, we describe the flowchart of entire networks
and explain detailed information about MACC Net.

3.1 Problem description

Since the inception of density map regression concept, it
has dominated crowd counting approaches. The ground-
truth density map Cgt is obtained by using Gaussian kernels
to convey the head count information across surrounding
regions for a certain scence. The ground-truth density map
in sparse regions is entirely reliant on a few heads, resulting
in regular Gaussian blobs. While multiple congested heads
may spread to the same surrounding pixel in dense areas,
resulting in high ground-truth densities with significantly
distinct density patterns than in sparse regions. Because of
these variations in density patterns, effectively predicting
density maps for both crowded and sparse places is
challenging (See Fig. 2). To tackle the problem of pattern
shift caused by significant density variations and optimize
the predictions for congested regions, we propose Multi-
task Attention based Crowd Counting Network (MACC-
Net). Before attempting to count the people, the model
first partitioning the image into segments of various crowd
levels using ROI density estimation. Scale module selects
the congested regions (based on ROI density estimation)
and zooms the dense areas. As a result, in the enlarged
version, the space between surrounding heads is increased,
resulting in regular individual Gaussian blobs of target
density map Mden In addition, an attention layer led by

the segmentation map is employed to filter out background
noise from foreground features, which contributes in
properly predicting the density map.

3.2 ProposedMACC-Net framework

The proposed model architecture consists of three separate
networks interlinked with each other: the classification
model, the segmentation model, and the regression model.

3.2.1 Density level classification

The crowd density in each image is computed using
the density map and then divided into 10 levels. During
training, the classification net learns to predict the density
of the crowd in the image by encoding global contextual
information. Density estimation is a pixel-wise regression
task that relies on local features and fails to encode global
contextual information. As global contextual information
is also important, the classification phase is used to
provide that contextual information to the density estimation
network. The classification phase learns to encode the
global contextual information by quantizing the density of
a certain image patch into 10 predefined categories. It does
so by dividing the input image into a fixed number of
patches called regions of interest (ROIs), which are then
passed through an ROI pooling layer [28] that converts
all the patches into a fixed-length feature map. The fully
connected layers are added at the end to predict the density
of the crowd in those patches. In order to encode global

Fig. 3 Overall pipeline of the
proposed MACC architecture
with three tasks: 1) Density level
classification to encode the
global contextual information
and learn to scale and zoom in
the dense areas for improved
counting accuracy, 2) Density
Map Estimation to generate the
density map, and 3)
Segmentation guided attention
which filter out background
noise from the foreground
features. This mitigate the
problem of density pattern shift
produced by density differences
between sparse and dense
regions
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contextual information, the image patches are made large
enough that only a few (10-15) can cover the whole image.
The backbone of the classification network is a custom two-
layered (FCN) model that works as a feature extractor. After
that, the resultant local features are further passed through
four convolutional layers. After the fourth convolutional
layer, the path splits into two separate networks: one is the
density map and the other is ROI pooling.

As the feature maps produced by the convolution layer
immediately before the ROI pooling layer encode global
contextual information, those features are directly fed to scale
module. After predict the density level and distribution over
the image, Inspiring by Xu et al,. [29], scale module select
the congest regions (based on the ROI density estimation)
and zoom in the dense areas for improved counting
accuracy. Consequently, the distance between surrounding
heads is expanded in the zoomed form, resulting in regular
individual Gaussian blobs of target density map Mden,
mitigating the density pattern shift. Hence, it changes the
distance between blobs while preserving the same peaks to
scale the ground-truth density map. The module’s objective
is to put dense regions of various scales closer at acceptable
proximity levels (See Fig. 4). We define a closeness level S

for a given area R using ground-truth as follows:

S =
∑PR

i=1 di

PR

(1)

where di is the distance between the i − th person in R

and their nearest neighbor, and PR is the total number of
individuals in the area R. The feature maps produced by this
module are directly fed to density map estimation network
and are concatenated just before the up-sampling layer. The
objective is to train this phase while minimizing standard
cross-entropy loss.

3.2.2 Density map estimation

The input images are passed through a modified version
of the Inceptionv3 model [30]. As this is a pixel-wise

regression task, we first removed the classification layer at
the end of the Inceptionv3 model and only preserved the
convolutional layers. The spatial resolution of the output
density map is very important, and to preserve it, we decided
to remove the first two max-pooling layers.

The output of the final inception module is about 25
times smaller than the input image. The original inception
network accepts an image of size 299 x 299 as input, and
this means that after the final convolutional layer, the output
image will be of size 8 x 8. This is very small, and the
density estimation of the original image cannot be directly
encoded. To address this, an up-sample layer is added just
before the last inception module. As a result, the output
image now has a size of 128 x 128 (1/4).

