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Abstract
Motion planning in uncertain environments is a common challenge and essential for autonomous robot operations.
Representatively, the determinized sparse partially observable tree (DESPOT) algorithm shows reasonable performance
for planning under uncertainty. However, DESPOT may generate a low-quality solution due to inaccurate searches and
low efficiencies in the belief tree construction. Therefore, this paper proposes a high-efficiency online planning method
built upon the DESPOT algorithm, namely, the DESPOT with discounted upper and lower bounds (DESPOT-DULB)
algorithm, to simultaneously improve the efficiency and performance of motion planning. Particularly, the node’s
information is represented by combining the upper and lower bounds of the node (ULB) in the forward exploration
of the action space to reasonably assist the optimal action selection. Then, a discounted factor based on the depth
information of the belief tree is introduced to reduce the gap between the upper bound and lower bound both in the
action space and observation space. As a result, the proposed method can comprehensively represent the information of
the node to ensure a near-optimal forward search. The theoretical proofs of the proposed method are provided as well.
The simulation results, including three representative scenario comparisons and a parameter sensitivity analysis, dem-
onstrate that the proposed method exhibits favorable performances in many examples of interest.
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1 Introduction

Planning under uncertainty is a common challenge in many
robotic applications, such as visual tracking [1] and autono-
mous navigation [2, 3]. Generally, the robot is difficult to op-
erate accurately due to the uncertainty originating from sensor
noise, imperfect robot control, and changing environments.

Recently, the partially observable Markov decision
process (POMDP) [4] has provided a principled mathe-
matical framework for robot decision-making and plan-
ning under uncertainty. Therefore, the POMDP has under-
taken a wide range of challenging tasks in robotics, e.g.,
autonomous driving [5], grasping [6], robot rescue [7],
and intelligent tutoring systems [8]. However, POMDP
planning is computationally intractable due to various
sources. The state space and belief size grow exponential-
ly with the number of states, also known as the “curse of
dimensionality”. Moreover, the number of action-
observation histories grows exponentially with the plan-
ning range, which is the “curse of history” [9]. Both the
curse of dimensionality and history cause an exponential
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growth in computational complexity, especially for large-
scale POMDP planning.

In addition to computational difficulties, the POMDP plan-
ning has certain challenges due to the existing uncertainty.
Currently, various attempts have beenmade to effectively deal
with the uncertainty. Examples include Bayesian networks
[10], convolutional neural networks [11], and α-vector policy
graphs [12]. However, both Bayesian networks and
convolutional neural networks need to train the network pa-
rameters and the trained parameters are not guaranteed to be
optimal. Meanwhile, when the number of α-vectors is large,
the policy graph explodes exponentially and cannot be ex-
plained. Fortunately, Kocsis et al. [13] introduced a search
framework (Monte Carlo tree search) to reduce the uncertainty
through multiple simulations and calculations. Then, Silver
et al. [14] introduced partially observable Monte Carlo plan-
ning (POMCP) to solve real-time uncertainties in large tasks
by combining MCTS and a partially observed upper confi-
dence tree (PO-UCT) algorithm [15]. However, the approach
still faces some challenges, such as being misguided by the
upper confidence bound (UCB) heuristic of the UCT algo-
rithm and an overly greedy convergence.

To further improve the performance of planning under
uncertainty, Somani et al. [16] constructed a sparse belief tree
through executing a series of searches. In the belief tree, the
new child node was expanded based on the node’s upper
bound information, which was calculated by the particles of
the current node performing multiple simulations. However,
there are two difficulties in the belief tree search stage. The
first difficulty is that the current optimal action branch may be
wrongly selected with a high probability because the infor-
mation of the node may be not considered sufficiently. A
reasonable representation of the child node information is
helpful for the exploration of belief trees. The information
of the nodes on the belief tree not only depends on the upper
bound but also needs to consider the lower bound. To con-
struct the optimal belief tree, the combination of upper and
lower bounds is considered an exploration item for represent-
ing the node’s information comprehensively and improving
the efficiency of a search. The second difficulty is that the
uncertainty of the node has slight fluctuations because the
initial upper and lower bound of the node are prone to
change. To relieve the fluctuations, many researchers are con-
sidered that adjusting the exploration item is a desirable ap-
proach. Bougie et al. [17] encouraged high-level explorations
by introducing hyperparameters to adjust fast and slow re-
wards in the exploration item. Chen et al. [18] improved
value function approximation by decreasing the exploration
discount factor. However, the discount factor is a constant
that does not take into consideration the effect of the node’s
depth in the above methods. Therefore, a depth function is
introduced as a dynamic discount factor to adjust the explo-
ration item.

In this paper, the combination of upper and lower bounds
of the node is considered to solve the problem of incomplete
representation of the node’s information. In addition, the
depth function as a discount is introduced to relieve the fluc-
tuation of the uncertainty. Therefore, discounted upper and
lower bounds of the node are introduced for the DESPOT
algorithm to construct the belief tree, as shown in Fig. 1.
The proposed online planning method, named DESPOT-
DULB, improves the search strategy of the traditional
DESPOT by introducing ULB in a forward exploration of
action selection and introducing the discount factor in
forwarding explorations of action and observation selections,
respectively. As a benefit, the uncertainty is reduced, and fa-
vorable performances can be attained, such as performances
that show high rewards and high efficiency. The main contri-
butions of this paper are listed as follows:

1. In the belief tree expansion stage, the information of the belief
node is represented by combining the node’s upper and lower
bounds. Then, the belief tree is expanded based on the node’s
information. Compared with merely using the upper bound
or the lower bound of the node, the proposedmethod is useful
for efficiently searching for the optimal action.

2. Because of the slight fluctuations in the uncertainty of the
belief node, a depth function is proposed as the discount
factor to adjust the gap between the upper bound and
lower bound of the node to ensure a reasonable reduction
in uncertainty. As the uncertainty decreases, the perfor-
mance of the proposed method can be further improved.

