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Abstract
Location information is one of the most important factors for many location-based services (LBSs) in the Internet of
Things (IoT). Device-free localization (DFL) has received more attention as it achieves localization without attaching any
electronic device to the target. DFL can be applied to many special scenarios, such as monitoring the elderly living alone,
health care of inpatients, and emergency rescue. In applications based on traditional localization methods, the numerous
receive signal strength (RSS) measurements are collected from wireless sensor networks (WSNs) comprised of sensor pairs
to construct the atoms of learning dictionaries. With recovery algorithms, solutions can be obtained from undetermined
equations using learning dictionaries, which can be mapped to the position index of the target to estimate the accurate
coordinates. However, the numerous RSS data produced by WSN sensor generate high-dimensional learning dictionaries
that cost the sparse recovery algorithm more iterative computation time to derive the target location and more space for data
storage, thus affecting the real-time DFL performance. In this paper, we propose a data dimension reduction method based
on the generalized iterative thresholding algorithm for DFL. Firstly, we reduced the column and row dimensions of the
dictionary, respectively, via principal components analysis (PCA). Then, the dimension of the observed vector was reduced
correspondingly. Finally, the new underdetermined equation was solved via sparse coding with an iterative p-thresholding
algorithm in signal subspace, and the target location was estimated accurately. Experiments on public datasets demonstrated
that the proposed method outperforms the current alternatives by improving the computation efficiency of DFL systems and
taking less time to locate the target, implying its good applicability to IoT scenarios with high real-time requirements.

Keywords Device-free localization · p generalized thresholding function · Dimension reduction ·
Principal component analysis

1 Introduction

Target location is one of the most fundamental pieces of
information in the Internet of Things (IoT). Traditional
positioning technologies include the global positioning
system (GPS), Bluetooth, ultrasonic, and radio frequency
identification (RFID) [1], which often require electronic
equipment installed on the targets, such as electronic
identification tags and wireless sensor nodes. Hence the
name device-based localization (DBL). However, DBL
cannot be applied to targets unwilling or unable to carry
those devices, e.g., the elderly or invaders. Device-free

� Linghua Zhang
zhanglh@njupt.edu.cn

Extended author information available on the last page of the article.

localization (DFL) emerges as promising technology since
it does not require any device and can be widely adopted
in many special applications with space constraints, such
as elderly behavior recognition in smart homes, target
detection in disaster rescue, and indoor invader surveillance
in security defends, as shown in Fig. 1.

To achieve DFL, multiple radio frequency (RF) sensors
have been installed in advance to detect, locate and track
targets in the area of interest. A typical DFL system consists
of numerous pre-installed wireless sensor nodes, i.e., access
points (APs), which act as transceivers to transmit and
receive radio signals. When the target equivalent to an
obstacle is at a different position in the area, the radio signal
links passing through it are attenuated. Thus, the target
location can be determined by detecting and estimating the
weak signal changes.

Youssef et al. [2] first conceptualized device-free passive
localization and formulated DFL as a fingerprint matching
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Fig. 1 Illustration of a DFL system applied to security monitoring in a smart home with IoT

problem. Zhang et al. [3] proposed three geometric tracking
approaches for eliminating noise and improving the tracking
accuracy of DFL systems, i.e., midpoint, intersection,
and best-cover algorithms. To solve the ill-posed inverse
problem,Wilson and Patwari [4] regarded DFL as an inverse
problem, for which they presented a linear model and
utilized Tikhonov regularization to obtain resultant images
for DFL by radio tomographic imaging (RTI). The above
studies provided an early foundation for DFL research.

Related works inspired by image processing methods
in computer vision and pattern recognition imply the
feasibility of classification methods in solving localization
problems, e.g., deep neural networks with autoencoders
[5, 6]. Among the different classification methods, sparse
coding has attracted the attention of many researchers
due to its simple decision rules, high accuracy and
high efficiency [7]. Localization can be transformed into
sparse representation classification (SRC) problems for
DFL systems [8]. In other words, sparse solutions of
underdetermined systems can be reached by sparse coding
algorithms with sparsity constraints, and the target location
can be recovered by seeking the relationship between the
solution and the index of the preset monitoring area grids
occupied by the target [9–12].

