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Abstract
A DeepFake is a manipulated video made with generative deep learning technologies, such as generative adversarial
networks or auto encoders that anyone can utilize. With the increase in DeepFakes, classifiers consisting of convolutional
neural networks (CNN) that can distinguish them have been actively created. However, CNNs have a problem with
overfitting and cannot consider the relation between local regions as global feature of image, resulting in misclassification.
In this paper, we propose an efficient vision transformer model for DeepFake detection to extract both local and global
features. We combine vector-concatenated CNN feature and patch-based positioning to interact with all positions to specify
the artifact region. For the distillation token, the logit is trained using binary cross entropy through the sigmoid function.
By adding this distillation, the proposed model is generalized to improve performance. From experiments, the proposed
model outperforms the SOTA model by 0.006 AUC and 0.013 f1 score on the DFDC test dataset. For 2,500 fake videos,
the proposed model correctly predicts 2,313 as fake, whereas the SOTA model predicts 2,276 in the best performance. With
the ensemble method, the proposed model outperformed the SOTA model by 0.01 AUC. For Celeb-DF (v2) dataset, the
proposed model achieves a high performance of 0.993 AUC and 0.978 f1 score, respectively.

Keywords Deep learning · Deepfake detection · Distillation · Generative adversarial network · Vision transformer

1 Introduction

With the development of artificial intelligence (AI) capa-
bilities, deep learning models have been employed in var-
ious fields of computer vision [1–4]. Convolutional neural
network (CNN) models are used in the fields of image
classification, image generation , and object detection and
have emerged as state-of-the-art (SOTA) methods that apply
various training techniques. Recent generative adversar-
ial network (GAN) face generation models perform very
well, including StyleGAN [5], StarGAN [6], and Interface-
GAN [7]. Deepfake videos can easily be made using such
networks.
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DeepFake is a combination of “deep learning” and
“fake” terms, which refers to the technique of changing
the source person in a target video. This technology makes
the impersonation seem to be performing actions or saying
things that they never did or said. Notably, cases of
abuse, such as fake news and revenge porn, have emerged
as detrimental social issues. Therefore, technologies and
datasets for detecting fake videos have been studied.

Deepfakes are created using GANs [8] and variational
autoencoders (VAEs) [9]. The most well-known deepfake
generation technique, in which two VAE models are trained
to generate the faces of a person, only the decoder part is
exchanged to create an image, as if only the face part is
changed. The encoder part is shared by the two models, and
the decoder part is trained separately. The recently created
DeepFake detection dataset (DFDC: the world’s largest)
[10] was applied to every frame by a Deepfake autoencoder
with a morphable mask/neural network face swap to change
the landmarks of the face. Face-swapping GANs use the
neural talking-heads method and a GAN (e.g., StyleGAN)
to generate DeepFake videos. Using the DFDC full dataset
[10] released by Facebook AI, the EfficientNetwork-b7 [11]
became a SOTA model.
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The procedure for finding fake videos is as follows.
First, after locating the face in each frame, the image is
cropped, and a deep learning model discriminates whether
the image is fake. Fake videos can be detected by locating
and detecting artificial parts within frames. An unnatural
part is identified based on the spatial characteristics inside
the frame. However, between frames, unnatural features can
be found by their temporal characteristics. Networks for
detecting edited parts of a frame mainly use a CNN structure
because they do a good job of considering spatial character-
istics. Additionally, anomaly discriminator methods, such
as k-nearest neighbor and support vector machine (SVM)
algorithms, work well. Instead of finding defects in one
image, a recurrent neural network (RNN), which is nor-
mally used for natural language processing (NLP), can be
used to find defects based on the temporal characteristics
between frames. After the CNN model extracts the frame
features, the RNN or a long short-term memory (LSTM)
model determines whether the video is fake.

DeepFake detection requires clarification of goals
because the results vary depending on which trait is looked
for. Additionally, there is a problem in that the accuracy of
real-world data is poor, depending on the trained data. In
the DFDC private test dataset [10], most models incorrectly
identify real videos as fake. To solve this problem, various
training techniques and model innovations are required.