3. The proposed search criteria have certain theoretical guar-
antees and the convergence of the reconstructed belief tree
is demonstrated. Meanwhile, the experimental results
show that DESPOT-DULB has performance improve-
ments on tasks of interest.

This paragraph has been reorganized as follows. The rest of
this paper is organized as follows. Section 2 shows the related
work. Section 3 reviews the background on POMDP model.
Section 4 describes the online POMDP algorithm based on the
discounted upper and lower bounds. The related theoretical
analysis of DESPOT-DULB are shown in Section 4, with
Appendix A and B providing detailed theoretical proofs.
Section 5 presents the experimental results regarding the per-
formance of DESPOT-DULB, compared with standard
POMDP benchmarks. The paper is concluded in Section 6.

2 Related work

Generally, two kinds of approximate POMDP planning
methods are adopted in the current research, namely, offline
planning [19–21] and online planning [14, 16, 22]. These
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methods have been applied to many fields but there are still
some challenges. For example, the efficiency is low, and the
performance is poor for large-scale spaces. Although offline
planning has made great progress [20, 21], the approach is
difficult to expand to large POMDPs because the number of
states increases. Online planning can expand to large
POMDPs, but online planning is slower than offline planning
because a search needs to be executed at each step. Online and
offline planning have been combined to further improve the
planning performance efficiently [23].

In previous work [24], the upper bound as a heuristic was
usually more popular for explorations compared with the low-
er bound. Many algorithms, such as HSVI and SARSOP, can
deal with POMDP tasks effectively by relying on the upper
bound as a heuristic. Meanwhile, the state-of-the-art online
algorithms DESPOT [16] and POMCP [14] have been widely
used in the field of robotics, e.g., vision planning [25] and
contact manipulation [26]. Both POMCP and DEPSOT
adopted the idea of the upper confidence bound (UCB) to
search for the optimal action for constructing the search tree.
POMCP used a particle to perform multiple simulations for
estimating the information of the leaf node to effectively
search the optimal action. POMCP++ [27] further improved
the performance of the algorithm by using a set of particles
rather than a particle to perform simulations to obtain accurate
information. Hierarchical POMCP [28] solved large POMDP
problems by premeditating hierarchical models. However, the
search of the aforementioned approaches is easily misguided
and overly greedy. Nonetheless, DESPOT [29] demonstrated
strong performances on large POMDP problems by applying
the initialize upper bound of the leaf node as a heuristic to
search for optimal actions. However, many difficulties still
exist that degrade the performance of the DESPOT algorithm.
First, the incomplete node information affects the quality of
the constructed belief tree. Then, the fluctuation of node un-
certainty affects the convergence efficiency of the constructed
belief tree.

To improve the performance of the DESPOT algorithm,
many researchers have tried in various aspects. DESPOT-α
[30] changed the search method of the belief tree based on the
α vector to deal with particle divergence. IS-DESPOT [31]
introduced importance sampling to improve the performance
of DESPOT under certain conditions. However, this sampling
only worked when dealing with important events with low
probability. Hyp-DESPOT [32] further improved the planning
time by integrating the CPU and GPU. Hyp-DESPOT gener-
ated a parallel DESPOT tree by using a multi-CPU to traverse
multiple independent paths and a GPU to execute parallel
Monte Carlo simulations at the leaf nodes of the search tree.
However, all of the above approaches generally construct a
belief tree without considering node information sufficiently,
and then may result in the fluctuation of the uncertainty.
Meanwhile, considering the search based on the lower bound
is conducive to obtaining the optimal policy; an impressive
idea is to switch the upper and lower bounds as a heuristic.
LB-DESPOT [33] designed the action heuristic by probabilis-
tically selecting the upper bound or the lower bound of the
node. Nevertheless, the switching conditions of the heuristic
are difficult to set and the convergence efficiency of the belief
tree cannot improve.

In short, this paper proposes the DESPOT-DULB to improve
search performances and convergence efficiency. DESPOT-
DULB inherits the following parts of DESPOT [29]:

1. the empirical value Vπ(b) of a policy π is the average total
discounted reward obtained by simulating the policy un-
der each scenario,

2. the regularized objective function aims to overcome
overfitting,

3. the regularized weighted discounted utility (RWDU)
function ν(b) aims to choose the optimal policy.

Therefore, DESPOT-DULB considers the same method as
DESPOT to initialize the upper bound and lower bound of the

Fig. 1 Online POMDP planning performs forward search on a tree. [A,
B] ([C, D]) represents the sum of the upper bound and lower bound of all
sibling child nodes after executing an action, respectively. λ represents a

discount factor. The DESPOT-DULB introduces the combination of the
upper bound (A or C) and lower bound (B or D) to represent the node’s
information comprehensively for constructing the belief tree
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node. The main difference is that DESPOT-DULB introduces
the discounted upper and lower bounds as a heuristic to search
for the optimal action rather than searching based on the upper
bound of the node in the forward search stage. Meanwhile, a
depth function is considered to reduce the uncertainty by
adjusting the gap between the upper bound and lower bound
of the node. The theoretical analysis and simulation results
verify the favorable performance of the proposed method.

3 Background

Uncertainty originates from noisy sensors, changing environ-
ments and imperfect control. These situations cause signifi-
cant challenges for motion planning. To effectively plan under
these uncertainties, the POMDPmodel is generally introduced
to reduce the uncertainty by updating the beliefs according to
the received information. Formally, the POMDPmodel can be
designated as a tuple (S, A, Z, T, O, R), where S is a set of
states, A is a set of agent actions and Z is a set of observations.
R(s, a) is the immediate reward obtained on executing action
a in state s. When action a is executed in state s, the probabil-
ity of the next state s′ is defined as state transition function T(s,
a, s′) = p(s′| s, a). In addition, the probability of observing z
in state s′ reached by performing action a is defined as obser-
vation function O(s′, a, z) = p(z| s′, a).