Solving the DFL problem via sparse coding is a process
of inferring the target location from the sparse coefficient
solutions obtained from underdetermined systems with
observed signals and base dictionaries. Recently explored
approaches to DFL via sparse coding included orthogonal
matching pursuit (OMP) [10, 13, 14], basis pursuit linear

programming (BP-LP) [8, 14], and iterative shrinkage-
thresholding algorithm (ISTA) [11, 15–17]. However, BP-
LP [8] lacks efficiency of computations, and the OMP
algorithm in [10] cannot provide sufficient DFL accuracy.
Li et al. [9] considered a dictionary learning approach
based on the difference in convex programming and further
improved the DFL accuracy with a tracking neighborhood
rule. Recently, Huang et al. [18] and Han et al. [19]
proposed improved sparse coding algorithms (ISCAs) with
log-regularizers, which positioned targets in more complex
environments robustly. To overcome the low accuracy and
insufficient robustness of DFL, Zhao et al. [20] considered
a block sparse scheme, that achieved robust performance
under severely noisy conditions. However, most of the
above algorithms failed to consider the effect of high-
dimensional data on computing efficiency. Recent work
showed that sparse coding via the iterative shrinkage
thresholding algorithm (SC-ISTA) [11] with the L1 Norm
as penalty function has good localization accuracy and
robustness. However, the L1 Norm applied in the above
algorithm still has room for improvement in seeking a sparse
solution to the L0 Norm.

Related research [19, 21–25] showed that using general-
ized penalty functions other than the L1 Norm to approxi-
mate the sparse solutions of the L0 Norm can achieve good
performance with nonconvex minimization optimization.
In a previous study [26], we proposed a sparse coding-
iterative p-thresholding algorithm (SC-IpTA) and consid-
ered a thresholding function with parameter p as the penalty
function to derive sparse solutions and achieve better DFL
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performance, where the accuracy and robustness of the
proposed method were verified with localization results.

To some extent, the accuracy is restricted by the number
of sensor nodes. To achieve improved accuracy and enlarged
areas of interest, most methods resort to more sensor
nodes, leading to greater measurement data volume. With
the RF model [27], the total number of wireless links
between sensor node pairs increases dramatically with the
number of sensor nodes, which places a greater burden on
computing and data storage. In order to cater to the real-time
requirements of IoT, the time cost of DFL systems needs to
be reduced.

With high dimensionality, data mining is susceptible to
the curse of dimensionality, a natural countermeasure of
which is dimension reduction, where the high-dimensional
feature space is projected onto a low-dimensional subspace.
The most common dimension reduction method is principal
component analysis (PCA) [28], which seeks a small
number of orthogonal basis vectors to represent the
maximum variance of the variables in the dataset.

The dimensionality of dictionaries can be reduced
through the orthogonal transformation with PCA, which
converts a series of possibly correlated vectors to linearly
unrelated vectors, termed principal components. In order
to reduce dimensionality, new features should be identified
to reveal the main characteristics of the original data, each
of which is a linear combination of orthogonal features.
Eigenvalue decomposition (EVD), commonly utilized for
signal features extraction and data representation, has wide
applications such as image compression.

Recently, the research on DFL has shifted its focus
to efficient computation after dimension reduction. To
reduce the amount of localization data and the storage
costs of DFL systems, Liu et al. [29] proposed a
two-level controlling redundancy reduction approach for
indoor DFL based on PCA node reduction. On the
basis of [9], Li et al. [30] further proposed an outlier
suppression approach via non-convex robust PCA for safe
localization with dimension reduction. Wang et al. [31]
achieved device-free simultaneous wireless localization
and activity recognition (DFLAR) with a wavelet feature
using RSS signal features extracted by PCA. Shi et al.
[32] presented a computationally efficient approach for
device-free indoor location tracking systems based on
channel state information (CSI) metrics, which proved
efficient and robust for high-dimensional CSI vectors due
to the PCA-based dimension reduction. However, those
methods mentioned above only considered one single target.
Huang et al. [11] performed sparse coding with subspace
techniques in low-dimensional signal subspace, achieving
high localization accuracy and robustness while reducing
time cost.

