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Abstract
We propose in this paper a partial order framework for clustering incomplete data. The paramount feature of this framework
is that it spans over a partial order that can be leveraged to establish data similarity. We present the underlying theoretical
foundations and study the convergence of clustering algorithms in this framework. In addition, we present a partial order-
based clustering algorithm (POK-means) that illustrates the embedding of K-means clustering algorithm in our framework.
The first contribution of our method is that unlike methods based on imputation of the missing values, our method does
not make any assumptions about missing data. Another important contribution is that it alleviates false dismissals caused by
other interval-based similarity measures. The experimental results show that, although our method do not assume any prior
knowledge of (or assumptions about) missing data, it is competitive to most of published incomplete data clustering methods
that are based on assumptions about input data or imputation (e.g. methods based on partial or interval kernel distances) in
accuracy and performance.
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1 Introduction

Clustering is one of the common techniques that help in
discovering the structure of data and recognizing its inher-
ent patterns. By grouping similar objects in the same cluster
and keeping different (dissimilar) objects in separate clus-
ters, clustering paves the way for further data analyses and
interpretation. Data clustering has many important applica-
tions, e.g., image analysis, bioinformatics, market analysis,
etc. More insights on clustering can be found in [5, 19].

The input to a clustering algorithm is a collection of n

d-dimensional objects (vectors) X = {X1, X2, . . . , Xn} and
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for some algorithms an integer K , which denotes the desired
number of clusters. Each Xi is a set {Xi1, Xi2, . . . , Xid},
where Xij represents the j th attribute (feature) of the ith

object. The algorithm groups the objects into K groups
(subsets) such that the dissimilarity of objects within each
group is minimized. For instance, some clustering algo-
rithms try to minimize the Sum of Squared Errors (SSE),
which is a measure of cluster cohesion. SSE is defined as
follows:

SSE =
K∑

i=1

∑

o∈Ci

d(o, μi)
2 (1)

Where Ci is a cluster among K clusters, μi is the centroid
(or the center) of Ci and d(o, μi) is the distance between an
object o and μi .

The most commonly distance function that is used in
clustering is the Euclidean Distance (EU) and is defined as:

EU(X, Y )2 = ||X − Y ||2 (2)

Data can be incomplete, i.e., includes missing data.
Several reasons can be behind this such as measurement
device malfunctioning, or even the absence of a value.
This creates a certain uncertainty that should be taken
into account while establishing the similarity between data
objects.
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Many methods based on imputation [2, 3, 9, 24, 27]
were proposed to handle incomplete data. Imputation means
filling in missing data based on some assumptions about
data probability distribution or on a prior knowledge of the
data structure. Methods based on imputation by specific
values may provide biased classification/clustering results
and high misclassification rate.

Other methods rely on interval-based distances to deal
with incomplete data. These methods represent the distance
as a single value. We show in the next section that they
don’t satisfy the lower bounding constraint, which requires
that the distance between these intervals is lower than or
equal to the Euclidean distance between the corresponding
data objects (the maximum possible Euclidean distance in
case of missing values). Not satisfying this constraint may
result in false dismissals, where some objects are falsely
dismissed from their right clusters. This shortcoming is
mainly due to a “flattening” process that is followed by
these methods while establishing the distance between such
objects. Accordingly, the main motivation of our work is
to develop a method applicable to incomplete data while
satisfying the lower bounding constraint.

We propose in this paper a Partial Order Framework
(POF) for clustering incomplete data. Data similarity is
captured by an interval that approximates the distance
between data objects. A partial order is then built on top
of these intervals to compare these approximations. Our
method alleviates false dismissals that may be caused by
commonly used distance measures such as those proposed
in [11, 12].

To summarize, the main contributions of this paper
include:

– The proposal of a partial order framework for clustering
incomplete data without any assumption on the data.

– The proposal of a distance for incomplete data
that satisfies the lower bounding constraint and so
minimizes false dismissals.

– The study of convergence for clustering algorithms that
can be embedded in the proposed framework.

– The specification and the implementation of the
K-means clustering algorithm (POK-means) in the
elaborated framework to deal with incomplete data
together with experimental results that show that
POK-means is competitive to other related published
clustering methods for incomplete data.

The remainder of the paper is organized as follows.
Section 2 is devoted to the related work and shortcomings
in existing methods. Section 3 presents the partial order
clustering framework and POK-means algorithm for clus-
tering incomplete data. Section 4 includes the experimental
results. Finally, we discuss possible enhancements of our
method in Section 5.

2 Related work

Partial order clustering was applied to solve different
issues related to systems verification, user preferences
clustering and chains clustering. In [1], a partial order
framework is used to mitigate the effects of the state-
space explosion problem by clustering the state-space of
concurrent processes. The problem of clustering a set of
chains into k clusters is considered in [26]. Clustering
of chains can be used in applications, such as user
preference surveys, decision analysis, voting systems, and
bioinformatics. The author in [17] provides a comparison of
three approaches of clustering totally and partially ordered
subsets of a set of items. In [25], a partial clustering
algorithm (not every point is included in a cluster) is
introduced for the sake of minimizing the effect of outlier
and noise points. A cluster-similarity metric that is based
on partial order was developed for rooted phylogenetic trees
in [8]. Phylogenetic trees are used to describe relations
among species. Despite these insights, to the best of our
knowledge partial order clustering has not been applied to
handling incomplete data before. Our proposed algorithm is
the first incomplete data clustering algorithm that is based
on a partial order framework.

Uncertainties may arise while assessing incomplete
data similarity. Some feature values or readings may
be missing, e.g., Xi = {20, 35, ?, 17, 14}, or values
are only known to belong to a certain range. To deal
with such uncertainty, many methods were proposed in
the literature [9, 14, 22]. Among these we mention:
listwise deletion, pairwise deletion, mean substitution,
last observation carried forward, regression imputation,
maximum likelihood, and multiple imputation. The Optimal
Completion Strategy (OCS) [7] relies on imputation of
missing data based on some optimal methods to determine
better estimates. However, these solutions either have
assumptions about the data distribution such as regression
imputation [10] or they require extensive computation such
as multiple imputation [21]. Therefore, they are likely to
produce biased results if there is no prior knowledge about
missing data.