A POMDP agent generally cannot obtain the true state
because of the randomness and unpredictability of the envi-
ronment. However, the agent receives observations continu-
ously that provide partial information about the state. Thus,
the agent maintains a belief, which is a probability distribution
over S. The agent starts with an initial belief b0. At the time t,
the agent updates the belief according to Bayes rule, by incor-
porating information from the action at taken and the resulting
observation ot:

bt s
0

� �
¼ ηO s

0
; at; zt

� �
∑
s∈S

T s; at; s
0

� �
bt−1 sð Þ ð1Þ

where η is a normalizing constant. The belief bt = τ(bt − 1, at,
zt) = τ(τ(bt − 2, at − 1, zt − 1), at, zt) = ⋯= τ(⋯τ(τ(b0, a1,
z1), a2, z2), ⋯, at, zt)is a sufficient statistic that contains all
the information from the history of actions and observations
(a1, z1, a2, z2, ⋯, at, zt).

A policy π : B → A is a mapping from belief space B to
action space A. The policy prescribes an action π(b) ∈ A at the
belief b ∈ B. The ultimate goal of POMDP planning is to
choose a policy π that maximizes the value function Vπ(b),
that is, the expected total discount reward.

Vπ bð Þ ¼ E ∑
∞

t¼0
γtR st;π btð Þð Þjb0 ¼ b

� �
ð2Þ

where b0 is the initial belief. The constant γ ∈ [0, 1) is a
discount factor, expressing preferences for immediate rewards
over future ones.

In online POMDP planning, the agent starts with an initial
belief. Then, the following process is repeated. At each time
iteration, (1) the agent searches for an optimal action a∗ at the
current belief b; (2) the agent executes the action a∗ and re-
ceives a new observation z; (3) the agent updates the belief
using Eq. (1) continuously. To search for an optimal action a∗,
a valid way is to construct a belief tree (Fig. 1), treating the
current belief b0 as the initial belief at the root node of the tree.
The agent performs a forward search on the tree for a policy π
that maximizes the value Vπ(b0) at node b0 and sets a∗ =
π(b0). Each node of the tree represents a belief. Each node
branches into |A| action edges, and each action branches into
|Z| observation edges. If the node and its child node are repre-
sented by beliefs b and b′, respectively, then b′ = τ(b, a, z) for
a ∈ A and z ∈ Z.

To find a near-optimal policy, the tree is truncated at a
maximum depthD, and then the agent searches for the optimal
policy on the truncated tree. For each leaf node, an estimated
lower bound on its optimal value is obtained by simulating a
default policy. A default policy can usually be a random pol-
icy or a heuristic. At the internal node b, the Bellman’s prin-
ciple of optimality is applied for computing the maximum
value:

V* bð Þ ¼ max
a∈A

n
∑
s∈S

b sð ÞR s; að Þ

þ γ ∑
z∈Z

p zjb; að ÞV* τ b; a; zð Þð Þ
o

ð3Þ

which computes the sum of all the action branches and the
average value of all the observation branches. The proposed
algorithm traverses the belief tree from the leaf node to the
root node and recursively calculates the maximum value of
each node using Eq. (3). Then, the agent executes the best
policy at the root node b0.

4 Despot-DULB

In this section, the combination of the initial upper bound and
lower bound of the node has been considered to represent the
information of the node effectively in an action selection. To
further ensure a reasonable reduction in uncertainty, a depth
function is proposed for the forward search in the action and
observation selection stages respectively. Then, the upper and
lower bounds of nodes on the path are adjusted slightly during
the backup phase. The specific description of the proposed
method is as follows.
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Algorithm 1 Algorithm DESPOT-DULB

Input: 16:    Compute 
0 0 0( ) ( ) ( )b b l b .

: Initial belief 17:    while
0 0( )b and 

maxT T do

0
: Target gap between 

0( )b and 
0( )l b 18:        b EXPLORE( D ,b ).

: The rate of target gap reduction 19:        BACKUP( D ,b ).

K : The number of sampled scenarios 20:        Recompute 
0 0 0( ) ( ) ( )b b l b .

D : The maximum depth of DESPOT-DULB 21:    end while
: Regularization constant 22:    return l

maxT : The maximum planning time per step 23:    end function
: The depth discount factor 24:

25: function EXPLORE( D ,b )

1: Initialize b . 26:    while ( )b D , ( ) 0E b do
2: repeat 27:        if b is a leaf node in D then,

3:    l BUILD DESPOT-DULB( b ). 28:            Expand b one level deeper. Insert 

each new child b of b into 

D . Initialize ( )U b ,
0( )L b ,

( )b and ( )l b .

4:    
* max ( , )

a A
a l b a .

5:    if *

0 ( ) ( , )L b l b a then *

0( )a b .

6:    end if 29:            
* arg max ( , )

a A
a d b a .

7:    Execute 
*a . 30:            Depth discount: 

( )b
.

8:    Receive the observation z . 31:            
,

* argmax ( )
b az Z

z E b
9:    

*( , , )b b a z . 32:            Update belief 
* *( , , )b b a z

10: until termination 33:        end if
11: 34:    end while
12: function BUILD DESPOT-DULB( b ) 35:    if ( )b D then
13:    Sample randomly a set 

0b
of K scenarios

from the current belief 0b .

36:        0( ) ( )U b L b
37:        0( ) ( )b l b

14:    Build a new DESPOT-DULB D with a node 

b as the root.

38:        0( ) ( )l b l b
39:    end if

15:    Initialize the bounds 0( )U b , 0 0( )L b , 

0( )b , and 0( )l b of node.