In this paper, SC-IpTA based on generalized thresholding
is first introduced, which achieves good accuracy with high
robustness. Then, an enhanced generalized thresholding
scheme based on dimension reduction is derived to improve
the computational and storage efficiencies of DFL systems,
which overcomes the increased computation complexity
induced by the high-dimensional RSS sampling data. In
the meantime, the multi-target performance of the proposed
method is also analyzed.

Firstly, the original RSS data for a single target and
multiple targets were collected from the Sensing and
Processing Across Networks (SPAN) Lab at the University
of Utah [27]. Then, the overcomplete dictionary D was
constructed with RSS data via matrix transformation. After
that, dimension reduction was performed for each row
and column of matrix D with PCA to yield the subspace
dictionary matrix D∗. In addition, the same operation is
performed for the transformation from the observation
vector b to b∗, as depicted in Fig. 2. Next, the objective
function constructed by the regularized constraint term with
a p generalized thresholding was formulated as a non-
convex optimization problem. Finally, the sparsest solution
of the underdetermined equation was obtained using SC-
IpTA, and the target location was estimated.

Contributions of the paper are summarized in the
following three aspects. 1) A subspace sparse coding
iterative p-thresholding algorithm(SSC-IpTA) is proposed
by reducing the dimension of learning dictionaries and
retaining the trunk of the most important information to
provide a higher computing efficiency and save data storage
space. 2) The robustness of the algorithm is evaluated
numerically under different ambient noise levels. 3) The
multi-target accuracy of the proposed algorithm is verified.

The structure of the paper is as follows. In Section 2,
DFL systems and SRC models are introduced. Section 3
elaborates on the improved SSC-IpTA. In Section 4, the
performance of the proposed algorithm is evaluated. In
Section 5, conclusions are drawn.

2 DFL systems and the SRCmodel

2.1 DFL systems

In DFL systems, multiple sensor nodes are installed
opposite each other on the edge of the areas of interest,
as shown in Fig. 3. In order to facilitate the inference of
the target location, the area is divided into grids, namely
reference points (RPs), and the target is assumed to be in one
of the RPs. Each sensor sends radio while the rest receive
RSS signals simultaneously, forming sensor pairs.As the
target moves into a different RP, the wireless links passing
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Fig. 2 The SRC model based on PCA

through it are blocked, and the received RSS measurement
configurations differ, showing the specific characteristics of
the target location. Thus the target location can be inferred
by detecting the changes in RSS signals.

Since the above RSS measurement configurations
represent different classes, they can be considered an image
classification problem. In addition, the targets are far fewer
than RPs in a typical DFL system.Hence the characteristics
of sparsity. Therefore, the problem can be dealt with under
SRC.

2.2 SRCmodel and sparse coding

SRC [33] is adopted to recover the observation signal from
the underdetermined equation with overcomplete dictio-
naries with the constraints of the minimum reconstruction
error. In addition, the observed vector b can be expressed
as a linear combination of dictionary matrix D and sparse
coefficient vector x, as shown in Fig. 2. The solutions of
coefficient vector via sparse coding are featured with spar-
sity, i.e., most elements are zero. The DFL problem can be

Fig. 3 A typical DFL system
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solved by mapping the index of the sparse coefficient vector
with the target location.

Sparse coding is the process of computing coefficient
vectors based on a set of observed signals and known
dictionaries, i.e., solving inverse problems.

The linear equation for Fig. 3 can be represented as:

bm×1 = Dm×NxN×1 (1)

DFL systems require more RP measurement repetitions
to construct the dictionary for better accuracy of the
target localization in the offline stage, which causes N
to become larger than m. When N > m, the equation
becomes an underdetermined system with none-unique
solutions, making it an ill-posed problem. With proper
sparse constraints, the sparsest solution can be obtained, and
the problem becomes well-posed.