As highlighted above, a number of modifications have been
made to the original Inceptionv3 model, but these modifica-
tions do not directly change the number of parameters and only
increase the number of operations. This also makes it a fully
convolutional network (FCN) [31] and, thus, it can process
images of any size and generate their corresponding density map.

After the inception module, we have two items, the atten-
tion layer and the intermediate high-level features from the
classification network. The purpose of the classification net-
work and how it helps the density estimation have already
been highlighted in the classification phase (Section 3.2.1).
The main item here is the attention layer.

The approach involves using the segmentation map as an
attention map for density map estimation. The attention layer,
guided by the segmentation map, is used to filter out the back-
ground noise from the foreground features, which in turn
helps in accurately predicting the density map. The attention
layer is trained by learning to directly predict the segmen-
tation map. The segmentation map basically discriminates
the regions of background and foreground from the feature
maps. Thus, by predicting the segmentation map, the attention
layer learns to discriminate background regions from the
foreground regions. This idea was proposed by Qian et al. [32].

The attention map generated by the attention layer is then
applied to the output from the last inception module using an

Fig. 4 Detailed architecture of Scale Module
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element-wise product. As the output from the Inceptionv3
module might have multiple channels and the attention map
only has one channel, the element-wise product is taken
with all the channels of the feature map.

The resultant features from the above are further passed
through a convolutional layer to predict the final density
map. The purpose is to minimize the value of the loss
function, which is the standard mean squared error (MSE).

3.2.3 Segmentation guided attention

The main focus of the architecture is density estimation.
Both classification and segmentation were added to help
the model better predict the density map. The principle
for adding the attention approach is to improve counting
accuracy, whereby the attention approach uses the visual
attention mechanism to guide the counting network’s
attention to valuable information. Where the crowd density
map is typically noisy, crowd segmentation is used as a
support job to assist the front-end CNN generate more
discriminative representations and, hence, purify the output
prediction. The main function of the attention layer is to
filter out background noise from the foreground features,
guided by the segmentation map, which in turn helps
in accurately predicting the density map. Meanwhile, the
segmentation map basically discriminates the regions of
background and foreground from the feature maps. Thus, by
predicting the segmentation map, the attention layer learns
to discriminate background regions from the foreground
regions. The dotted annotations of the given counting
dataset were used to infer ground-truth labels for crowd
segmentation by simple binarization. The binary picture is
initially created based on the head locations, where the value
of key points are 1 and those of other pixels are 0. Although
this is a simple strategy, the experiment indicates that it can
significantly improve density estimation.

The output from the up-sample layer, just before the
final Inceptionv3 block, is passed through an attention layer
to directly predict the segmentation map. As discussed
in Section 3.2.2, the segmentation map basically acts
as an attention map for density estimation. Hence it is
recommended that a direct output of the attention layer
should be prediction of the segmentation map.

The attention layer is basically a convolution layer. To
restrict the output values in the range 0-1, a sigmoid layer is
applied to the output of the attention layer. The resultant is
the predicted segmentation map.

3.3 Loss functions

The entire model is trained in order to optimize the
following unified loss function as described bellow:

L(θ) = Lden(θ) + λ1L
seg(θ) + λ2Lθ (2)

where λ1 and λ2 are the hyperparameters and the
Lden, λ1L

seg, and Lθ denote the loss function of the density
map, segmentation map, and density level classification,
respectively.

3.3.1 Density level classification

In the classification task the objective is to accurately predict
the density level of a given patch. The loss used for this task
is the weighted cross-entropy loss, which is defined as:

�(x, y) = L = {l1, . . . , lN }� , ln = −
C∑

c=1

wc log
exp

(
xn,c

)

∑C
i=1 exp

(
xn,i

) yn,c (3)

where x is the input, y is the target, w is the weight, C is the
number of classes, and N is the mini-batch.