40:    return b
41: end function

4.1 Online planning

Algorithm 1 shows the overall framework and pseudocode of
the DESPOT-DULB algorithm. In particular, the BUILD
DESPOT-DULB function provides a high-level sketch of
the belief tree construction. The specific process is outlined
here. 1) The root node b0 is randomly initialized by sample K
scenarios (line 13). 2) The upper and lower bounds of the root
node b0 are initialized (line 14–15). 3) The algorithm conducts
a series of explorations to expand the belief tree D and reduce
the gap between the upper bound μ(b0) and the lower bound
l(b0) at the root node b0 of D. 4) Each exploration follows the
optimal action a∗ using Eq. (4)and observation z∗ using Eq.

(6) are chosen to expand the belief tree (line 18). 5) The algo-
rithm traces the path back to the root and performs a backup
on the upper and lower bounds at each node along the way
using the Bellman’s principle (line 19). 6) The explorations
continue until the gap between the bounds μ(b0) and l(b0) at
the root node reaches the target value ε0, i.e., judging μ(b0) −
l(b0) < ε0 is satisfied or not (line 17).

A reasonable belief treeD is constructed by considering the
combination of the upper bound and lower bound of the node
in Step (4) to improve the search of action selections.
Meanwhile, the depth function is introduced to adjust the
gap between the upper bound and lower bound of the node
in Step (4) to ameliorate the action search and observation
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selection. Then, the upper and lower bounds of the nodes on
the path are slightly adjusted during Step (5). The forward
search and backup are repeated until the terminal conditions
are met, such as the gap at the root node reaching a target value
and the planning time running out.

1) Forward exploration: To construct the belief tree,
searching for the optimal action within a finite time
must be considered. In current research, two kinds of
approaches are generally adopted in action selection.
One is dynamic programming that needs to construct a
complete belief tree before looking for the optimal
action. Another is a forward search algorithm that
avoids constructing the complete belief tree in ad-
vance. For large-scale POMDPs, the complete belief
tree is constructed impractically. To scale up to large
POMDPs, the belief tree is constructed incrementally
under the guidance of a heuristic. During the heuristic
search, an upper bound μ(b) and a lower bound l(b) on
the optimal RWDU are maintained at each node b of
D, that is, l(b) ≤ ν∗(b) ≤ μ(b). An upper bound U(b)

and a lower bound L0(b) on the empirical value are

computed so that U bð Þ≤ bV*
bð Þ≤L0 bð Þ. In particular,

let L0 bð Þ ¼ bVπ0 bð Þ when performing a default policy
π0 at node b. Let ε(b) = μ(b) − l(b) denote the gap
between the upper and lower RWDU bounds at a node
b. The goal of each forward search is to reduce the gap
of root node ε(b0). The ultimate goal of a forward
exploration is to find an action sequence that can make
the gap of root node convergence zero.

To search the optimal action branch, the upper and lower
bounds of the node are fully adopted to represent the informa-
tion of the node. Although the combination of upper and lower
bounds of the node can converge the gap to a small value, the
gap has slight fluctuations. A depth function β is introduced as
a discount to further improve the performance of searching.
Starting from the root node b0, along each node b of the search
path, the optimal action branch is selected according to the
discounted upper and lower bounds information (μ(b) + ω ⋅
l(b))/β:

a* ¼ argmax
a∈A

d b; að Þ ¼ argmax
a∈A

ρ b; að Þ þ ∑
z∈Zb;a

μ b
0

� �
þ ω ∑

z∈Zb;a

l b
0

� � !
=β
o(

ð4Þ

where b′ = τ(b, a, z) is the child node of b by performing action
branch a and observation branch z at b. 0 ≤ ω ≤ 1 is the pro-
portion factor.

Considering that the gap has a slight fluctuation, a depth
function β is introduced in the forward search. β is the dis-
count factor that is determined by the depth of the node and is
defined as follows:

β ¼ κΔ bð Þ ð5Þ
where κ > 1 is a constant. Δ(b) is the depth of node b.

After executing action a∗, observation branch z is chosen by
maximizing the excess uncertainty E(b′) at node b′. Due to the
change in the updated upper and lower bounds, the gap of the
node may exhibit slight fluctuations. The depth function β is
introduced toE(b′) to ensure a reasonable reduction in uncertainty.

z* ¼ argmax
z∈Zb;a

E b
0

� �

¼ argmax
z∈Zb;a

βε b
0

� �
− ∑

ϕ∈Φ
b
0

jΦb
0 j

K
ξε b0ð Þ

( )
ð6Þ

where b0 is the root node. Intuitively, the excess uncertainty E(b
′)

measures the gap between the multiple of the current gap at b′ and
the “expected” gap at b′.

The leaf node b is expanded by creating a child node b′ of b
for each action branch a ∈ A and each observation encoun-
tered under a scenario ϕ ∈ Φb. For each new child node b′, the
bounds μ0(b

′), l0(b
′), U0(b

′) and L0(b
′) are initialized. The

RWDU bounds μ0(b
′) and l0(b

′) can be represented according
to the empirical value bounds U0(b

′) and L0(b
′), respectively.

Moreover, the accurate empirical value bounds U0(b
′) and

L0(b
′) are beneficial to obtain accurate RWDU bounds μ0(b

′)
and l0(b

′), respectively. The accurate RWDU bounds μ0(b
′)

and l0(b
′) are beneficial to represent the node’s information

and reduce the uncertainty for expanding the belief tree effec-
tively. Applying the default policy π0 at node b

′ and using the
definition of the RWDU function, we have

l0 b
0

� �
¼ νπ0 b

0
� �

¼ jΦb
0 j

K
γΔ b

0ð ÞL0 b
0

� �
ð7Þ

μ0 b
0

� �
¼ max l0 b

0
� �

;
jΦb

0 j
K

γΔ b
0ð ÞU0 b

0
� �

−λ
� �

ð8Þ

The initial empirical upper bounds U0 can be constructed
for several methods, such as the uniform bound and hindsight
optimization bound. The simple initial empirical upper bound
is the uninformed bound

U 0 bð Þ ¼ Rmax

1−γ
ð9Þ

High-efficiency online planning using composite bounds search under partial observation 8151

1 3



This bound is slack. Hindsight Optimization (HO) [34] pro-
vided a principled method to construct an upper bound.
However, HO may be expensive to compute when the state
space is large. In addition, an approximate hindsight optimization
bound [29] is calculated by assuming that the states were fully
observed, converting the POMDP into a corresponding MDP,
and solving for its optimal value function VMDP.