Other methods, which are not based on imputation, were
devised to deal with missing data. Among these methods
the one that spans over a Nearest Prototype Strategy (NPS)
[7] that replaces missing values with the corresponding
attribute values of the nearest prototype while clustering.
Another appealing method in this category is the fuzzy-
based clustering [7, 18], which leverages the concept of
fuzziness to cluster incomplete data. In such a setting,
an object may belong to more than one cluster with
different probabilities. This can be expressed using the
fuzzy membership concept. To deal with incomplete data,
two commonly used strategies [7] were proposed:
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– Whole Data Strategy (WDS): consists in deleting all
incomplete data vectors if they constitute a small
fraction of the data. Thus, WDS cannot be used when a
significant fraction of the data is missing.

– Partial Distance Strategy (PDS): relies on only existing
features (components) to compute the distance between
two vectors. The distance is scaled by the proportion
of used components. The limitation of PDS is that it
cannot be applied when for example missing values
exist alternatively in both vectors.

These strategies may introduce a biased similarity
measurement that can be carried over in all the iterations
of the clustering algorithm by ignoring a part of the data or
deleting it completely.

Fuzzy C-means was also extended in [11] to deal with
incomplete data based on Nearest-Neighbor Intervals (NNI)
strategy. NNI uses an interval-based distance function to
assess the similarity between data objects. It represents a
missing data Xi by the minimum and maximum of the
neighbors’ corresponding attributes, i.e., Xi = {[X−

i , X+
i ],

where X−
i and X+

i are the lower and upper bound values,
respectively. NNI comes with an Interval-based Distance
(ID) and relies on a total order in assessing the similarity
between data objects. The distance ID(X, Y ) between
two samples X = {[X−

1 , X+
1 ], . . . , [X−

d , X+
d ]} and Y =

{[Y−
1 , Y+

1 ], . . . , [Y−
d , Y+

d ]} is defined as:

ID(X, Y )2 =
d∑

i=1

|X+
i − Y+

i |2 +
d∑

i=1

|X−
i − Y−

i |2 (3)

Unfortunately, the distance ID does not satisfy the lower
bounding constraint (as we show in the following Claim)
and subsequently may result in false dismissals. In the
context of clustering algorithms, a false dismissal means
a decision taken by the algorithm that an object does not
belong to its proper cluster. This may lead to inaccurate
clustering results or wrong query matchmaking. More
discussion about false dismissals can be found in [6, 13, 20].

Claim 1: Let Y be a known feature and X be a
missing (unknown) value = [X−, X+]. Then, ID(X, Y ) >=
EU(X, Y ).

Proof We prove the claim for one-dimensional vectors.
However, it can be generalized to multi-dimensional
case.

Suppose X and Y are points on the line -∞ to +∞ and let
X be the actual value.
ID(X, Y )2 = (Y − X−)2 + (Y − X+)2, EU(X, Y )2 = (Y − X)2

Case 1: X− < X < X+ < Y : Y − X− > Y − X.
Case 2: X− < X < Y < X+ : Y − X− > Y − X.
Case 3: X− < Y < X < X+ : X+ − Y > X − Y .
Case 4: Y < X− < X < X+ : X+ − Y > X − Y .

Since ID(X, Y )2 = (Y − X−)2 + (Y − X+)2 >

max((Y − X−)2, (Y − X+)2) > (Y − X)2, then in all cases
ID(X, Y )2 > EU(X, Y )2.

Based on Claim 1, the ID distance does not satisfy the
lower bounding constraint required in computing distances
or dissimilarity measures since it may return values that
are higher than the maximum possible Euclidean distance.
Therefore, it can lead to false dismissals.

An Interval Kernel Fuzzy C-means method (IKFCM) is
proposed in [12] as an improvement of previous published
fuzzy methods such as [11]. In this method, the data is
mapped into a higher dimensional feature space using a
Gaussian function. IKFCM uses a nonlinear kernel-induced
distance to replace the Euclidean distance. The authors
provide also an application of their method on OCS, NPS,
WDS and PDS to produce KOCS, KNPS, KWDS and
KPDS as kernel-based methods. The proposed interval
kernel distance IKD(X, Y ) for two intervals X and Y is:

IKD(X, Y ) =
√

2 − 2 exp

(
− (X−−Y−)T (X−−Y−) + (X+−Y+)T (X+−Y+)

2 × σ 2

)
(4)

The interval kernel distance is used for the sake
of increasing the separability between the data and
consequently improving the clustering quality. However,
There is no proof in [12] that the proposed distance does not
result in false dismissals.

Once again, we can show (Claim 2) that based on Claim
1, the actual kernel distance between two objects may be
less than the computed interval kernel distance between
these objects in IKFCM. Therefore, false dismissals may
occur based on interval kernel distance clustering.

Claim 2: Let Y be a known feature and X be a missing
(unknown) value = [X−, X+]. Let Xa be the actual value of X.

IKD(X, Y ) =
√

2−2 exp

(
− (X− − Y )2) + (X+ − Y )2)

2 × σ 2

)

(5)

Let KEUa(X, Y ) be the actual kernel distance (kernel
mapping of the Euclidean distance) computed using the
same function.

KEUa(X, Y ) =
√

2 − 2 exp

(
− (Xa − Y )2

2 × σ 2

)
(6)

Then, IKD(X, Y ) >= KEUa(X, Y ).

Proof

IKD(X, Y ) =
√

2 − 2 exp

(
−ID(X, Y )2

2 × σ 2

)
(7)

KEUa(X, Y ) =
√

2 − 2 exp

(
−EU(X, Y )2

2 × σ 2

)
(8)
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Since ID(X, Y )2 > EU(X, Y )2 (Follows from Claim 1),
IKD(X, Y ) > KEUa(X, Y ).

Recently, imputation-based methods have been used
together with objective functions optimization to handle
missing data in [24]. More precisely, the authors propose
a novel K-means based clustering algorithm for incomplete
data (KMID), which unifies the clustering and imputation
into one single objective function. Furthermore, they
design an alternate optimization algorithm to solve the
resultant optimization problem and theoretically prove its
convergence. This approach inherits imputation methods
shortcomings such as introducing of bias at the data level.