In addition, most current models are CNN-based archi-
tectures, but Jeffrey Hinton pointed out that the CNN model
does not reflect the relationship of regional characteristics
well. Hence, he proposed a capsule network [12] to miti-
gate the problem. As the CNN model goes to a higher level,
more complex features are extracted and classified at the top
layer. However, there is a disadvantage in that the positional
relationship between simple and complex features cannot be
considered because it is calculated as the weighted sum of
the lower layers to the top layer. Therefore, for the current
study, we use a model of a different structure that can con-
sider the positional relationship of each face part, rather than
the usual CNN-based approach.

In this study, we find fake videos using their spatial
characteristics by leveraging a transformer model. Most
DeepFake discrimination models use CNN-based networks
as the SOTA model [11]. We also reveal the reason for this
through detailed results analysis and discussion.

Our most relevant contributions are as follows:

– We adopt an improved vision transformer: An effi-
cient deep architecture with a vision transformer (ViT)
that can predict fake videos is designed.

– We apply a distillation technique for Deepfake detec-
tion: We apply a distillation method of data-efficient
image transformers (DeiT) for Deepfake detection and
show the results of various conditions.

– We combine patch embedding and CNN features:
By combining the EfficientNet and patch features, we
consider the advantages of two features and obtain
higher area under the curve (AUC) and f1 scores than
the SOTA [12] and other recent methods.

In summary, we design a DeepFake detection using a ViT
model, which has shown good performance in recent image
classifications. We combine CNN and patch-embedding
features during the input stage. Also the proposed method
uses the distillation technique, and the results show a higher
performance than SOTA [11]. Moreover, our method shows
better performance for fake videos, and we expect high
performance in other test datasets as well.

This paper is organized as follows. Section 2 describes
related works, and we introduce a model that considers
spatial and temporal characteristics in detail. Section 3 pro-
poses the scheme for the proposed DeepFake detection
model. We explain the preprocessing process, the basic net-
work, features combined with CNN, and patch and training
processes. Section 4 presents the experimental results and
analysis, and Section 5 concludes the paper.

2 Related works

Most configured models for DeepFake detection are based
on a CNN structure. There are two approaches for
discriminating DeepFake videos. One is to exploit unnatural
spatial properties within one frame of video as an image
unit, and the other is to exploit temporal properties to find
unnaturalness between video frames.

Figure 1 represents the methods of DeepFake detection.
The model finds artifacts using temporal characteristics
and feature points using a CNN and puts sends them
to a sequential network (e.g., RNN, LSTM, or GRU) in
chronological order.

2.1 DeepFake detection using spatial properties

To detect spatial manipulation in the face, Li [13] used
CNN models (i.e., VGG16 [14], ResNet50, ResNet101, and
ResNet152 [15]). Nguyen proposed a capsule network that
can detect various types of Deepfakes [12] by using features
pretrained by VGG16 and suggested a capsule-forensic
architecture. A classification method using an SVM was
proposed by Yang [16], and Guarnera employed K-nearest
neighbors and linear discriminant analysis [17]. However,
owing to the limitations of CNNs, it is necessary to interact
with and compare all parts of an image to detect falsified
areas.

Until now, the best CNN model for this purpose was
EfficientNet [18] on DFDC dataset. EfficientNet improved
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Fig. 1 DeepFake detection methods

the performance by applying several techniques to increase
the number of filters by width scaling, the number of
layers by depth scaling, and the resolution of the input
image by resolution scaling [18]. The SOTA model based
on EfficientNet achieved 0.981 AUC using the ensemble
technique which was averaged the predictions of multiple
trained models for DeepFake detection [11]. However,
such models that use spatial characteristics with a two-
dimensional (2D) CNN structure cannot correlate features
in a distant position with temporal information. This makes
it difficult for them to succeed.

Li et al. also proposed a novel image representation
(i.e., face X-ray) for detecting forgery in facial images
[19]. In this method, the face X-ray of an input face
image is used to reveal whether the input image can be
decomposed into blended images from different sources.
Mitall et al. suggested an audio-visual DeepFake detection
method using affective cues [20]. This approach employed
a deep learning method inspired by the Siamese network
architecture and triplet loss. Using this scheme, they
achieved AUC of 0.844 on the DFDC dataset.

Based on this analysis, if we design an improved vision
transformer (ViT) model to consider this relation infor-
mation as a global feature, we are able to expect a
performance increment for DeepFake detection task.