U 0 bð Þ ¼ 1

jΦbj ∑
ϕ∈Φb

VMDP sϕ
� 	 ð10Þ

In addition to constructing the upper bound, the initial lower
bound L0(b) at node b is defined based on a default policy π0 by
simulating π0 for a finite number of steps under each scenario
and calculating the average total discounted reward. A default
policy is usually a random policy or a fixed action policy.
Contracting the appropriate initial upper bound and lower bound
effectively improves the performance of the proposed method.

2) Termination of exploration: To construct a reasonable
belief tree within a finite time, the exploration terminates
at node b under the following conditions. The first one is,
Δ(b) > D, i.e., the search depth reaches the maximum

depth of the tree. In addition, E(b) < 0, meaning that the
expected gap at b is reached and further exploration may
be unprofitable. Last, node b is blocked by its ancestor
node b′, i.e., the number of sampled scenarios is insuffi-
cient at ancestor node b′:

jΦb
0 j

K
γΔ b

0ð Þ U b
0

� �
−L0 b

0
� �� �

≤λl b
0
; b

� �
ð11Þ

where l(b′, b) is the number of nodes on the path from b′ to b.

3) Backup: When the exploration is terminated, the belief
tree is constructed. A path is obtained from the leaf node
to the root node. To reasonably obtain the upper and low-
er bounds of the node on the path, the upper and lower
bounds of a back-up are adjusted slightly according to the
initial upper and lower bounds of the node. Then, the
upper and lower bounds are backed up for each node b
on the path by using the Bellman’s principle:

μ bð Þ ¼ max
n
l0 bð Þ;max

a∈A
ρ b; að Þ þ ∑

z∈Zb;a

μ b
0

� �
þ ω1 ∑

z∈Zb;a

l b
0

� � !
=β1

o(
ð12Þ

l bð Þ ¼ max
n
l0 bð Þ;max

a∈A
ρ b; að Þ þ ∑

z∈Zb;a

l b
0

� �
þ ω1 ∑

z∈Zb;a

μ b
0

� � !
=β1

o(
ð13Þ

U bð Þ ¼ max
a∈A

n 1

jΦbj ∑
ϕ∈Φb

R sϕ; a
� 	

þ γ ∑
z∈Zb;a

jΦbj
jΦb

0 j U b
0

� �o
ð14Þ

where b′ is a child of b with b′ = τ(b, a, z). 0 ≤ ω1 ≤ 1 is a
proportion factor. β1 = κ1

Δ(b) is similar to β. κ1 > 1 is a con-
stant. β1 and ω1 are usually set to a small value. Otherwise, the
lower bound of the root node is approximate for each action.

When the nodes on the path are backed up, the proposed
method returns the lower bound of the root node. Meanwhile,
a bound is maintained by using the default policy. The optimal
action is the action corresponding to the maximum lower
bound. Then, the agent executes the optimal action.

4.2 Analysis

Dynamic programming constructs a full DESPOT-DULB D.
The anytime forward search algorithm constructs a DESPOT-

DULB incrementally and terminates with a partial DESPOT-
DULB D′, which is a subtree of D. The main purpose of the
analysis is to show that the optimal regularized policy bπ de-
rived from D′ converges to the optimal regularized policy
derived from D.

Theorem 1 proves the choices of the action branch and
observation branch in the anytime algorithm. Theorem 1 states
that the excess uncertainty at node b is bounded by the sum of
the excess uncertainty of its child nodes. DESPOT-DULB
provides a greedy way to reduce excess uncertainty by itera-
tively searching for the action branch and observation branch
with the greatest excess uncertainty, establishing Eqs. (4) and
(6) as the selection criteria of the action and observation
branches, respectively. Theorem 2 proves the convergence
of the DESPOT-DULB. As the gap ε(b0) decreases, the cal-
culated policy converges to the optimal policy.

Theorem 1 For any DESPOT-DULB node b, if E(b) > 0 and
a* ¼ argmaxa∈A d b; að Þ, then
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E bð Þ≤ ∑
z∈Zb;a*

E b
0

� �
where b′ = τ(b, a∗, z) is a child of b. The detailed proof

is provided in the Appendix 1.

Theorem 2 For every node b of DESPOT-DULB, we assume
that the initial upper bound U0(b) is δ− approximate:

U 0 bð Þ≥ bV*
bð Þ−δ ð16Þ

Suppose that Tmax is bounded and that the anytime
DESPOT-DULB algorithm terminates with a partial
DESPOT-DULB D′ that has gap ε(b0) between the upper
and lower bounds at the root b0. The optimal regularized pol-
icy bπ derived from D′ satisfies

νbπ≥ν* b0ð Þ−ε b0ð Þ−δ ð17Þ

where ν∗(b0) is the value of an optimal regularized policy
derived from the full DESPOT-DULB D at b0.

As Tmax grows, the uncertainty ε(b0) decreases incremen-
tally. The analysis shows that the performance of bπ ap-
proaches that of an optimal regularized policy as the running
time increases. In addition, the error of the initial upper bound
approximation affects the final result at most δ. The detailed
proof is provided in the Appendix 2.