In [23], the authors propose the KM-IMI algorithm,
which uses the method of adding weights and analyzing per-
turbation distance of cluster centroid to cluster incomplete
datasets. The k-means algorithm is first applied to the subset
of data with non-missing values. Then, the weights are used
to find the optimal imputation that leads to the best possible
clustering result. Finally, a partition clustering algorithm is
used to get the final clustering result.

In summary, imputation-based methods have some assump-
tions on the data in order to derive and replace missing data,
which restrict their applicability in some cases while fuzzy
based methods rely on a total order relation to assess data
similarity in classical clustering algorithms, which is the
main reason behind violating the lower bounding constraint.
Indeed, interval-based or missing data is captured by inter-
vals, but this range of possibilities is lost while doing a kind
of “flattening” of these intervals to compute the distance
between data objects. Based on these observations, we ini-
tiated a research that aims to devise a new framework for
establishing data similarity, which should take into account
the limitations of the existing methods.

We follow in this work a different method in which
we take into consideration missing data and represent the
distance uncertainty caused by such missing as an interval.
Such interval represents the range of possible distances
between two data instances. Furthermore, we show that
this method provides a basis for a general framework for
handling both cases of complete and incomplete data, with
real or discrete-valued features.

3 Partial order based clustering

In this section, we present theoretical foundations underly-
ing our proposed partial order clustering framework and an
embedding of the K-means clustering algorithm in it. It is
worth to mention that the proofs of the claims in this section
are provided in the Appendix A.

3.1 Preliminaries and definitions

Before we discuss the details related to the proposed partial
order-based clustering, we provide some useful definitions
that help in grasping the underpinnings of our framework.

A partially order set (poset) consists of a set with a binary
relation that establishes an order between two elements
of that set. The relation is partial, which means that two
elements may be non comparable. A partial order relation
has three properties: It is reflexive, anti-symmetric, and
transitive.

A partial order in which every pair of elements is
comparable is called a total order or a chain. Hence, a total
order is a special case of a partial order relation. A dual
notion of a chain is antichain, which is a subset of a poset in
which no two distinct elements are comparable.

The partial order relation comes with upper and lower
bound concepts for subsets of posets. An upper bound of a
subset X of a poset P is an element of P , which is greater
than or equal to every element of X. Dually, a lower bound
of a subset X of a poset P is an element of P , which is
less than or equal to every element of X. The supremum (or
Least Upper Bound) of a subset X of a poset P is the lowest
element in P that is greater than or equal to all the elements
of X. Dually, the infimum (or Greatest Lower Bound) of a
subset X of a poset P is the greatest element in P that is
less than or equal to all the elements of X.

A poset (L,�) is a complete lattice if every subset A

of L has both a greatest lower bound and a least upper
(also called the meet) bound (also called the join) in L. We
show in this paper how the complete lattice concept can be
leveraged in guaranteeing the convergence of our proposed
clustering algorithm.

3.2 A partial order framework for data clustering

The proposed Partial Order Framework (POF) for data
clustering relies on relaxing the total order, generally used
while establishing the similarity between data objects, and
replacing it with a partial order. This order reflects the
uncertainty that may arise in handling incomplete data.

POF can be applied either directly on the data domain
D by defining a similarity measure I on D × D. Its co-
domain is a partially order set P . POF can also be applied
on an abstract domain A that is the result of an abstraction
operation of the domain D using a mapping M. In this
case, the similarity measure I ′ is defined on the elements
of A × A and its co-domain is a partially ordered set
P ′. Figure 1 outlines these two modus operandi of POF.
It is worth noting that M∗ is the extension of M to
D × D.
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Fig. 1 Partial order modus operandi

3.2.1 Example

As a concrete example, POF can for instance handle directly
interval data (the domain D is the interval data in this
case) by defining a relation I that can be an interval-based
distance between data objects. Such a distance can rely on a
partial order that is defined on intervals. The distance results
can be for instance intervals that are equipped with a partial
order in a poset P .

Also, POF can operate on symbolic sequences (so the
domain A in this case is a set of symbolic sequences)
that are derived from raw data which can be time series
(the domain D in this case is a set of time series) by
defining a similarity relation I ′ in a complete partial order.
Symbolic sequences can be derived from raw data using
a transformation (mapping M) like Symbolic Aggregate
approXimation (SAX) [13].

3.3 Partial order on intervals

In this section, we provide an example of a partial order
that can be defined in POF. More precisely, we propose the
following partial order � on the space of intervals LI .

[aL, aR] � [a′
L, a′

R] iff aL ≤ a′
L ∧ aR ≤ a′

R (9)

Proposition 1 � is a partial order.

Figure 2 outlines the proposed partial order relations
between intervals in a Hasse diagram. The bottom element
is the interval [min(αi),min(βi)], which denotes the element
that is dominated, with respect to the partial order �, by
all intervals while the top element, which is [max(αi),
max(βi)], denotes an interval that dominates all the intervals
in lower levels.

Proposition 2 (LI , �) is a complete lattice.

Fig. 2 Interval distance lattice

It is worth to mention that this partial order is used to
compare interval distances and derive possible minimum
distances with respect to the partial order while deciding
about cluster membership.

3.4 Data representation and similarity in POF

POF is a general framework and can cope with incomplete
data and also other data types. We explain in what follows
the representation of different data types in POF together
with the specification of an interval-based distance that
can be applied on such data. More precisely, the distance
between two data objects is represented as an interval
[L, U ], where L and U denote respectively the minimum
and maximum possible distance values between these two
data objects. We discuss in the sequel the representation
of different data types in POF and the calculation of the
interval distance between two data objects:

– Interval data: an interval data x is represented by the
interval [xmin,xmax]. The interval distance in POF,
POD(x, y), between two interval data objects x and y

is the interval [dmin(x, y),dmax(x, y)], where:

dmin(x, y) =
{

0, if x and y overlap;

min(EU(xmax, ymin),EU(ymax, xmin)) Otherwise.

dmax(x, y) = max(EU(xmax, ymin),EU(ymax, xmin))

Example: Let us consider two intervals A = [1,3] and
B = [2,4] that overlap. The interval distance between A

and B in POF is [0,3]. Now, let us consider two intervals
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A = [1,2] and B = [3,4] that do not overlap. The interval
distance between C and D in POF is [1,3].