3.3.2 Density map

Density map is a pixel-wise regression task. Hence, we
can use a �2 loss for this phase. To help the model
better learn the task, we have decided to use curriculum
learning. It builds on the idea of learning the simple things
first and then gradually moving toward the more difficult
tasks. The images has a diverse category of crowd density.
Some images have lower density and some have very high
density. Learning to accurately predict the density map for
a very dense crowd is a difficult task. Hence, in curriculum
learning, the model is first trained to predict the density
map for lower density crowd images and higher density
images are then gradually included in the training set. As
such, one can divide the dataset into different sub-sets with
increasing levels of crowd density and, during training,
each sub-set can then be gradually added to the training
dataset [33]. Instead of dividing the dataset into sub-sets, we
are modifying the loss function to incorporate curriculum
learning. The loss is known as curriculum loss [4]. As
this is a pixel-wise regression task, the curriculum loss is
applied to each individual pixel. The pixels of higher values
in the density map correspond to the region of the image
with dense crowds. During training, a dynamic threshold
is used that decides whether a certain pixel is difficult
(higher density). The pixels that have a value higher than
the dynamic threshold are assigned less weight (less than
1), and the pixels that have a value less than the threshold
are assigned more weight (equal to 1). This way, the model
mostly focuses on pixels that have pixel values less than the
threshold (lower density value). At the start, the threshold is
set to the most basic value, and it then gradually increases
during training based on the epoch number or the learning
curve.

The threshold can be calculated using:

T (e) = ke + b (4)
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Table 1 Main information of the crowd-counting datasets

Dataset Year Dens Res N C Min Max Avg Ref

ShanghaiTech A 2016 Low-D 868x589 (*) 482 ∼ 240 k 33 3139 501 Zhang et al [9]

ShanghaiTech B 2016 Low-D 1024x768 716 ∼ 90 k 9 578 123 Zhang et al [9]

UCF-QNRF 2018 Mid-D 2902x2013 (*) 1535 ∼ 1250 k 49 12865 815 Idrees et al [5]

UCF-CC-50 2013 Ultra-High-D 2888x2101 (*) 50 ∼ 64 94 4543 1279 Idrees et al [3]

HaCrowd 2021 Mid-D 1286x2178 219 ∼ 13 k 15 3056 620 HaCrowd [34]

Datasets with different sizes are labeled as (*). Dens, Res, N, C, Min, Max, and Avg denote density level, average resolution, sample number,
crowd annotation, minimum, maximum, and average number, respectively

where b is the initial threshold, k is the rate at which the
threshold value is to be increased, and e is the training epoch
index.

Thus, the above equation is applied to every pixel of the
density map in order to generate a weight for each pixel
in the density map. The resultant is a weight matrix of the
same size as the density map. This weight matrix is then
used in the L2 loss function to calculate the overall loss of
the predicted density map. The weight matrix is denoted by
W and calculated using:

W = T (e)

max
{
Mden − T (e), 0

} + T (e)
(5)

where Mden is the target density map. This is combined with
the L2 loss function to obtain the final loss function for the
density map estimation.

Lden(�) = 1

2N

N∑

i=1

∥
∥
∥W (e) �

(
M̂

den

i − Mden
i

)∥
∥
∥

2

F
(6)

where W(e) is also a function with respect to the training
epoch index e, and � denotes element-wise multiplication.

3.3.3 Segmentation guided attention map

For the segmentation, we can directly use the cross-entropy
loss.

Lseg(�) = − 1

N

N∑

i=1

‖Mseg
i �log

(
M̂

seg

i

)
+(

1 − M
seg
i

)�log
(

1 − M̂
seg

i

)
‖1

(7)

where ||||1 represents the element-wise matrix norm, and �
denotes element-wise multiplication of two matrices with
the same size. The Lseg and the Lden components are
combined during network training.

4 Experiments

In this section, the evaluation metrics and experimental
details are first described. The methods are assessed from
two perspectives: counting performance and density map
quality. To be more explicit, each model or method includes
the mean absolute error (MAE) and mean squared error
(MSE), which are defined as follows:

MAE = 1

n

n∑

i=1

∥
∥
∥Yi − Ŷi

∥
∥
∥ (8)

MSE = 1

n

n∑

i=1

(
Yi − Ŷi

)2
(9)

where N denotes the number of images in the testing set, while
yi represents the ground truth of the individual’s number and
ŷi is the estimated count value for the ith testing image.

4.1 Datasets

We provide the results of the proposed model on four
publicly available crowd counting datasets, ShanghaiTech
[9], UCF-QNRF [5], UCF-CC-50 [3], and HaCrowd [34],

Table 2 The range of crowd counting of each density level on the five datasets

Dataset None Low Medium High Very High Train set Test set

ShanghaiTech A 0 1 − 9 10 − 21 22 − 47 ≥ 48 3249 1089

ShanghaiTech B 0 1 − 2 3 − 4 5 − 10 ≥ 11 4833 1611

UCF-QNRF 0 1 − 10 11 − 30 31 − 78 ≥ 79 9279 3006

UCF-CC-50 0 1 − 20 21 − 57 58 − 121 ≥ 122 342 108

HaCrowd 0 1 − 14 15 − 37 38 − 76 ≥ 77 1485 486
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whereby ShanghaiTech is divided into two portions to give
five datasets for analysis. Table 1 shows the summary
statistics for the different datasets. Moreover, the density
level of the five datasets is shown in Table 2.