5 Results and analysis

This section presents comparative and analytical studies of dif-
ferent POMDP algorithms in the standard POMDP benchmark.
To verify that (1) the discounted upper and lower bounds are
beneficial to search the optimal action efficiently, (2) the pro-
posed depth function can adjust the gap to ensure a reasonable
reduction in uncertainty. The proposed DESPOT-DULB algo-
rithm is evaluated by a computer simulation comparison for the
following tasks: a) Tag, b) Laser Tag, and c) Pocman. The

DESPOT-DULB is compared with the state-of-the-art online
algorithms POMCP, DESPOT and LB-DESPOT [33] to verify
(1). Moreover, the DESPOT-ULB is a version that does not
consider discounting to verify (2). Similar simulation settings
as in [29] are utilized to verify the performance of the algorithm.
Considering that small parameters cannot attain an optimal per-
formance and large parameters lead to over-idealization of the
algorithm, then, a reasonable range is given for the parameters ω
∈ (0, 0.4) and κ ∈ (1.0, 1.1). Through a multi-round test using
the trial-and-errormethod, the initial values of each parameter are
selected to guarantee a favorable performance. For Tag, the pa-
rameters are set as ω = 0.20, ω1 = 0.02, β1 = 1.0 and κ = 1.02.
For Laser Tag, three tasks of different sizes are designed. The
corresponding scenario parameters are set as (1) ω = 0.20, ω1 =
0.02, β1 = 1.0, κ = 1.05, (2)ω = 0.25, ω1 = 0.025, β1 = 1.0, κ
= 1.05, and (3) ω = 0.3, ω1 = 0.03, β1 = 1.0, κ = 1.05. For
Pocman, the parameters are set as ω = 0.003, ω1 = 0.002, β1 =
1.0 and κ = 1.012. All experiments were conducted on a com-
puter with Intel(R) Core(TM) i5–6300 HQ, 4 cores running at
2.30 GHz, and 12 G main memory. The operating system of the
laptop computer was Ubuntu 18.04. All the algorithms were
given exactly 1 second per step to choose an action.

The size of the test domain ranged from small to extremely
large. The simulation results are shown in Table 1. Overall, the
offline method SARSOP has good performance in the small-
scale range but cannot scale up. DESPOT-DULB has a certain
performance improvement over DESPOT, POMCP and LB-
DESPOT for suitable tasks, especially for large-scale observation
space tasks like Laser Tag. Figure 3 shows the average running
time ratio in different tasks for DESPOT, DESPOT-DULB and
LB-DESPOT. Figure 4 presents the change in the gap between
the upper and lower bounds of the optimal node on the current
search tree for DESPOT, DESPOT-ULB and DESPOT-DULB.
Figure 5 shows the effect of parametersω and κ on the perfor-
mance of DESPOT-DULB, where R represents the correspond-
ing reward obtained by running the algorithm 500 times.
Reasonable parameters can effectively improve the performance
of the algorithm. The details on each domain are described
below.

Table 1 Performance comparison
Tag Laser Tag(6,8) Laser Tag(7,11) Laser Tag(9,12) Pocman

|S| 830 1806 4830 9312 ~1056

|A| 5 5 5 5 4

|Z| 30 ~3.5×105 ~1.5×106 ~4.1×106 1024

SARSOP −6.04±0.15 – – – –

POMCP −13.33±0.49 −13.79±0.58 −14.81±0.59 −17.27±0.47 273.68±9.57

DESPOT −6.42±0.27 −6.24±0.38 −8.46±0.42 −11.42±0.37 317.43±8.88

LB-DESPOT −5.95±0.25 −5.92±0.40 −7.93±0.42 −10.62±0.40 322.23±8.91

DESPOT-ULB −5.73±0.26 −5.96±0.38 −7.92±0.40 −10.93±0.41 321.25±8.74

DESPOT-DULB −5.61±0.26 −5.31±0.36 −7.68±0.40 −10.25±0.40 323.83±8.50
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5.1 Tag

Tag is a standard POMDP benchmark. A robot and a target move
in a grid with 29 possible positions (Fig. 2a). The goal of the robot
is to find the target that consciously escapes. For the Tag environ-
ment, the specific description is as follows. At first, both the robot
and the target obtain a random position. The robot knows its
position, but the robot cannot obtain the position of the target.
The robot can observe the target’s position when the robot and
the target are in the same position. Moreover, the robot tries to
choose an action from five actions: stay in place andmove in four
adjacent directions, when paying −1 for each step. Finally, the
robot attempts to tag the target, rewarding it with +10 if the at-
tempt is successful and punishing it with −10 otherwise.

Table 1 shows the obtained average total discounted re-
wards for several POMDP algorithms. On this small-size do-
main, SARSOP achieves the best result. The proposed
DESPOT-DULB exhibits strong competitiveness in Tag com-
pared with the other algorithms. Figure 3 shows that
DESPOT-DULB requires less planning time than DESPOT
and LB-DESPOT in Tag. Figure 4a shows that DESPOT-
DULB has a smaller gap between the upper and lower bounds

than DESPOT and DESPOT-ULB. Meanwhile, DESPOT-
DULB can suppress the sharp rise of the gap by discounting
compared with DESPOT-ULB without discounting.
Combined with Theorem 2, the calculated policy is closer to
the optimal policy than DESPOT under the case of a constant
δ. Figure 5a shows the node’s gap curve of DESPOT-DULB
and the corresponding reward when the proportion factor ω is
0.1, 0.2, 0.25 and 0.3. When the proportion factor ω increases,
the gap curve has large fluctuations and the corresponding
reward decreases gradually. Reducing the proportion factor
ω is one of the methods to improve the gap but DESPOT-
DULB needs a reasonable proportion factor to represent the
node’s information. Figure 5(d) presents the node’s gap curve
and the corresponding reward of DESPOT-DULB when the
parameter κ is 1.0, 1.02, and 1.04. As the parameter κ in-
creases, the gap can smoothly converge to a small value but
the obtained reward increases first and then decreases.
Choosing a suitable κ is a good way to reduce the gap and
obtain the maximum reward. Based on the above analysis, the
parameters ω = 0.20 and κ = 1.02 are chosen to obtain
a maximum reward and small uncertainty for DESPOT-
DULB.