2.2 DeepFake detection using temporal properties

Figure 2 shows the structure of DeepFake video discrim-
ination using temporal characteristics. Montserrat detected

space–time awkwardness by sending the frames of the video
to EfficientNet and each feature from the frames into a gated
recurrent unit [21]. Similarly, Güera used a CNN to extract
frame-level features and train an RNN that learned to clas-
sify fake videos [22]. Unlike previous studies using CNN
and RNN networks to determine spatiotemporal properties,
de Lima [23] used a three-dimensional (3D) CNN to detect
them simultaneously. They employed I3D [24], R3D [25],
and MC3 [26] owing to their higher performance.

Using an optical flow-based CNN, Amerini applied
an optical flow field to exploit possible inter-frame
dissimilarities [27]. However, detection models using
temporal properties tend to exhibit poor performance.
Amerini [27] used Face2Face, which achieved an 81.61%
of accuracy on 120 testing datasets [28]. Montserrat [21]
achieved a 91.88% of accuracy on the DFDC test dataset.
They successfully extracted the unnatural parts of the inter-
frame, but most frames have similar features because almost
all of the scenes are the same. Therefore, only temporal
feature might be insufficient in those.

3 Proposed DeepFake detection algorithm

Before introducing our model, we describe its transformer
structure and its advantages to DeepFake detection. Trans-
formers are widely used in the natural language processing
(NLP) field, but they also show good results in the field of
computer vision. The Facebook AI team proposed a method
that combined transformer model and distillation method
[29]. We employ this model.

3.1 ViT for DeepFake detection

The CNN and ViT models have pros and cons in Deepfake
detection. First, the CNN cannot learn the relation of
different parts of the image. For example, the model cannot
find an unnatural relationship between mouth and eyes that
is out of synchronization. On the other side, the ViT learns
their relationship to each position by assigning an order
to patches of the given image. The input is embedded as
patches with information on the positioning. These features
are connected by Multi-Head Self Attention Layer (MSL)
to know which part is fake.

In the Second, the ViT utilizes global information more
than the CNN. The CNN uses a convolution filter that
extracts crucial edges by filtering the surrounding pixel
values regardless of absolute position. The multi-head
self-attention layer in ViT makes it possible to embed
information globally across the overall image. In [30],
ViT have more global information than ResNet at lower
layers and uniform representations. The CNN model has
no information about the location, only information about
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Fig. 2 DeepFake detection for
temporal characteristics

the surrounding pixel values. This characteristic can detect
the unnaturalness of the surrounding pixels due to image
synthesis. Therefore, we combine a CNN feature and patch
embedding to get local and global spatial information.

The features of the CNN model are gradually reduced
by the CNN kernel through the entire image as input.
Figure 3(a) illustrates the process of the CNN structure.
Finally, it converges to a single feature and predicts the class
of the image. To detect DeepFake images, the CNN model
finds anomaly features by searching the entire face from the
partial features of the face image.

As shown in Fig. 3(b) regarding the transformer, the cls
token interacts with all partial features and interacts with
each element to find the deeply related parts. If there are
unsuitable features, they affect the specific area involved.
Patches with a strong relationship with class tokens appear
as active areas. Thus, the most relevant feature with class
tokens is an important factor in predicting a DeepFake.

When the model finds the fake part of the face, the
interactive weight of the class token is strong. In the real
part, all the weights do not bounce and are distributed
evenly. For this reason, the transformer has slightly more
difficulty finding the real image than does the CNN.
However, it has more success in finding a fake image
by dividing it into patches and interacting with the class
token. On the other hand, the CNN condenses it to a
single vector from image features. We consider both CNN
features and patch embedding features for their respective
advantages.

Figure 4 shows the transformer training process for
DeepFake detection. First, we split the face into the desired
patch size, and it is patch embedded by one CNN layer using
a patch size kernel. Features corresponding to each part of
the face are fed to the input of the transformer and interact
with each other. Finally, the class token predicts whether
the image is real or fake through the fully connected layer.

Fig. 3 (a) CNN structure
process and (b) transformer
process on face image
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Fig. 4 ViT for DeepFake
detection
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Thus, the transformer can detect fake videos by interacting
with the unnatural area.

3.2 The proposedmethod

The procedure of the proposed Deepfake detection is shown
in Fig. 5. The face is extracted from a video using a
multitask cascaded convolutional network (MTCNN) model
[31]. Then, a landmark is extracted to proceed with the
augmentation, which drops out the face part from the image.