– Numerical and categorical data: any numerical or cat-
egorical (complete) data x can be represented by the
interval [xmin,xmax] with xmin=xmax=x. The interval-
based distance in POF, POD(x, y), between two data
objects x and y is the interval [dmin(x, y),dmax(x, y)]
with dmin(x, y)= dmax(x, y). Here, the partial order
between the intervals is a total order since all the inter-
vals are comparable in this case. So classical clustering
algorithms can be embedded in the framework in a
straightforward manner.

– Multivariate data: A multivariate data x is represented
by a vector < x1, x2, . . . , xn >, where xi is the data
representation of the ith feature in POF. The interval-
based weighted distance POWD(x, y) between two
multivariate data objects x and y is:

POWD(x, y) =
[

n∑

i=1

widmin(xi, yi),

n∑

i=1

widmax(xi, yi)

]

where wi is the weight of the ith feature and
n∑

i=1
wi =

1. This weight reflects the importance of an attribute
and can be derived automatically for example from
the correlations between features. The sum constraint
guarantees that the weighted distance lower bounds
the maximum possible value of the Euclidean distance
between x and y as proved later in this paper.

– Incomplete data: an incomplete data i can be repre-
sented by i = [xmin,xmax] where xmin and xmax can
respectively represent minimum and maximum values
of nearest neighbors of such data. Then, the distance
between two incomplete data is computed as discussed
in the interval data case.

3.5 Distance approximation issues in the related
work

We show in this section how our proposed interval-based
distance POD can solve the issues that come with the
published distances for handling incomplete data. Let us
consider the following data vectors: T1 =< 1, 4, 1, 2 >,
T2 =<?, 3, 1, 3 >, T3 =< 6, 5, 4, 1 >, T4 =< 1, 4, 1, 1 >,
and T5 =< 2, 4, 2, 2 >. The partial distance between T1 and
T2 is:

PDS(T1, T2) =
√

4

3
(1 + 0 + 1) = 1.63

Based on the partial distances between T2 and other
points, the best three nearest neighbors to T2 are T1, T4 and

T5. So, the missing value “?” is replaced by the interval
[1,2]. The distance computations are as follows:

ID(T1, T2) = √
(0 + 1 + 0 + 1) + (1 + 1 + 0 + 1) = √

5 = 2.24

POD(T1, T2) = [√0 + 1 + 0 + 1,
√

1 + 1 + 0 + 1] = [1.41, 1.73]

IKD(T1, T2) =
√

2 − 2 ∗ exp(− 5

2 × 0.752
) = 1.41, with σ 2 = 0.75 as suggested in (12)

KEU(T1, T2) ∈
[√

2−2 ∗ exp(− 2

2 × 0.752
),

√
2 − 2 ∗ exp(− 3

2×0.752
)

]
= [1.29, 1.36]

ID in this case violates the lower bounding constraint
since the maximum Euclidean distance is 1.73. For IKD,
the computed distance is lager than the maximum possible
kernel mapping of the actual Euclidean distance KEU,
which is 1.36.

Theorem 1 Any approximation based on the weighted
distance POWD satisfies the lower bounding constraint.

3.6 Specification of K-means clustering algorithm
in POF

K-means is partitional clustering algorithm that tries to
minimize SSE. K-means does not require that a cluster
center belongs to the cluster. When specified in POF, any
clustering algorithm that minimizes SSE should be updated
to minimize an interval [SSE-Min, SSE-Max], with respect
to the order �, that captures the sum of the distances
between data points and the cluster center points. In case
of absence of incomplete data or interval data (complete
data case), SSE-Min coincides with SSE-Max and the
specification of such algorithm in POF is equivalent to its
classical implementation.

Algorithm 1 outlines the specification of the K-means
clustering algorithm in POF, which we call POK-means.
It starts by replacing missing values (if any) by intervals
having as extremities (Line 3): the minimum and the
maximum of the interval extremities’ values for the nearest
neighbors. Then, it initializes the clusters’ centers using any
good seeding algorithm such as the one used in K-means++
(Line 4). The data interval center points can be used to apply
such seeding algorithm. The clustering membership of a
data element is determined based on the minimal interval
distance with respect to the partial order � and the clusters’
centers (Lines 5 to 10). In case of two or more incomparable
intervals, the membership is determined randomly. After
determining the membership of all data elements, the new
centers are computed as the data intervals’ averages (Line
11). The minimum and maximum values (extremities) of
intervals’ averages are respectively the averages of the
minimum and maximum values of the averaged intervals.
This clustering procedure is repeated until getting an SSE
interval that does not improve the current solution, i.e., not
better than the current SSE with respect to the order �.
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The algorithm is minimizing SSE in each iteration by
rejecting any SSE that is not better than the previous SSE in
terms of the intervals partial order. We call such constraint
strict decreasing chain constraint.

3.7 Complexity analysis and convergence

The computation of the intervals for nearest neighbors of
missing data includes computing two values: minimum
and maximum distances using the partial distance. This
computation requires in the worst case 2 ∗ n(n − 1)d

operations, where n is the data size and d is the number
of features. Thus, for each alternating iteration among t

iterations, the complexity of the preprocessing step is equal
to O(

n(n−1)d
t

), which is the same as the on for IKFCM
algorithm [12].

The complexity of the POK-means clustering step is
O(nkdt), where k is the number of clusters. Therefore, the
time complexity for each alternating step is O((n

t
+ k)nd),

which is better than IKFCM that has a time complexity
equal to O((n

t
+ k2)nd) as published in [12].

The strict decreasing chain constraint for SSE guarantees
that POK-means converges. In what follows, we discuss the
convergence for the strict version of the algorithm and also
the version where such condition is relaxed.

3.7.1 Strict version

The following theorem proves the convergence of the strict
version of POK-means.

Theorem 2 POK-means, in its strict version, converges to
a local minimum of the lattice (LI , �).

Figure 3 outlines an example of the possible visited
elements in the lattice LI while executing POK-means. The
path of the elements is a decreasing chain and it converges
to an element (representing SSE) of an anti-chain without

Fig. 3 Strict downward elements visit. The path of the decreasing
chain is marked in red. This path does not include incomparable
elements and may end up with a bad local minimum

visiting any other element of the ant-chain. It is worth to
mention that the strict version of POK-means guarantees
fast convergence, but the quality may be not good.