Since the sparsest solution based on the L0 Norm is an
NP-hard problem [34], suboptimal solutions are solved by
orthogonal matched pursuit (OMP) algorithms, which do
not apply to the DFL problem with high-dimensional data
due to inefficiency. According to [13] and [14], the sparsest
solution can be obtained by relaxing the L0 Norm to an
L1 Norm optimization problem. The regularization method
is used to solve combinatorial optimization problems
consisting of an error term and an L1 penalty function term,
i.e.:

x∗ = argmin
x

1

2
‖b − Dx‖22 + τ‖x‖1 (2)

where τ is the regularization parameter.
Assuming that there are K APs, and θi,j represent the

RSS measurements received by the i-th AP from the j -th
AP, vector θ i can be expressed as:

θ i = [θi,1, θi,2, · · · , θi,K ]H (3)

where θi,i is equivalent to the signal value transmitted by
the i-th AP and H is the conjugate transpose operator. All
θ i representing RSS values of the links compose matrix �

as follows.

� = [θ1, θ2, · · · , θK ]H (4)

The operation of the DFL system consists of two stages:
offline training and online testing.

1) At the offline training stage, the area of interest of the
DFL system is discretized into G RPs, each labeled
with an RP index. Suppose the target is in the g-th RP
and Z RSS matrices can be produced as follows:

{�g,1, �g,2, · · · , �g,t , · · · , �g,Z} (5)

where �g,t is the t-th measurement RSS matrix of the
g-th RP, and Z is the repeated number of sampling at
each RP.

The RSS matrix can be transformed into a column vector
dg,t . Thus, the following matrix Dg can be constructed with
the Z sample vector of the g-th AP as the column.

Repeating the experiment Z trials produces G sample
matrices, and N = G × Z sample vectors are combined to
construct a matrix D.

2) At the online testing stage, the observed signal with the
target in the area of interest is the vectorization of RSS
matrix � .

The target assumed to be in the g-th RP, belongs to the
g-th class. If sufficient sampling is taken in the g-th RP
to ensure N > m, the observed signal vector b can be
approximated using sampling matrix Dg .

b = Dgxg =
Z∑

t=1

dg,t xg,t (0 ≤ g ≤ G) (6)

In (6), xg = [xg,1, xg,2, · · · , xg,t , · · · , xg,Z] ∈ RZ is the
sparse coefficient vector, and xg,t ∈ R is the coefficient of
the element.

According to [11] and [26], the linear representation of
the observation vector can be sparsely represented with N

sample vectors of the dictionary.

b = Dgxg = Dx (7)

where

x = [0, · · · , xg, · · · , 0]H
= [0, · · · , xg,1, xg,2, · · · , xg,t , · · · , xg,Z︸ ︷︷ ︸

xg

, · · · , 0]H (8)

Equation (7) is a sparse representation problem that can
be solved by SRC, which reconstructs the input observed
signal with a few atoms selected from the overcomplete
dictionary and achieves the minimum reconstruction error.

2.3 Sparse Coding-Iterative p-Thresholding
Algorithm

To solve the L1 minimization problem in (2), Huang et
al. [11] presented the SC-ISTA using the soft thresholding
operator.

(Sτ (x))k = sgn(xk)max{0, | xk | −τ } (9)

To solve the optimization problem, we introduced a
generalized thresholding operator in [26], as can be defined
as follows:

Sp
τ (xi ) = sgn(xi )max{0, | xi | −τ | xi |p−1} (10)

The algorithm can be developed using the thresholding
function as:

xi+1 ← Sp
τ (xi + DT b − DT Dxi ) (11)
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By solving (10) and (11), the sparse solution of (2) can
be obtained.

x∗ = {x1, · · · , xN } = {x1,1, · · · , xg,t , · · · , xG,Z} (12)

where t = {1, · · · , Z}. With x∗
g = ∑Z

t=1 x∗
g,t , (12) can be

transformed as follows:

x∗ = {x∗
1, · · · , x∗

g, · · · , x∗
G} (13)

where x∗
i = {x∗

i,1, · · · , x∗
i,Z}.

The location of single target is estimated to be within
the �-th RP, where � is the index of the maximal nonzero
element determined as follows:

� = argmax
g

{x∗
1, · · · , x∗

g, · · · , x∗
G} (14)

For multiple targets, we can estimate T targets at the
�1-th RP,..., �T -th RP, where �1, · · · , �T are the elements
with decreasing order in x∗, given by:

{�1, · · · , �T } = arg max
1,··· ,T {x∗

1, · · · , x∗
T , · · · , x∗

G} (15)

Indices {�1, · · · , �T } of the maximum nonzero elements
of x∗ can be considered the target locations.