After face extraction from the video and preprocessing,
the image enters a deep learning model. We contribute to
the deep learning model of the entire process. As the output
of the deep learning model, we can determine whether it is
real or fake.

Our baseline follows the vision transformer network
with a distillation token from DeiT. Input sequences were
combined with patch embedding and CNN features. The
entire network is shown in Fig. 6. We introduce our
baseline model for DeepFake detection in Section 3.2.2 We
illustrate that how the input consists in Section 3.2.3 and the

specific distillation training process with teacher network in
Section 3.2.4.

3.2.1 Data preprocessing

The face from the frames is extracted using the MTCNN
model [31]. We generate landmarks in the cropped image
and extract the structural similarity difference masks
between the real and fake images. We follow [11] for this
process. The reason for extracting landmarks is to cut out
part of the face to make the model more general. This
pre-processing prevents the model from overfitting. For
example, the input image is preprocessed, as shown in
Fig. 7. Finally, GaussNoise, GaussianBlur, HorizontalFlip,
InsotropicResize, and ShiftScaleRotate of Albumentations
[32] are used for data augmentation.

3.2.2 Basic network architecture

We overview the vision transformer [33] and recognize its
efficacy in the field of DeepFake detection. The transformer

Video Input Face Ex Pre-processing Training

Deep
learning
model

Real
or
Fake

n

Fig. 5 Proposed DeepFake detection procedure
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Fig. 6 The proposed overall DeepFake detection network. The image
is split into patches and passes EfficientNet [18]. We obtained (Batch,
N, embedding features) and (Batch, M, embedding features), respec-
tively. These tokens are concatenated through global pooling and fed

to the transformer encoder. The encoder consists of Multi-Head Self
Attention and two Gaussian error linear unit (GELU) layers which is
feed-forward neural network (FFN). We add a distillation token trained
by the teacher network

was originally used for NLP tasks; however, recently, many
attempts have been made to apply it to image modeling
[34–36]. The vision transformer has an encoder like the
bidirectional encoder representations from transformers
model, which uses position information and embedding
sequences.

Before the Multi-Head Self Attention Layers (MSLs),
the image, x ∈ R

(H×W×C), is split into patches, xp ∈
R

( H
P

× W
P

×E), by learnable embedding, where (H,W) is the
resolution of the image,C is the channel, P is the patch size,
and E is the number of embedding features. All patches
are flattened by linear projection and added to the position
embedding equal to (H

P
× W

P
). The transformer encoder

consists of a Multi-Head Self Attention and multilayer
perceptron (MLP). The MLP contains two layers with
GELU non-linearity [33].

The sequences of feature vectors include all parts of the
image. An encoder refers to all sequences of split patches.
The previous CNN structure focused only on the activated
part of the face and could not refer to other distant positions.
However, input sequences depend on global information,
which can reduce overfitting in transformers. We also
find an interesting result in that the transformer makes a
relatively fair classification of real and fake videos, rather
than being skewed to either side, unlike the previous CNN
models.

3.2.3 Combination of patch embedding and CNN features

We combine patch embedding and CNN features. Patch
embedding determines the features of the patch of the face,
and the CNN feature determines the overall features. Two

Fig. 7 The result of data
pre-processing [11]
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features are combined and entered through global pooling.
If both are considered, the performance is higher than when
only single-patch embedding is compared.

Unlike the original input vectors of the vision trans-
former, we introduce input tokens before feeding the
encoder. We define Zp = (x1

pE, x2
pE, · · · , xN

p E) and

Zf = f (x) = (x1
f , x2

f , · · · , xM
f ), where xp is a patch, E is

a learnable embedding, N is the exponential number of split
patches, M is the number of CNN features, and f (·) is the
CNN model. Thus, Zf is a feature of the CNN model, and
we use f as EfficientNet.

These features are combined as Zp ⊕ Zf (⊕ means
concatenating features by channels), and global pooling is
applied. Min Lin suggested that global average pooling
is more interpretable between feature maps and categories
[37]. Thus, we represent Zp⊕f = globalpooling(Zp⊕Zf )

as input vectors and N + M to N (vector number). As a
result, we consider not only the main part features of the
face but also the correlation of all parts.

The transformer’s input features can interact from patch
to patch, and the CNN features can interact with the
surrounding features. By using this approach, we can obtain
better AUC and f1 scores than using only patch embedding
or CNN features.