4.1.1 ShanghaiTech

ShanghaiTech is one of the most comprehensive large-
scale crowd counting datasets in recent years, with 1198
photos and 330,165 annotations. The dataset was separated
into two portions based on various density distributions:
Part A (ShTechA) and Part B (ShTechB). ShTechA
includes pictures randomly selected from the Internet, while
ShTechB contains images taken on a busy street in a
Shanghai metropolitan area. ShTechA has a significantly
higher density than ShTechB. This results in a demanding
dataset representing a variety of scene types and densities.
However, the quantity of photos in various density sets is
unequal, resulting in low-density sets for the training and
test sets. Nonetheless, the dataset’s size shifts and viewpoint
distortion bring new difficulties and opportunities for the
construction of numerous CNN-based networks.

4.1.2 UCF-QNRF

UCF-QNRF is the most recent and largest crowd dataset
available. It is composed of 1535 dense crowd photos
collected from Flickr, Google, and Hajj film. The dataset
has a larger number of scenes with a greater range of views,
lighting fluctuations, and densities, with counts ranging
from 49 to 12,865, making it more complex and realistic.
Furthermore, the image quality is extremely high, resulting
in a variety of head sizes.

4.1.3 UCF-CC-50

UCF-CC-50 contains 50 low-resolution black-and-white
photographs of incredibly dense crowd scenes. The number
of labeled individuals per image varies from 94 to 4543,
with an average of 1280. It has a variety of densities as
well as perspective aberrations. This dataset is submitted to

a 5-fold cross-validation technique because it only contains
50 images. Hence, even the most powerful contemporary
CNN-based approaches are far from ideal for the its
outcomes due to the tiny amount of data.

4.1.4 HaCrowd

The HaCrowd dataset was gathered from Mecca’s Hajj
scenarios. The data in the initial dataset are from a variety
of places. High-definition cameras collect certain photos
beneath specified roadways and structures. Some of the
films were captured by static surveillance cameras. There
are 19 photos and 27 videos in the original material. Each
video is between 10 and 30 seconds long and depicts
typical Hajj sites, such as Mount Arafat and the Jamarat
Bridge. The total number of images in the HaCrowd dataset
after converting videos into frames is 219. According to
the statistical results, the smallest and highest numbers
of people in the HaCrowd dataset come from high-
definition images, with 15 and 3056 people, respectively.
Unlike previous datasets, the HaCrowd dataset comprises
images of the Hajj for a given activity, and images from
diverse perspectives are taken simultaneously. HaCrowd is a
domain-specific dataset with a high density level and a wide
range of perspectives.

4.2 Implementation details

The training and evaluation experiments are conducted on
NVIDIA GTX 1080Ti GPU using a PyTorch framework
[35]. For training, the “Adam” optimizer [36] is used.
During the training stage, the Lden, λ1L

seg, and λ2L
cls are

set as 10−4. After each round of 25 epochs, the learning rate
is lowered by a factor of 0.5. Image patches with a size of
576 × 768, randomly cropped, are then used to train the
network. The labels also have the same size (Table 3).

4.3 Ablation study

In Table 4, we compare the estimation errors of each
phase, and improved performance can be seen after adding

Table 3 The detailed frames of the different datasets

Dataset Train set Test set

N L M H VH N L M H VH

ShanghaiTech A 368 699 715 672 716 117 319 303 178 172

ShanghaiTech B 2119 409 482 568 656 1233 607 297 343 364

UCF-QNRF 1829 2033 1986 1930 1950 513 635 655 594 609

UCF-CC-50 29 76 79 77 78 6 19 26 19 38

HaCrowd 368 699 715 672 716 117 319 303 178 172
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Table 4 Estimation errors for the proposed method on ShanghaiTech
Part A

Methods MAE MSE

Lden 110.2 171.2

Lden + λ1L
seg 93.8 148.2

Lden + λ2L
cls 89.6 134.4

Lden + λ1L
seg + λ2L

cls 72.4 125.2

the segmentation guided attention and the density level
classification phase. To be precise, we calculated the
result for density map estimation, and we then added
the segmentation guided attention map and the density
level classification. Finally, we computed the result for the
whole network. The ablation study performed using the
ShanghaiTech Part A dataset to gain a better understanding
of the relative contributions of the various components of
our method. Table 4 illustrates the MAE and MSE of the
proposed method.