3 Proposed algorithm

Previous research has shown that existing OMP, BP, and
ISTA take more time as the data grow, which affects
their application in IoT scenarios with high real-time
requirements. To address the issue, a subspace SC-IpTA
(SSC-IpTA) is presented. Firstly, the columns and rows of
the dictionary matrix constructed by the RSS measurements
were reduced. Next, a new dictionary was built in the
principal component subspace, the dimension number of
which was determined by the cumulative energy ratio
(CER). Then, the coefficient vector was obtained via the

sparse coding algorithm. Lastly, the experimental evaluation
was conducted to verify the algorithm’s performance.

The flowchart of the proposed SSC-IpTA is summarized
in Fig. 4.

The dictionary should be constructed and normalized
after the original RSS data are ready in the offline training
stage.

3.1 Column dimension Reduction for dictionary D

Dictionary D consisting of the original RSS data can be
expressed as:

D = [D1,D2, · · · ,Dg, · · · ,DG] (16)

Dg = [dg,1, · · · , dg,i , · · · , dg,Z] ∈ Rm×Z (1 ≤ g ≤ G)

(17)

where dg,i is the column vector of the i-th column of
Dg . The main steps of column dimension reduction are
summarized as follows.

(1) Zero mean normalization for the dictionary

First, each column of D (denoted as Di ) subtracts the
mean of D to form a new column.

Di ← Di − 1

G

G∑

i=1

Di (18)

Then, the updated columns are divided by the standard
variance, i.e.:

D′
i ←

Di − 1
G

G∑
i=1

Di

σ
(19)

Fig. 4 Flowchart of the DFL system based on SSC-IpTA
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Where the standard variance is defined as:

σ =

√√√√√
(

G∑
i=1

(Di − 1
G

G∑
i=1

Di )2

G − 1
(20)

Thus the normalized matrix is:

Dnomal = [D′
1,D

′
2, · · · ,D′

g, , · · · ,D′
G] (21)

Each column of the matrix Dnomal represents the
different groups of the normalized value of the RSS matrix
sampling.

(2) Calculation of the covariance matrix C

At the g-th RP, we have:

D′
g = [d′

g,1, d
′
g,2, · · · , d′

g,i , · · · , d′
g,Z] (22)

The covariance matrix C of D′
g in (24) is

C = D′
gD

′H
g (23)

or

Cg = 1

Z

Z∑

j=1

d′
g,jd

′H
g,j (24)

where Cg ∈ Rm×m .

(3) Singular value decomposition (SVD) on the covari-
ance matrix

After SVD, we have:

Cg = Ug

∑
g
Vg (25)

where, Ug = {ug,1, ug,2, · · · , ug,m}, and Ug ∈ Rm×m

is the normalized singular vector matrix whose vectors
denote the most important features of dictionary D.

∑
g =

diag{σ1, · · · , σm} is the singular value diagonal matrix, all
singular values of which are sorted in descending order. The
first column vector ug,1 is related to the maximum singular
value σ1, denoting the most important feature of matrix
Dg . As all RPs are transformed with SVD, all first column
vectors of the matrix Ug of the overall RPs are selected to
form a semi-transformation matrix U as follows:

U = {u1,1, u2,1, · · · , ug,1, · · · , uG,1} (26)

All vectors of matrixU correspond to the maximum singular
values of the RPs.

3.2 Row dimension reduction for dictionary D
and observed vector b

(1) Firstly, the above semi-transformation matrix U is
processed with zero mean normalization. Then, EVD
is performed to produce the covariance matrix � of the

normalized matrix Unomal .