3.2.4 Distillation method and teacher network

We have xclass and xdistillation tokens. The class token is
trained by the true label value, and the distillation token
is trained based on the prediction value of the teacher. To
achieve a higher performance than the current SOTA model
[11], the teacher is set the same as the SOTA model [11]. If
the distillation token is not added, overfitting occurs.

We add class tokens and distillation tokens to input
Zp⊕f , and we define the final input, Z0 = [xclass;Zp⊕f ;
xdistillation]+Epos , where xclass and xdistillation are tokens
for training by the label and teacher network, and Epos is
the learnable position embedding. Finally, we can define the
set train loss as

Lf ake = λLBCE([Zcf ake
], y)

+(1 − λ)LBCE](Zdf ake
, σ ([Ztf ake

)), (1)

Lreal = λLBCE(Zcreal
, y)

+(1 − λ)LBCE(Zdreal
, σ (Ztreal

)), (2)

Ltrain = Lf ake + Lreal

2
, (3)

where Ztf ake
and Ztreal

are the logits of the teacher model
for fake and real prediction, (Zdf ake

, Zdreal
) and (Zcf ake

,
Zcreal

) are the logits of the distillation tokens and the class

tokens for fake prediction and real prediction, respectively.
We set λ by 1

2 through experimental analysis and binary
cross entropy (LBCE) on the labels, y, and σ as the sigma
function.

In [29] regarding Facebook AI, a distillation method
prevents overfitting by expanding the range of weights of
labels. Also, when the teacher network is the CNN model,
the transformer produces the best results compared with the
other models.

Therefore, we chose the teacher network, EfficientNet,
which is the state-of-the-art model on the DFDC dataset
for DeepFake detection. Each class and distillation token
represent the probability that the video is fake. The
distillation tokens are used instead of the class tokens
when testing. It can be seen that it outperforms when the
distillation token is used on the test dataset.

The proposed scheme is efficient in detecting fake videos
because we utilize distillation methodology to generalize
the model and combine the CNN and patch-embedding
features to gather more contextual information.

4 Experimental results

Here, we describe the dataset and the details of the
parameters. We also compare the proposed scheme with
the SOTA model [11], Li [19], Mittal [20] for the DFDC
dataset, and I3D [24], R3D [25], MC3 [26] for the Celeb-DF
(v2) dataset, which represent the condition of performance
measurements. We explain why we used the DFDC and
Celeb-DF (v2) datasets in Section 4.1. We describe the
parameter setting and configuration environments required
in the training process in Section 4.2 and analyze the
experimental results in Section 4.3.

4.1 Datasets

4.1.1 DFDC Dataset

In a Kaggle competition1, the DFDC dataset was previewed
[38]. Later, the Facebook AI team opened the full version
[10], which is the largest publicly available DeepFake
dataset, and it includes approximately 100,000 videos pro-
duced by GANs. Figure 8 presents an example.

In a DeepFake dataset survey [10], face-swap datasets
were divided into three generations. First-generation
datasets, such as DF-TIMIT [39], UADFV [16], and Face-
Forensics++DF (FF++DF) [40], have 104 ∼ 106 frames
and up to 5,000 videos. Second-generation datasets include

1https://www.kaggle.com/c/deepfake-detection-challenge
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Fig. 8 Examples of DFDC
Dataset [10]

Celeb-DF [41] and DFDC preview [38]. The DFDC full
dataset is third-generation and has 128,154 total videos and
104,500 unique fake videos.

Because the data size is large compared to other datasets,
we chose the largest DeepFake dataset and compared its
performance to that of the SOTA model [11] on the DFDC
full dataset. In the analysis of Dolhansky [10], the submitted
best model has an AUC of 0.734 on a private test set.
Also, the higher the average precision of the submitted
models ([11, 42–45]) on the DFDC dataset, the better the

performance in real videos. Therefore, if the performance is
good with the DFDC dataset, we can assume that the results
can be generalized to real videos.

4.1.2 Celeb-DF (v2) datasets

The Celeb-DF (v2) dataset contains real and DeepFake syn-
thesized videos having similar visual quality on par with
those circulated online [41]. The Celeb-DF (v2) dataset is
greatly extended from our previous Celeb-DF (v1), which

Fig. 9 Examples of Celeb-DF
(v2) dataset
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only contains 795 DeepFake videos. To date, Celeb-DF
includes 590 original videos collected from YouTube with
subjects of different ages, ethic groups and genders, and

5639 corresponding DeepFake videos. Figure 9 shows some
examples of the Celeb-DF (v2) dataset. This is smaller one
comparing with the DFDC dataset.