3.7.2 Relaxed version

To improve the quality of the obtained solution, the
decreasing chain constraint is relaxed and SSE intervals that
are not better (lower in order) than previous SSE intervals
are accepted. This allows the algorithm to visit anti-chain
elements as opposed to the strict version and so may end up
with a better clustering results but with a certain time cost
compared to the strict version. Figure 4 outlines possible
visited elements in the lattice LI .

4 Experiments

4.1 Experiments setting

We conduct experiments in this paper to show the effec-
tiveness of our framework in clustering incomplete data.
More precisely, we show how the proposed distance min-
imizes dismissals by having acceptable rates of misclas-
sifications. Our experiments are done on known datasets
[4, 16], which are commonly used in clustering incomplete
data [11, 12, 18]. These datasets are: Iris, Wine, Wholesale,
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Fig. 4 Relaxed elements visit. The path of the visited elements is
marked in red. This path may include incomparable elements and ends
up with a solution that is better than the strict one but takes more time
to find a good clustering configuration

Breast Cancer and Thyroid Gland. The descriptions of the
three datasets are as follows:

– Iris dataset: a multivariate dataset of Iris flowers. It
consists of a total of 150 samples from three species
(clusters): Iris Setosa, Iris Virginica and Iris Versicolor.
It has 4 attributes (features) related to the length and the
width of the sepals and petals.

– Wine dataset includes 178 features that are the obtained
from the analysis of wines grown in the same region
but from different cultivars. The dataset includes three
classes in which the first one contains 59 instances,
the second has 71 instances and the third includes 48
instances.

– Wholesale Customers dataset includes 6 features and
can be split into 2 categories according to the Channel
index. There are 298 instances in the first category and
142 instances in the second one.

– Breast cancer dataset: a multivariate dataset that
includes 699 instances regarding breast cancer. It has
9 attributes related to characteristics of the cell nuclei
present in a breast mass image. The dataset can be
divided into malignant and benign clusters.

– Thyroid gland dataset: it has three classes: normal
with 150 instances, hyper with 35 instances and hypo
with 30 instances. It includes five attributes: T3-
resin uptake test (T3), Total Serum thyroxin (TTS),

Total serum triiodothyronine (TST), basal thyroid-
stimulating hormone (TSH) and Maximal absolute
difference of TSH value after injection of 200
micrograms of thyrotropin-releasing hormone (DTSH).

The missing values’ positions are selected randomly and
they represent a certain rate of the whole data. This rate is
either: 5%, 10%, 15%, or 20% as used in previous works
[12]. There are two constraints that should be satisfied while
including missing data, which consist in having at least one
non-missing value per attribute and per instance. Missing
data is replaced by the minimum and maximum values of N

nearest neighbors, where N is a parameter that can be tuned
as proposed in [12]. We compare our results with those
published in [12], which include the following published
methods: WDS, PDS, OCS, NPS [7], NNI [11], KWDS,
KPDS, KOCS, KNPS and IKFCM [12], KMID, KNNF,
EMF, MF, ZF [24] and KM-IMI [23]. In KNNF (KNN-
Filling), the missing values are filled with the mean feature
of the K-nearest neighbors. In EM (Expectation Maximum),
the algorithm estimates the model parameters for filling
incomplete data. In MF (Mean Filling) the algorithm fills
the missing values with mean values, as introduced in
the related work and in ZF (Zero Filling), the algorithm
firstly standardizes the data matrix and imputes zeros on the
missing values.

The relaxed version of POK-means is applied on the
aforementioned three datasets with different missing rates.
The weighted distance for multivariate data is leveraged
as presented in Section 3.4. The relaxed version of the
algorithm is implemented and assessed according to two
commonly used metrics:

– Mean number of misclassifications: the mean of 10
experiments’ results as done in [12] regarding the
clustering errors compared to the ground truths in the
original datasets.

– Mean number of iterations to termination: the mean
of 10 experiments’ results regarding the number of
iterations required by POK-means to converge.

The initialization of cluster centers is important so POK-
means is using a non-random selection of these centers.
The current POK-means relies on an adaptation of the K-
means++ initialization version to intervals as explained in
Section 3.6. However, POK-means is open to any other
centers selection procedure. The current implementation
also calculates weights for attributes and uses them in
the attributes’ distances summation. These weights can be
either tuned or derived automatically as will be explained
in what follows. To derive a weight for each attribute,
the attribute pairwise correlation matrix (can be pairwise
covariance matrix for other datasets) is extracted and each
attribute weight is calculated as the sum of the attribute
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row divided by the sum of the all the matrix elements. This
weight reflects to which extent the other attributes depend
on that attribute. More formally, let Corr be the pairwise
covariance matrix for d attributes of the dataset:

Corr =

⎡

⎢⎢⎣

corr11 corr12 . . . corr1d

corr21 corr22 . . . corr2d

. . . . . . . . . . . .

corrd1 corrd2 . . . corrdd

⎤

⎥⎥⎦

The weight wi of an attribute i is provided in (10).

wi =

∣∣∣∣∣∣∣∣∣∣

d∑
j=1

corrij

d∑
i,j=1

corrij

∣∣∣∣∣∣∣∣∣∣

(10)

wi reflects to which extent other features depend on the ith

feature. So the weighted distance can help in increasing the
separability between cluster elements at the clustering step.
This will be shown empirically in what follows.

4.2 POK-means clustering evaluation

The experimental results are provided in Tables 1, 2, 3 and
4. Best results are marked in bold. The results show that:

– POK-means enjoys good accuracy results compared to
other techniques: kernel based clustering techniques
(WDS, PDS, OCS, NPS [7], NNI [11], KWDS, KPDS,
KOCS, KNPS and IKFCM [12]), and imputation based

techniques (KMF, KNNF, EMF, MF, ZF [24] and KM-
IMI [23]) and comparable results to KMID [24]. It
is generally better than the Kernel based techniques
and competitive to the imputation based techniques.
The weighted distance and the relaxed convergence
strategies are the main ingredients to achieve good
results in POF. More precisely, the weighted distance
leads to a more precise clustering since it gives higher
weight to the attributes that can discriminate well
objects while clustering and consequently a better
separability between data. On the other hand, the
relaxed convergence strategy avoids bad local minimum
solutions while visiting the lattice elements. However,
it does not guarantee obtaining the optimal clustering
solution.