The first row in Table 4 reports the results of Lden, while
the second and third rows presents the two estimation errors
for Lden +λ1L

seg and Lden +λ2L
cls sequentially. As shown,

the two estimation errors of the latter rows (MAE:93.8,
MSE: 148.2/ MAE:89.6, MSE: 134.4) are less than that of
the first (MAE: 110.2, MSE: 171.2). The last row in the
table states the results of Lden + λ1L

seg + λ2L
cls (MACC

Net), which are (MAE: 72.4, MSE: 125.2).
This experimental result verifies the effectiveness of

the MACC Net and demonstrates the importance of the
attention layer, which is driven by the segmentation map
that filters out background noise from foreground features,
allowing the density map to be predicted more precisely.
Learning to directly forecast the segmentation map is
how the attention layer is trained. The background and
foreground areas are separated from the feature maps by the

segmentation map. The attention layer learns to distinguish
between background and foreground areas by anticipating
the segmentation map.

5 Results

Table 5 lists the experimental results of the proposed
MACC Net and some state-of-the-art algorithms, where the
best result in each column is in bold, while the second
best is italicized. The MACC model achieved competitive
performance for all four datasets, as shown in result Table 5.
The proposed model has excellent counting ability for the
UCF-QNRF dataset, where it has the greatest MAE of
140 and the second best MSE of 240.8. For the HaCrowd
dataset, our MACC Net shows the best performance,
while the Switching-CNN and CSRNet models are close
competitors. However, of the six models tested on the UCF-
CC-50 datasets, the PCC Net has the most significant result.
For the ShTechA and ShTechB, CSRNet has the best results,
although the MACC Net and PCCNet models are close
behind. Generally MACC Net model demonstrates a strong
ability to detect head regions and regress the head count.

Figure 5 presents the visualization and crowd counting
results to provide intuitive evidence of how the attention
layer enhances density map estimation. The input image
is shown in the first row, while the ground truth is shown
in the second. The anticipated density and segmentation
map, on the other hand, appear in the third and fourth
rows, respectively. For a direct comparison, the real and
predicted counts are also displayed on the density maps.
The prediction errors for the top four cases are fairly
minor. Moreover, the model makes accurate predictions in
foreground regions, where in the two top images, the trees
in the background are correctly recognized and the model
discriminate head location and background.

Table 5 MACC Net performance comparison with the state-of-art on five different datasets

ShTechA ShTechB UCF-QNRF UCF-CC-50 HaCrowd

Methods MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

MCNN [9] 110.2 173.2 26.4 41.3 277 426 377.6 509.1 151.8 191.2

CSRNet [11] 68.2 115 10.6 16.0 141.2 242.6 392.9 472.1 55.6 78.7

Cascaded-MTL [37] 101.3 152.4 20.0 31.1 252 514 322.8 341.4 79.4 90.3

Switching-CNN [38] 90.4 135.0 21.6 33.4 228 445 318.1 439.2 66.35 70.02

PCC Net [12] 73.5 124.0 11.0 19.0 148.7 247.3 240.0 315.5 118.3 136

D-ConvNet [39] 73.5 112.3 18.7 26.0 — — 288.4 404.7 80.34 88.11

SARM [40] 64.4 100.2 8.4 13.4 — — 242.3 320.4 — —

AU-CNN [41] 70.4 117.5 8.6 13.4 — — 243.9 320.4 — —

MACC (Our) 72.4 125.2 11.3 15.09 140.3 240.8 289.3 316.2 54.97 69.5

MACC + SM (Our) 67.7 113 9.8 12.9 140.7 238 275.8 311 55.9 68.9
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Fig. 5 Visualization of density and segmentation maps for images from ShanghaiTech part A and HaCrowd dataset. Row 1: Input images; Row
2: Groundtruth; Row 3: Predicted density map; Row 4: Predicted segmentation map

6 Conclusions

In this paper, we proposed a multi-task attention crowd
counting network (MACC Net). We investigated the
effectiveness of learning crowd classification and density
map estimation simultaneously. We include high-level
features into the network beforehand, allowing it to
learn globally relevant discriminative features and, hence,
account for significant count changes in the dataset. The
MACC Net consists of density level classification, density
map estimation (DME), and segmentation guided attention.
Density level classification uses global characteristics to
estimate the coarse density labels of random picture
patches. Meanwhile, the attention layer, which is driven
by the segmentation map, filters out background noise
from foreground features, allowing the density map to be
predicted more precisely. The MACC Net reaches the state
of the art on HaCrowd and UCF-CC-50 datasets, while it
obtains competitive results on the others.
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