Fig. 10 Validation loss result
according to the weight of fake
loss: (a) weight 0.5, (b) weight
1.0, and (c) weight 1.5 on the
DFDC dataset

(a)

(b)

(c)
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Table 1 AUC results according to λ values in the test dataset

λ values AUC

0.3 0.976

0.5 0.978

0.7 0.976

no distillation 0.974

4.2 Training and testing detail

4.2.1 Training detail

We take a pre-processing stage initially. After the pre-
processing, images are loaded randomly for training process
with their labeled information.

Pre-processing: We used a face detector as the MTCNN
[31] and cropped all frames to 384×384. We augmented our
training data using albumentations [32]. We also cut out and
dropped out part of the image, based on [11].

Training: The patch size for the embedding features was
32, and the embedding dimension was 1,024. We initialized
our transformer and the EfficientNet-B7 model [11] using
the pretrained model. We set the transformer to 16 heads
and 24 layers, which is identical to the large ViT default
model. Additionally, our teacher network used a pre-trained
network, EfficientNet-B7 [11] on the DFDC dataset. We
used a distillation token only during testing.

Parameters: Training and testing were performed on a
V100 GPU machine with a batch size of 12 for training.
We used a stochastic gradient descent optimizer with an
initial learning rate of 0.01 and a differential learning rate
reduction policy, which is a step-based method. The training
epoch was 40, batches per epoch were 2,500, and it took 2
days on a single V100 GPU.

For classification, we used binary cross entropy for
backward values. We tested a publicly available DFDC
test dataset of 5,000 videos. The f1 score was measured
for comparison with the SOTA model [11] with a 0.55 of
threshold value, which was selected through experiments.
Also, we will check on the performance at the best threshold
value of each method.

4.2.2 Testing detail

To detect DeepFake video, we employed the same proce-
dure in the SOTA model [11]. During testing, 32 frames per

video are selected at regular intervals. If an image number
with a predicted value larger than 0.8 is 12 frames or more,
the predicted values are averaged. If number of images with
predicted values smaller than 0.2 is bigger than 90%, the
predicted values are averaged. In other case, the average of
all predicted values is calculated. As a result, a value from 0
to 1 indicates whether the video is fake or not.

4.3 Ablation Study

We show the results of training and testing according to
the λ value when applying the distillation method during
training. We analyzed the results when the distillation
method was not applied and the f1 score experiment result
according to the threshold value.

Figure 10 shows that the deviation increases as the weight
for fake loss increases. The validation loss was mostly
similar, but we can see that the loss was relatively higher
than when the distillation technique was not applied.

Table 1 shows the AUC result according to the λ value
when training with the distillation method. The highest
AUC value was obtained at 0.5 (as shown in boldface), and
the lowest AUC value was obtained when no distillation
was applied. In order to consider other intervals of values as
interpolation, we experimented with three λ values.

Table 2 is the result of the f1 score according to the
threshold value (β), which is the probability of determining
an image as fake. The boldface denotes the best perfor-
mance of each algorithm. The proposed achieved the highest
0.919 f1 score at 0.55 and the highest 0.911 f1 score at 0.4
in the SOTA model [11]. The best threshold value of β has
been selected by analyzing the performance (f1 score) as the
variation of β. Since the different network structure is used,
the best threshold value may be changed due to different
training characteristics. When comparing the best perfor-
mance, the proposed method outperformed the SOTAmodel
[11] by a factor of 0.8% (0.008 of AUC).

Also, we concatenated CNN features and patch embed-
ding to consider local and global information. Without using
CNN features, we achieved 0.959 AUC and 0.891 f1 score,
respectively. This result describes that the combination of
CNN feature with patch embedding is very effective.