– POK-means has a fast convergence compared to the
kernel based techniques and close performance results
to imputation based techniques. This can be explained
by the fact that the imputation allows the clustering
algorithm to converge in fewer steps. However, this
comes with a stability issue as the standard deviation
values of the imputation based clustering results
indicate in the sequel.

Compared to Kernel based clustering techniques, the
results for the Iris dataset show an improvement in
terms of the mean number of misclassifications that is
between 14.84% and 51.71%. Compared to imputation
based clustering techniques, POK-means has better results
than all imputation based techniques except with ZF. The

Table 1 Accuracy and performance experimental results for incomplete Iris dataset

Rate WDS PDS OCS NPS NNI KWDS KPDS KOCS KNPS IKFCM KMID KNNF EMF MF ZF POK-means

Mean number of misclassifications

0 16 16 16 16 16 16 16 16 16 16 32.9 16.6 16.6 16.6 6 11

5 17.2 17.2 17.7 17.5 17.1 16.7 16.7 16.3 16.1 16.3 35.9 30.1 27.4 30.1 8.4 11.9

10 16.1 16.8 16.5 16.9 16.0 15.8 16.1 16.4 15.7 15.5 25 39.6 21.8 22.6 13.9 12.1

15 17.2 17.4 17.8 17.1 15.6 17.1 16.3 16.4 15.7 15.5 34.6 44.6 16.1 24.4 16.3 13.2

20 17.8 17.4 17.2 17.2 16.9 23.4 16.7 16.8 16.6 16.1 39 49 25.2 34.8 27.4 11.3

Mean number of iterations to termination

0 27.9 27.9 27.9 27.9 27.9 31.7 31.7 31.7 31.7 31.7 6 6.9 6.9 6.9 4.7 13

5 29.6 28.8 37.2 30.0 29.6 33.5 32.8 50.5 33.4 33.2 6.6 6.6 5.8 4.9 4.9 13.3

10 29.8 27.2 45.0 30.0 25.6 33.3 29.7 40.8 32.5 30.0 10 6.6 7.1 6.4 7.6 12.3

15 29.6 28.3 66.3 31.6 26.7 32.7 29.9 49.2 34.3 29.7 8.7 4.9 4.4 5.2 5 11.4

20 36.0 30.3 48.9 34.7 26.0 44.3 32.5 49.1 38.7 28.8 8.4 7.8 4.5 6.6 4.3 10.4

Standard deviation of misclassifications

0 0 0 0 0 0 0 0 0 0 0 26.99 0.51 0.51 0.51 0 0

5 1.14 0.92 1.34 1.08 1.37 1.57 1.16 1.16 1.10 1.16 25.95 17.36 23.01 23.46 1.43 1.66

10 2.23 1.32 1.08 1.29 2.11 2.04 1.10 1.41 1.49 1.65 13.16 17.43 18.03 4.37 3.63 1.91

15 1.69 1.26 1.48 1.52 2.17 1.60 1.49 1.43 1.42 1.84 14.50 17.45 1.85 2.17 4.73 2.20

20 2.15 2.01 2.62 1.99 1.85 18.31 2.50 2.49 2.22 1.52 15.89 16.28 20.76 15.88 18.21 2.11
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Table 2 Accuracy and performance experimental results for incomplete Wine dataset

Rate WDS PDS OCS NPS NNI KWDS KPDS KOCS KNPS IKFCM KMID KNNF EMF MF ZF POK-means

Mean number of misclassifications

0 9 9 9 9 9 8 8 8 8 8 3 3 3 3 3.4 9

5 11.4 10.0 10.4 10.0 9.9 10.3 9.4 9.6 9.6 9.0 6.2 4.1 4 4.7 4.6 8.7

10 14.9 10.7 11.5 NC 11.0 13.8 10.6 11.0 10.4 10.2 9 6.8 5.7 6.7 7 9.8

15 31.9 11.7 12.1 11.7 11.2 31.2 11.5 11.6 11.1 11.3 20.7 8.9 6.4 8.1 7.8 10.5

20 77.4 11.6 11.8 11.1 10.9 74.6 10.9 11.6 10.5 10.8 24.8 9.9 8.2 9.3 10.3 12

Mean number of iterations to termination

0 24.6 24.6 24.6 24.6 24.6 28.3 28.3 28.3 28.3 28.3 8.4 7.7 7.7 7.7 6.5 8

5 26.5 25.9 30.9 28.2 25.4 35.0 29.3 33.9 30.4 30.7 6.9 4.2 4.1 5 4.9 8.9

10 32.5 23.7 33.4 NC 26.9 44.1 27.9 35.1 31.3 27.9 7.5 4.8 4.5 5.6 6.6 9.4

15 50.3 27.0 48.8 34.4 25.0 59.7 30.5 47.5 37.4 29.1 8.8 6.3 4.9 5.4 6.4 9

20 44.3 25.4 54.6 33.9 26.6 42.8 29.3 55.8 38.2 29.7 9.4 7.4 5.5 6.6 6.8 9

Standard deviation of misclassifications

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.78 0

5 1.08 0.67 1.17 0.82 1.37 1.34 1.17 1.43 1.43 1.25 1.56 2.25 1.39 1.72 1.79 0.97

10 3.18 1.57 1.72 NC 1.70 2.66 1.78 1.89 1.65 1.75 5.24 3.28 0.78 1.75 2.11 1.64

15 31.72 3.06 2.77 3.27 2.35 30.76 3.14 2.68 2.92 2.21 8.63 1.85 1.82 2.14 2.16 1.39

20 57.11 3.13 3.46 3.28 2.73 48.75 2.56 3.06 2.87 2.78 9.73 3.16 2.71 2.27 2.09 2.69

improvement results range is between 14.84% and 32.77%.
In addition, POK-means has worse results than ZF for low
rates (0% to 5%) but better results by up 58.76% for higher
rates (10%to 20%) for the Iris dataset. The results for the
Wine dataset indicate a general improvement of the mean
number of misclassifications that is up to 84.50% compared
to kernel based clustering techniques. However, for this

dataset POK-means does not come with an improvement
of the misclassification results compared to imputation
based clustering techniques. The best technique for this
dataset is EMF. The results for the wholesale dataset show
an improvement up to 23.89% and 41.20% for most of
the missing rates compared to both kernel and imputation
based clustering techniques respectively. IKCFM, KNNF,