(a) (b)                          (c)

Fig. 2 Three test domains. (a) Tag. A robot chases an unobserved target that runs away. (b) Laser Tag. A robot chases a target in a 7 × 11 grid
environment populated with obstacles. The robot is equipped with a laser range finder for self-localization. (c) Pocman. The original Pacman game

Fig. 3 Comparison of the average
running time ratio of algorithm in
different tasks
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5.2 Laser tag

Laser Tag is an expanded version of Tag with a large obser-
vation space. In Laser Tag, the robot moves in a n × m
rectangular grid with o randomly placed obstacles. Three
scenes of different sizes are set as follows: a 6 × 8 grid with
6 randomly placed obstacles, a 7 × 11 grid with 8 randomly
placed obstacles (Fig. 2b), and a 9 × 12 grid with 12 randomly
placed obstacles. The settings of the robot and target are the
same as those of Tag. However, the robot does not know its
own position and the robot is initially distributed uniformly
over the grid. To localize, the robot is equipped with a laser

range finder that measures the distances in eight directions.
The side length of each cell is set to 1. The laser reading in
each direction is generated from a normal distribution cen-
tered at the true distance of the robot to the nearest obstacle
in that direction, with a standard deviation of 2.5. The readings
are rounded to the nearest integers. Hence, an observation
comprises a set of eight integers and the total number of ob-
servations is approximately 3.5 × 105, 1.5 × 106 and 4.1 ×
106, respectively.

With the large observation space, the SARSOP algorithm
cannot run successfully. Table 1 shows that DESPOT-DULB
has substantially better quality than DESPOT, POMCP, LB-

(a)  (b)                        (c)

Fig. 4 The gap between the upper and lower bound of the optimal node on the current search tree. (a) Tag. (b) Laser Tag. (c) Pocman. The blue line,
green line and red line represents DESPOT algorithm, DESPOT-ULB algorithm and DESPOT-DULB algorithm, respectively.

(a)                        (b)                         (c)

(d)                        (e)                         (f)

Fig. 5 The analysis of the parameters ω and κ. (a), (b) and (c) correspond
the change of parameter ω for Tag, Laser Tag and Pocman respectively.
(d), (e) and (f) correspond the change of parameter κ for Tag, Laser Tag

and Pocman respectively. R represents the average total discounted
rewards by simulating 500 times for each tasks under the corresponding
parameters.
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DESPOT and DESPOT-ULB according to the obtained aver-
age discounted rewards. Figure 3 shows that DESPOT-DULB
requires less planning time than DESPOT and LB-DESPOT
for different sizes of laser tags. Figure 4b shows that
DESPOT-DULB provides a smaller gap between the upper
and lower bounds of the current node than DESPOT at the
same depth. Similar to Tag, the obtained policy is closer to the
optimal policy than DESPOTwhen δ is determined. Figure 5b
shows the node’s gap curve and the obtained reward of
DESPOT-DULB for a 7 × 11 grid of Laser Tag when the
proportion factor ω is 0.1, 0.25 and 0.4. Figure 5e shows the
node’s gap curve and the obtained reward of DESPOT-DULB
for a 7 × 11 grid of Laser Tag when the proportion factor κ is
1.02, 1.05 and 1.08. As the parameters ω or κ increase, the gap
of the node drops significantly at the same depth and the
corresponding reward increases first and then decreases.
Decreasing ω or κ is beneficial for reducing the gap and
obtaining the maximum reward. Based on the above consid-
erations, the parameters ω and κ are selected as 0.25 and 0.15,
respectively.

5.3 Pocman

Pocman [14] is a partial observation variant of the popular
video game Pacman (Fig. 2c). In Pocman, an agent and four
ghosts move in a 17 × 19maze populated with food pellets. If
the agent eats a food pellet, the agent obtains a reward of +10.
The agent costs −1 for each move. If the agent is caught by a
ghost, the game terminates with a penalty of −100. Moreover,
there are four power pills in the maze. The agent can eat a
ghost and receive a reward of +25 within the next 15 steps
after eating a power pill. A ghost chases the agent if the agent
is within a Manhattan distance of 5. A ghost runs away if the
agent is in a state of eating a power pill. In addition, the agent
does not know the exact position of the ghost. However, the
agent receives information on whether (1) it sees the ghost in
each of the cardinal directions, (2) it hears the ghost within a
Manhattan distance of 2, (3) it feels a wall in each of the four
cardinal directions, and (4) it smells food pellets in the adja-
cent or diagonally adjacent cells. Pocman has a large state
space of approximately 1056 states.

On this large-scale domain, Table 1 shows that DESPOT-
DULB has a slight improvement compared to DESPOT and
DESPOT-ULB according to the obtained average rewards,
while the SARSOP algorithm cannot run successfully.
Figure 3 shows that all the algorithms, DESPOT-DULB,
LB-DESPOT and DESPOT, take almost the same amount of
time because the agent needs to execute the same number of
steps for each simulation. Figure 4c shows that DESPOT-
DULB converges to a smaller gap and a lower depth than
DESPOT and DEPOT-ULB. A lower uncertainty is beneficial
in determining the state of the agent. Then, the agent can
obtain a near-optimal policy. Figure 5c shows the node’s

gap curve and the corresponding reward of DESPOT-DULB
when the proportion factor ω is 0.01, 0.03 and 0.05. A smaller
uncertainty can be obtained by increasing the proportion fac-
tor ω but if the proportion factor is too large, the maximum
reward cannot be obtained. After comprehensive consider-
ation, the parameter ω = 0.03 is chosen to implement the
testing. Figure 5f shows the node’s gap curve and the corre-
sponding reward of DESPOT-DULB when the parameter κ is
1.0, 1.012 and 1.03. As the parameter κ increases, the gap can
converge to a small value, but the ultimate depth is large,
resulting in a long planning time. For a reward, the parameters
of ω = 0.03 and κ = 1.012 are chosen to obtain the maximum
reward and a lower uncertainty.