4.4 Performance analysis

We compared our model to the SOTA model [11]. We
trained the proposed model using the training dataset and

Table 2 The result of f1 score
according to the threshold
value in the test dataset

Threshold value (β) 0.3 0.4 0.5 0.55 0.6 0.7 0.8 0.9

SOTA [11] 0.904 0.911 0.908 0.906 0.904 0.901 0.901 0.898

Proposed Method 0.894 0.910 0.917 0.919 0.917 0.916 0.914 0.914
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Fig. 11 Results of loss between
SOTA model and our model in
validation DFDC dataset: (a) the
loss for fake video, (b) the loss
for real video, and (c) the
average loss
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Fig. 12 Receiver operating characteristic (ROC) and AUC curves.
Orange is the curve of our model, and green is the curve of the SOTA
model [11]. The proposed model has a larger area than the compared
SOTA model [11] on the DFDC dataset

chose the model weights with the lowest loss in the
validation set. In Fig. 11, we compare the validation loss to
the SOTA model [11] for real and fake videos. The green

plot indicates our model’s loss, and the purple plot indicates
the SOTA model’s [11] loss. There was a slight difference
in the loss of the real video, but there was a significant
difference in that of the fake video. This graph shows
that our model is a more robust classifier for fake videos.
Although the real loss was similar, the overall average loss
was lower. The validation loss is defined as

LogLoss = −1

n

n∑

i=1

[yilog(ŷi) + (1 − yi)log(1 − ŷi )], (4)

where n is the number of videos being predicted, ŷi is the
predicted probability of the video being fake, yi is one if
the video is fake and zero if real. We obtained ŷi using
distillation tokens.

In addition, the ROC–AUC curve of the proposed model
has a larger area (0.978) than that of the SOTA model [11]
(0.972) in Fig. 12. This indicates that the proposed classifier
is more robust on fake videos because the precision was
higher than that of the SOTA model [11], and the recall was
close to one.

To verify robustness, a confusion matrix was obtained by
setting a threshold of 0.55, which represents the probability
of a fake video. It represents the predicted number of
videos according to each label in Fig. 13. Top-right, top-left,
bottom-right, and bottom-left represent false positive, true
negative, true positive, and false negative, respectively. The
confusion matrix of the left side is that of the previous SOTA
model [11] prediction, and the right side shows our results.
We can see that our model clearly predicts fake videos. The
false-negative results for each model were 335 and 187,
respectively. Thus, the proposed model is robust with fake
video detection, and the f1 score of all cases was 0.919 as

Fig. 13 Confusion matrix from the previous SOTA model which is EfficientNet-B7 [11] (left) and the proposed algorithm (right) on the DFDC
dataset when threshold β=0.55
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Table 3 AUCs, f1 scores, and the complexity of the recent methods,
SOTA, and the proposed model on the DFDC dataset

Methods AUC f1 score # of parameters

Li [19] 0.809 - -

Mittal [20] 0.844 - -

Selim (SOTA) [11] 0.972 0.906 67.7M

Proposed model 0.978 0.919 440.2M

shown in boldface, which is higher than the 0.906 of the
SOTA model [11] shown in Table 3.

To compare the performance in the best threshold
condition, we displayed another confusion matrix in Fig. 14.
The best condition of the SOTA model [11] was at β=0.40
and β=0.55 in the proposed model. For 2,500 fake videos
in these conditions, the proposed model correctly predicted
2,313 as fake, whereas the SOTA model predicted 2,276 in
number. Also, the false-negative results for each model were
224 and 187, respectively. From this result, we can see that
the proposed model is robust with fake video detection.

We also compared AUC values to other recent method-
ologies, such as a scheme based on the face X-ray network
[19], a DeepFake detection method using emotion audio-
visual affective cues [20], and the SOTA model [11], as
shown in Table 3. Generally, DeepFake detection meth-
ods focus on manipulation artifacts. However, Li et al. [19]
proposed a novel face X-ray image representation, which
focuses on blending artifacts. They predicted the boundary
of the manipulated face and obtained an AUC score of 0.809
in the DFDC test dataset.

Mittal et al. used audio and visual modalities from within
the same video to determine similarity [20]. Their training
method was like a Siamese network with facial and speech
features. This scheme achieved a 0.844 AUC score for the
DFDC test dataset. When compared with these methods,
the proposed algorithm yielded a significantly improved
AUC score (0.978 AUC score), as shown in Table 3. When
comparing to Mittal [20], the proposed method was superior
by 0.13 AUC even though the proposed model used only
image (facial) feature.