Table 3 Accuracy and performance experimental results for incomplete Wholesale dataset

Rate WDS PDS OCS NPS NNI KWDS KPDS KOCS KNPS IKFCM KMID KNNF EMF MF ZF POK-means

Mean number of misclassifications

0 61 61 61 61 61 54 54 54 54 54 59.7 51 51 51 64.7 51

5 63.3 62.0 60.7 61.3 59.0 52.4 53.0 52.7 53.1 51.2 52.2 52.3 53.2 66.4 51.8 52.6

10 66.4 62.8 60.5 61.4 57.9 51.8 53.2 52.5 53.2 49.3 69.1 51.8 50.7 68.6 66.5 54

15 72.0 63.7 59.9 60.9 59.5 55.7 54.3 53.9 54.2 53.8 57.1 54.7 51.5 70.5 93.2 54.8

20 72.1 67.8 63.4 65.8 64.0 60.5 56.4 56.0 56.5 61.1 70.4 57 54.9 58.4 83.7 56

Mean number of iterations to termination

0 33.2 33.2 33.2 33.2 33.2 30.7 30.7 30.7 30.7 30.7 6.9 9 9 9 8 9

5 35.0 33.8 47.9 36.6 34.7 31.0 33.3 45.9 35.8 33.2 4.9 5.7 8.3 6.8 6.8 8.8

10 38.2 36.0 66.2 38.7 33.2 32.6 32.8 61.6 37.8 32.2 6.7 7.4 7.2 6.8 8 8.9

15 36.9 34.6 70.7 43.3 32.2 32.3 33.6 63.2 44.7 33.7 6 6.1 6.4 8.2 7.6 9.3

20 41.9 36.5 98.1 48.1 33.8 37.8 34.6 62.5 45.1 34.3 5.5 9.1 8.5 6.7 7.7 9.3

Standard deviation of misclassifications

0 0 0 0 0 0 0 0 0 0 0 40.55 0 0 0 47.54 0

5 5.91 2.40 2.31 1.89 2.36 1.65 1.76 1.64 2.02 1.23 2.78 1.68 1.41 2.74 44.87 1.51

10 8.14 2.78 2.59 2.41 2.60 3.46 2.57 2.42 2.94 3.37 44.78 1.54 2.26 45.01 40.85 1.83

15 10.19 3.02 2.56 2.73 3.57 3.17 2.31 2.38 2.62 5.79 8.64 3.26 3.13 41.75 61.16 2.66

20 13.18 4.66 3.17 3.68 7.32 6.38 3.31 3.30 3.81 6.66 40.49 2.90 2.99 6.31 52.73 3.6
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Table 4 Misclassification and performance experimental results for incomplete breast cancer dataset

Rate WDS PDS OCS NPS NNI KWDS KPDS KOCS KNPS IKFCM KMID KNNF EMF MF ZF POK-means

Mean number of misclassifications

0 30 30 30 30 30 24 24 24 24 24 26.5 27 27 27 32.1 23

5 28.7 30.4 29.7 29.9 29.0 24.7 24.5 24.4 24.5 24.4 28.5 27.9 27.2 27.7 32.5 22.8

10 28.8 29.8 28.6 28.9 29.1 41.2 26.4 26.4 26.7 24.9 33.1 28.9 27.4 27.7 31.5 23.4

15 30.1 31.8 30.3 31.1 29.7 26.8 28.0 27.9 28.7 25.7 34.5 30.1 29 29.5 33.2 24.7

20 31.1 31.7 30.2 31.1 29.9 60.3 27.7 27.0 28.0 26.0 39 33.1 30.5 31.1 35.4 25.4

Mean number of iterations to termination

0 12.6 12.6 12.6 12.6 12.6 26.4 26.4 26.4 26.4 26.4 4.4 3.6 3.6 3.6 5.1 6

5 12.6 12.5 29.8 13.8 12.9 24.9 26.2 29.9 26.7 26.4 5.2 4.1 4.1 4.2 5.8 6

10 12.8 12.9 39.1 15.3 13.3 28.1 26.8 36.7 29.5 26.5 6 4 4 4.4 5.3 6

15 12.8 13.1 47.9 16.4 13.0 26.1 27.4 38.1 30.8 26.3 5.8 4 4.3 3.9 4.9 6.2

20 13.0 13.5 43.3 18.8 12.8 30.5 28.9 62.6 36.0 24.2 6.4 3.9 3.9 4.6 6.5 5.3

Standard deviation of misclassifications

0 0 0 0 0 0 0 0 0 0 0 0.52 0 0 0 1.66 0

5 2.91 1.65 1.70 1.97 1.63 2.06 1.78 1.71 1.78 1.78 4.19 2.51 1.47 2.54 4.47 2.1

10 2.66 1.62 2.46 2.08 2.77 49.53 2.46 2.41 2.54 1.73 6.08 2.13 2.59 1.25 4.06 1.96

15 1.97 2.82 3.50 3.07 2.71 2.39 1.94 2.08 1.34 2.36 8.64 2.18 2.05 2.27 4.10 2.75

20 2.77 3.06 3.08 3.45 3.54 67.54 2.11 2.05 2.87 2.67 9.72 3.24 3.27 2.33 3.47 2.99

EMF and POK-means are the best four techniques for this
dataset. For the Breast Cancer dataset, the misclassification
results show a clear improvement that is up to 43.20%
and 29.85% compared to kernel and imputation based
clustering techniques respectively. The improvement is
obtained for all the missing rates for this dataset. The
table shows that POK-means is the best technique for this
dataset.

Regarding the stability of the clustering results, POK-
means enjoys very low standard deviation values for the
clustering results for the all datasets compared to both kernel
and imputation based clustering techniques. This shows that
the stability of POK-means is not affected by the increase
of the data missing rate.

The results in terms of the mean number of iterations
for termination indicate that POK-means has better per-
formance than kernel based clustering techniques and is
competitive to imputation based clustering techniques. This
can be explained by the fact that the imputation allows the
clustering algorithm to converge in fewer steps. However,
this comes with a stability issue as aforementioned.