6 Conclusion and future work

This paper has proposed the online POMDP algorithm
DESPOT-DULB, which has considered that the node’s upper
bound cannot adequately represent all the node information.
The proposed DESPOT-DULB contains the combination of
the upper and lower bounds of the node and a depth function
based on the current depth. The combination of the upper and
lower bounds of the node has represented the node informa-
tion to improve the quality of the forward search. Meanwhile,
a depth function has been considered to adjust the gap be-
tween the upper bound and lower bound of the node to ensure
a reasonable reduction in uncertainty. With the support of
computer simulation comparisons using standard POMDP
benchmarks, both the simulation and theoretical analysis have
shown that DESPOT-DULB not only retains the DESPOT’s
desirable properties for online planning but also shows a cer-
tain improvement in the quality of policy and the efficiency of
search.

There are two potential directions to expand this work.
First, an appropriate heuristic is considered to express the
amount of information of the upper and lower bounds of the
node, e.g., the information entropy. Therefore, the node’s ac-
curate information can be used to search the optimal node to
obtain themaximum reward. Second, a reasonable approach is
premeditated to obtain the compact upper and lower bounds.
The compact upper and lower bounds can improve the plan-
ning efficiency.

Appendix 1

Proof Let CH(b, a∗) be all the set of b′ = τ(b, a, z) for some
z∈Zb;a* , that is, the set of children nodes of b in the DESPOT-
DULB tree. If E(b) > 0, then ε(b) > 0, that is, μ(b) − l(b) >
0, and thus μ(b) ≠ l0(b). Hence we have
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μ bð Þ ¼ d b; a*
� 	 ¼ ρ b; a*

� 	
þ ∑

b
0∈CH b;a*ð Þ

μ b
0

� �
þ ω ∑

b
0∈CH b;a*ð Þ

l b
0

� � !
=β

ðA1Þ

and

l bð Þ≥m b; a*
� 	

≥ρ b; a*
� 	

þ
X

b′∈CH b;a*ð Þ
l b′
� 	þ ω

X
b′∈CH b;a*ð Þ

μ b′
� 	0@ 1A=β

ðA2Þ

where 0 < ω < 1, and β > 1. Subtracting the Eq. (A1) by the
Eq. (A2), we have

μ bð Þ−l bð Þ≤ 1−ωð Þ ∑
b
0∈CH b;a*ð Þ

μ b
0

� �
−l b

0
� �h i

=β ðA3Þ

where

β ¼ κΔ bð Þ ðA4Þ

Considering 0 < 1 − ω < 1, κ > 1, we have

1−ωð Þ ∑
b
0∈CH b;a*ð Þ

μ b
0

� �
−l b

0
� �h i

=β

< ∑
b
0∈CH b;a*ð Þ

μ b
0

� �
−l b

0
� �h i

ðA5Þ

That is

μ bð Þ−l bð Þ≤ ∑
b
0∈CH b;a*ð Þ

μ b
0

� �
−l b

0
� �h i

ðA6Þ

Combining the Eq. (A4) and Eq. (A6), we have

κΔ bð Þ μ bð Þ−l bð Þ½ �≤κΔ bð Þ ∑
b
0∈CH b;a*ð Þ

μ b
0

� �
−l b

0
� �h i

≤κΔ b
0ð Þ ∑

b
0∈CH b;a*ð Þ

μ b
0

� �
−l b

0
� �h i

ðA7Þ

Note that

jΦbj
K

ξε b0ð Þ ¼ ∑
b
0∈CH b;a*ð Þ

jΦb
0 j

K
ξε b0ð Þ ðA8Þ

Hence, we have

κΔ bð Þ μ bð Þ−l bð Þ½ �− jΦbj
K

ξε b0ð Þ

≤ ∑
b
0∈CH b;a*ð Þ

κΔ b
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0
� �

−l b
0

� �h i
−
jΦb

0 j
K

ξε b0ð Þ
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That is, E bð Þ≤ ∑
z∈Zb;a*

E b
0

� �
.

Appendix 2

Proof Let U0
′(b) = U0(b) + δ, then U0

′ is an exact upper
bound. Let μ0

′ be the corresponding initial upper bound, and
μ′ be the corresponding upper bound on ν∗(b). Then μ0

′ is a
valid initial upper bound for ν∗(b) and the backup equations
ensure that μ′(b) is a valid upper bound for ν∗(b). On the other
hand, it is easily shown by induction that

μ bð Þ þ γΔ bð Þ jΦbj
K

δ≥μ
0
bð Þ ðB10Þ

When a special case for b = b0, we have

μ bð Þ þ δ≥μ
0
b0ð Þ ðB11Þ

Hence, when the algorithm terminates, we have

μ b0ð Þ þ δ≥μ
0
b0ð Þ≥ν* b0ð Þ ðB12Þ

Equivalently,

νbπ ¼ l b0ð Þ≥ν* b0ð Þ− μ b0ð Þ−l b0ð Þð Þ−δ
¼ ν* b0ð Þ−ε b0ð Þ−δ

ðB13Þ

The Eq. (B13) holds because the initialization and the com-
putation of the lower bound l via the backup equations are
exactly that for finding a regularized optimal policy value in
the partial DESPOT-DULB.
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