From Table 3, the proposed method is only 0.006 higher
in AUC than Selim method (SOTA) [11]. But we observed
that the proposed scheme outperformed Selim method
(SOTA) [11] by 0.013 f1 score. Also, the proposed method
showed much better performance in finding fake video
(True Positive). In DeepFake detection task, we think that
the detection of fake video is more important than that of
real video. In this viewpoint, the proposed scheme is useful
enough in DeepFake detection task.

We also compared the ensemble results of the SOTA
[11] and the proposed model. We trained five times and
tested it by averaging the probability values. As a result,
the AUC result of the SOTA model [11] was 0.981, and
the proposed model achieved an AUC of 0.982. Thus, the
proposed scheme can detect fake videos more robustly than
the SOTA model [11].

Additionally, we trained and tested the proposed scheme
by same process with single model on the Celeb-DF (v2)
dataset. The Celeb-DF (v2) dataset [41] has 590 real videos
and 5639 fake videos that is synthesised with high quality.
Table 4 shows the AUCs, F1 scores, and the complexity

Fig. 14 Confusion matrix from the previous SOTA model which is EfficientNet-B7 [11] (best threshold β=0.40) (left) and the proposed algorithm
(best threshold β=0.55) (right) on the DFDC dataset
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Table 4 AUCs, f1 scores, and the complexity of the recent methods,
SOTA, and the proposed model on the Celeb-DF (v2) dataset [41]

Methods AUC f1 score # of parameters

I3D [24] 0.976 - 25.0M

MC3 [26] 0.993 - 11.7M

R3D [25] 0.997 - 33.3M

Proposed model 0.993 0.978 440.2M

of the proposed and recent existing models on the Celeb-
DF (v2) dataset [41]. The boldface denotes the results of
the proposed algorithm. As in [23], they used 3D CNNs
to consider both spatial and temporal information [24, 26],
[25]. Except R3D scheme [25], the proposed model gave
better AUC. This means that the improved ViT model is able
to give good performance for other DeepFake dataset.

Since the proposed scheme uses an improved ViT
structure shown in Fig. 6, the computational complexity is
inevitably higher than that of ViT. In addition, the proposed
scheme uses the feature from EfficientNet [11] together.
The complexity of the proposed model is almost 8 ∼ 10
times because of modification of ViT as shown in Tables 3
and 4. The transformer utilizes the attention mechanism
to compute the correlation crossing on all tokens. This
attention module has heavy parameters than CNN structures
without attention module. Also, the number of convolution
layers should be increased to make higher accuracy in
classification task. But a problem is that we can observe
the performance saturation (not improved more) although
the layer number is increased continuously. To solve this
problem, transformer is being widely utilised. With this,
we deigned the proposed model to improve the detection
performance of DeepFake image based on the ViT model.

Despite its high complexity, the proposed algorithm has
shown better performance for Deepfake detection by design-
ing distillation techniques and combining CNN features
with patch embedding. From Tables 3 and 4, we can see
that the proposed scheme achieves better AUC and f1 score
on the DFDC and Seleb-DF (v2) datasets. Especially, we
observed very high f1 score on the Celeb-DF (v2) dataset [41].

5 Conclusion

In this paper, we proposed an improved vision transformer
model for DeepFake detection. The proposed scheme is
a combination of patch embedding and CNN features
utilizing a distillation token based on DeiT. By considering
the characteristics of the CNN and the transformer, we
verified superior performance over previous results.

We demonstrated the efficiency of the robust vision
transformer model compared with EfficientNet as the SOTA

model, which consists of a 2D CNN network. The SOTA
obtained an AUC of 0.972, whereas ours obtained 0.978
under the same conditions without an ensemble approach.
The proposed scheme produced an f1 score of 0.919,
whereas the SOTA model achieved 0.906 under the same
threshold condition of 0.55. Furthermore, we observed an
AUC improvement of up to 0.17 compared with a recent
scheme [19, 20]. With the ensemble method, the proposed
model achieved an AUC of 0.982, whereas the SOTA model
achieved 0.981 [11]. In addition, we verified 0.993 AUC and
0.978 of f1 score for the Celeb-DF (v2) dataset.

In future work, we will investigate more detailed
unnaturalness between frames for DeepFake detection. If
the spatial feature is only considered, motion information
between adjacent frames of the DeepFake or the synthesized
pixel portion within one frame may be missed. Therefore,
we will study further a hybrid ViT model which can
combine spatial feature with temporal feature, efficiently.
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