Figures 5, 6 and 7 outline the evaluation of POK-means
clustering for the three datasets. The used metrics are:
Accuracy, Normalized Mutual Information (NMI), F-score.
The plots show, for the Iris and Breast Cancer datasets,
that POK-means enjoys higher accuracy, NMI and F-score
values than imputation based clustering techniques. More
precisely, POK-means is among the three best techniques
for the Iris, Wholesale and Breast Cancer datasets. However,
POK-means is better only than KMID for the Wine dataset

despite enjoying high accuracy, NMI and F-score values.
An important feature of POK-means is that it enjoys better
stability in terms of accuracy results compared to the
other two superior techniques KNNF and EMF. Indeed,
despite increasing the missing data rate, the values do
not change drastically and the plots have almost a steady
trend.

Figures 8 and 9 provide an overall view of comparison
between POK-means, imputation [24] and the adaptive
kernel based clustering algorithm [18] for the Iris and
Thyroid Gland datasets. The figures show clearly that POK-
means is competitive to these algorithms based on the
accuracy and F-score metrics.

Based on the above results, we found that POK-means is
ranked Best in 27 cases (out of 93) and Second Best in 5
cases. So, in almost 35% of the cases POk-means is either
first or second. This shows that POK-means is competitive
to other algorithms. Furthermore, we can see from the tables
that the ranking of our algorithm generally improves when
the missing ratio increases.

4.3 Scalability

To test the scalability of POK-means, we resorted to three
large datasets: SYN, COMBO, and BENIGN TRAFFIC
[15]. These datasets are related to the detection of IoT
botnets or IoT traffic anomalies. COMBO includes 58,152
instances with 115 attributes. SYN has 118,129 instances
with 115 attributes while BEGNIN TRAFFIC includes
175,240 instances with 115 attributes.
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Fig. 5 Accuracy results

Fig. 6 NMI results
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Fig. 7 F-score results

POK-means is compared with KNN-3, which is KNN
with three neighbors and endowed with the Partial Distance
to handle the missing values. The clustering time is
measured for a certain partition of the data that varies
between 20% and 100%.

Figure 10 shows the scalability plots using a logarithmic
scale for KNN-3 and POF. The results show that when
the dataset partition increases in size, POF enjoys better
scalability thanks to its fast convergence compared to
KNN-3.

5 Conclusion

We proposed in this paper a new Partial Order-based
Framework (POF) for clustering incomplete data. Our work

was motivated by the shortcomings of existing methods
such as [11, 12, 24], in particular, those related to the false
dismissal problem. POF addresses this problem using the
concept of interval distance and the underlying partial order.
POF can guarantee the satisfaction of the lower bounding
constraint for some distance approximations such as the
weighted distance POWD. Furthermore, POF is a generic
framework since it can handle complete and incomplete
data, as shown in Section 3.4, and any clustering algorithm
can be embedded in it.

To illustrate the applicability of POF, we presented POK-
means, which is an embedding of the K-means clustering
algorithm in POF to deal with incomplete data. We
further discussed its convergence. Our experimental results
show that POK-means is competitive to recently published
works.

Fig. 8 Accuracy results for
POK-means, imputation and
adaptive kernel clustering
algorithms
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Fig. 9 F-score results for POK-
means, imputation and adaptive
kernel clustering algorithms

Fig. 10 Scalability results for SYN, COMBO and BENIGN
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One of the issues faced by POK-means is about
antichains, which include incomparable elements in the
lattice of interval distances. Indeed, POK-means could
be stuck in one of antichain elements while applying
the partial order on these intervals. This could lead to
a bad clustering solution. We are planning to investigate
this issue in our future work. An interesting research
challenge consists in devising a good selection technique of
antichain elements that can guarantee convergence to a good
clustering solution. We are also planning to embed more
clustering algorithms in the proposed framework.

Appendix A

Proposition 1 � is a partial order.

Proof – Reflexivity: [aL, aR] � [aL, aR] since aL ≤ aL∧
aR ≤ aR .

– Asymmetry: Let us assume that [aL, aR] � [a′
L, a′

R]
and [a′

L, a′
R] � [aL, aR]. This means that aL ≤ a′

L and
a′
L ≤ aL. Hence, aL = a′

L. By similar reasoning, we
have aR = a′

R . So [aL, aR] = [a′
L, a′

R].
– Transitivity: Let us assume that [aL, aR] � [a′

L, a′
R] and

[a′
L, a′

R] � [a′′
L, a′′

R]. This means that aL ≤ a′
L and

a′
L ≤ a′′

L. So aL ≤ a′′
L. By similar reasoning, we have

aR ≤ a′′
R . Therefore, [aL, aR] � [a′′

L, a′′
R].

Proposition 2 (LI , �) is a complete lattice.

Proof Let S ⊆ LI such that S = {[a1, b1], [a2, b2],
. . . , [an, bb]}. Then, an upper bound of the elements in S

is u = [max(ai), max(bi)]. Let [x, y] another upper bound
of S. Based on the partial order �, we can prove easily
that max(ai) ≤ x and max(bi) ≤ y, which means that
[max(ai), max(bi)] � [x, y]. Therefore, u is the least upper
bound of S. By similar reasoning, S has a greatest lower
bound l = [min(ai), min(bi)].

Theorem 1 Any approximation based on the weighted
distance POWD satisfies the lower bounding constraint.

Proof Let di be an approximation value of a distance
between two multidimensional data x and y for the ith

feature. We assume that di belongs to the interval distance
[dmin = ∑

i di
min, dmax = ∑

i di
max] in POF. This means

that di ≤ dmax. So, wi di ≤ wi dmax. Thus,
∑

wi di ≤ (
∑

wi) dmax. Since by the definition of POWD, we have
∑

wi

= 1, we conclude that POWD satisfies the lower bounding
constraint.

Theorem 2 POK-Means in its strict version converges to a
local minimum of the lattice (LI , �).

Proof The convergence proof is based on the following
facts:

– The set of (LI , �) is a complete lattice.
– In each iteration the SSE is minimized. So the sequence

of iterations leads to a decreasing chain in term of SSE.
Let S be the set of I0, I1, . . ., In. S is finite since the
number of configurations is finite. Since S is a subset
of I has a greatest lower bound.
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