� = UnomalDH
nomal = W

∑
λ
WH (27)

where W is the matrix constructed by the singular
vector wi of the matrix �, which can be expressed as
follows:

W = {w1,w2, · · · ,wi , · · · ,wm} (28)

In (27),
∑

λ is the diagonal matrix expressed as:

∑
λ = diag{λ1, λ2, · · · , λi, · · · , λm},

λ1 ≥ λ2 ≥ · · · ≥ λm
(29)

where the element λi on the main diagonal is the
eigenvalue in descending order. We can select the first
k eigenvectors to form the projecting matrix Wk as
follows:

Wk = {w1,w2, · · · ,wk} (30)

(2) The selection of characteristic number k for the
principal component space

Here, CER is defined as the ratio of all eigenvalues from
1 to k to the sum of all eigenvalues, i.e.:

CER =

k∑
i=1

λi

m∑
i=1

λi

≥ χ, (1 ≤ k ≤ m) (31)

We should make a trade-off between dimension and
localization precision by selecting the proper DFL CER
higher than the threshold χ to meet the requirements.
Here, χ = 99% and the corresponding k were selected
to guarantee the localization performance. As a result, the
matrix Wk ∈ Rm×k can be determined as follows:

(3) The low-dimensional dictionary matrix Dk and the
low-dimensional vector bk can be obtained using the
projecting matrix Wk .

Dk = WH
k U ∈ Rk×G (32)

bk = WH
k b ∈ Rk×1 (33)

Finally, low-dimensional sparse solutions can be
obtained by solving the optimization problem in (34),
which is similar to the procedure of SC-IpTA.

x∗ = argmin
x

1

2
‖bk − Dkx‖22 + τ‖x‖1 (34)

The pseudocode of SSC-IpTA is as follows.
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4 Performance evaluation

4.1 Experimental setups

A dataset is dowloaded from the SPAN Lab [27]. The
monitoring area is depicted in Fig. 5, which is 21 feet
by 21 feet outdoor square divided into 35 RPs (the third
grid for the bottom left is occupied by a tree). A total of
28 APs were installed on the parameters. A more detail
configuration can be found in [11, 27]. In each grid, every
30 RSS measurement samples are gathered, of which 25
samples are used to construct the learning dictionary for
training and the observation vector for testing, respectively.
The experiments were performed in MATLAB R2019b and
a 64-bit Windows 10 computer with 8 GB RAM and Intel
E3-1230 CPU @ 3.3 GHz.

4.2 Experiment metrics and other settings

To evaluate the performance of the proposed method,
alternative algorithms such as SSC-OMP and SSC-ISTA
were also applied with L0 and L1 regularization terms,
respectively, as references.

Localization accuracy was employed as the metric to
compare the performance of the algorithms. The accuracy is
defined as the ratio of correctly estimated samples Nc to the
total test samples Nt .

Assuming The actual target location in the i-th RP
(xi, yi) and the corresponding estimated location coordinate
is (x̄i , ȳi ), the distance between the two sets of coordinates
is the localization error (LE). The average localization error
(ALE) is the average value LE at each RP.

ALE =
G∑

i=1

√
(xi − x̄i )2 + (yi − ȳi )2

G
(35)

Since the RSS samples are inevitably interfered with by
environment noise, different levels of Gaussian noise were
added to enhance the robustness.

Table 1 lists the typical metrics for the experiment.

4.3 Results and discussion

4.3.1 Performance analysis of single target localization in
low-dimensional space

It is assumed that the target is in the 14th grid in Fig. 5, and
the signal-to-noise ratios (SNRs) of the dictionary and the
observed signal are both 20 dB.

Different levels of noise are added to the dictionary to
evaluate the ALE of the algorithm at the observed signal
SNR of 20 dB, as shown in Fig. 6. As k increases from
10 to 784, the ALE decreases from 12 feet to nearly zero.
Especially when k = 15, the performance of SSC-IpTA
(green line) is similar to that of SC-IpTA (pink line) without
dimension reduction.

Table 1 Typical value of numerical computation

Parameter Value

Maximum Iteration Number M 200

Regularization parameter τ 0.1

Thresholding value ε 0.1

Shrinkage parameter p 0.9

Typical characteristic number k 5,10,15,20,25,784
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Fig. 5 Experiment diagram of
DFL based on the dataset of the
SPAN lab

As shown in Fig. 7, the accuracy of SSC-IpTA and the
other algorithms improves as the characteristic number k

increases. When k increases from 12 to 15, the accuracy of
SSC-IpTA increases from 30% to almost 100%, which is
superior to SSC-ISTA and comparable to SSC-OMP.

According to Fig. 8, ALE decreases to zero as the SNR
of the dictionary increases under the condition that k = 20
and the dimension of the dictionary is 20 × 35. The ALE
of SSC-IpTA decreases rapidly as the SNR of the observed
signal increases from 15 dB to 20 dB and to noiseless. At
dictionary SNRs above 15 dB, ALE is approximately zero
when the observed signal SNRs are 20 dB and noiseless.

Table 2 shows the computation time of SC-OMP, SC-
ISTA, and SC-IpTA at the RP index of 15 and the
maximum number M of 200. The time cost of SC-ISTA
is lower than those of SC-IpTA and SC-OMP before
dimension reduction. In addition, the computing efficiencies

of all algorithms are improved by two or three orders
of magnitude with dimension reduction. Moreover, the
efficiency of SSC-IpTA is superior to SSC-ISTA and SSC-
OMP, thus satisfying the real-time requirements of IoT.

4.3.2 Comparison with state-of-the-art DFL methods

The proposed method was compared with another two novel
state-of-the-art DFL algorithms, ISCA [18] and BSCPO
[20],based on the same dataset.

According to the Fig. 6 in [26], the performance of SC-
IpTA can be improved by measureing the sparsity with the
distinctive capability of the proposed generalized threshold-
ing algorithm with adaptive parameter p. Meanwhile, most
of the useful information can be extracted with PCA. The
comparison results are presented in Table 3. The proposed
algorithm achieve the highest localization accuracy at the

Fig. 6 Comparison of ALE of
the algorithm with the
characteristic number k of 10,
15, 20, and 784
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Fig. 7 Comparison of accuracy
between the SSC-IpTA and
alternative algorithms with
different characteristic numbers
k
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Fig. 8 Comparison of ALE
between the algorithms with the
observed signal SNR of
noiseless, 20 dB, and 10 dB,
k = 20, and the dictionary
dimension of 20 × 35
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Table 2 Time costs of different
algorithms Algorithm Time cost(s) Algorithm Time cost(s)

SC-OMP 0.4011 SSC-OMP 0.000339

SC-ISTA 0.0104 SSC-ISTA 0.000398

SC-IpTA 0.0241 SSC-IpTA 0.000151
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Table 3 Performance
comparison with other
algorithms

Compared Algorithm SNR=15dB(dictionary)

SSC-OMP [10] 71.2%

SSC-ISTA [11] 85.4%

SSC-ISCA [18] 85.0%

SSC-BSCPO [20] 86.1%

SC-IpTA [26] 90.6%

The proposed 100%

Fig. 9 Illustration of the DFL
system with multiple persons
(N = 2)

Fig. 10 Accuracy of SSC-IpTA
with different k values for
multiple targets (N = 2)
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dictionary data SNR of 15dB, the test signal SNR of 20 dB,
and k=15, i.e., the proposed method outperforms the other
algorithms in terms of robustness and accuracy.

4.3.3 Performance analysis of multi-targets localization

It is assumed that N(N > 1) targets, e.g., N = 2, are in the
area of interest, one at RP-24 and the other at RP-28, as depic-
ted in Fig. 9. As shown in Fig. 10, the accuracy levels of
SSC-IpTA are compared under different k values and the
dictionary SNRs of 17 dB, 18 dB, 19 dB, and 20 dB, respec-
tively. the results show that when k is below 5, the accuracy
is nearly zero. In contrast, when k is above 15, the accuracy
reaches 60%. When k = 25, the performance is similar to
that when k = 784, and the accuracy is almost up to 100%.

5 Conclusion

In order to improve the computation efficiency and reduce
the time delay of DFL system while maintaining high
accuracy, a generalized thresholding algorithm based on
dimension reduction with PCA for DFL was proposed
in this paper. The method formulates the sparse model
based on the DFL problem into a subspace problem.
Numerical results showed that the proposed algorithm
could improve the computation efficiency of DFL systems
and take significantly less time than other algorithms,
implying its applicability to IoT scenarios with high real-
time requirements.
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