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Abstract
The estimation of distribution algorithm (EDA) has recently emerged as a promising alternative to the traditional evolutionary
algorithms for solving combinatorial optimization problems. In this paper, an estimation of distribution algorithm with multiple
intensification strategies (EDA-MIS) is proposed to solve a typical kind of hybrid flow-shop scheduling problem. The two-stage
heterogeneous hybrid flow-shop scheduling problem is investigated. The sequence-dependent setup time at the first stage is also
considered. In the proposed EDA-MIS, the initial population is constructed through the heuristic method and random strategy.
An order matrix is established to estimate the probabilistic model of promising solutions. Then the solutions of the algorithm are
evolved through the processes of selection, recombination, sampling, and local search. The obtained results indicate that the
EDA-MIS provides good solutions in the aspects of solution quality and computational efficiency.

Keywords Hybrid flow-shop scheduling problem . Sequence-dependent setup time . Estimation of distribution algorithm .
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1 Introduction

Scheduling is one of the most important research issues in
steelmaking, textile, logistics, electronic components
manufacturing, and other smart manufacturing fields [1–3].
Effective scheduling schemes can significantly reduce the pro-
duction costs and the production cycle and improve the eco-
nomic efficiency of enterprises [4]. The hybrid flow-shop
scheduling problem (HFSP) is a kind of model that extends
from the traditional flow-shop scheduling problem (FSP). In
the HFSP, the processing of jobs is divided into several stages,
where each stage has several machines to be selected [5]. This

model has some key problems that need to be solved, such as
arranging the process sequence of jobs and selecting the right
machine at different stages. The objective of scheduling is to
reduce the corresponding production indicators, such as pro-
duction cycle and total flow time [6].

Aiming at the actual workshop conditions of the produc-
tion process, various studies have introduced several con-
straints into the basic HFSP [7, 8]. Considering the constraints
of stage skipping and adjustable processing time, Long pre-
sented a realistic HFSP model that was extracted from the
steelmaking-continuous casting production process [9]. Cai
and Lei studied a distributed hybrid flow-shop scheduling
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problem (DHFSP) with fuzzy processing time, and proposed a
cooperated shuffled frog-leaping algorithm (CSFLA) to si-
multaneously optimize the fuzzy makespan, total agreement
index, and fuzzy total energy consumption [10]. Li et al. stud-
ied the distributed heterogeneous hybrid flow-shop schedul-
ing problem (DHHFSP) with unrelated parallel machines
(UPM) and the sequence-dependent setup time (SDST) [11].
Meng et al. provided some mixed integer-linear programming
(MILP) models of HFSP-UPM [12]. The energy consumption
of HFSP-UPM has been analyzed in [13]. Zhong and Shi
addressed the two-stage no-wait hybrid flow-shop scheduling
problem with inter-stage flexibility in [14]. In [15], the HFSP
with blocking and due window constraints has been tackled.
Chamnanlor et al. studied a reentrant HFSP with time window
constraints [16]. Several studies developed algorithms by
adding the constraint of sequence-dependent setup time into
the HFSP to solve the problem [17–20]. With the develop-
ment of technology, distributed manufacturing has become
the main mode of production in the manufacturing industry.
In some studies, the HFSP has been extended to distributed
manufacturing environments [7, 21].

The above-mentioned studies have proposed constraints on
the relevant production models based on the actual production
conditions and business needs. The constraints of the produc-
tion models vary significantly in different types of machining
plants [22–24]. Some studies proposed the relevant model
constraints based on the production plants of glass, textile,
and food processing to fit the actual production conditions.
However, such production workshops differ from the rare
earth production workshops in terms of production structure
and production constraints. In this paper, an HFSP model with
sequence-dependent setup time is constructed from the actual
production shop of rare earth.

The two-stage HFSP with makespan minimization is an
NP-hard problem. Recently, in the field of combinational op-
timization research, the HFSP has been regarded as an impor-
tant research direction and an innovative theoretical method to
optimize the problem. The main methods for HFSP can be
divided into several categories: exact solution method [25],
heuristic constructionmethod [26], bio-inspired intelligent op-
timization method [27], multi-objective optimization algo-
rithm [28–30] and hybridmethod [21]. Zhang et al. introduced
the constraint of lot streaming into the HFSP and developed a
collaborative variable neighborhood descent (CVND) algo-
rithm [31]. H. Öztop et al. presented four variants of iterated
greedy algorithm and a variable block insertion heuristic for
the HFSP with total flowtime minimization [26]. Luo et al.
proposed hybrid branch and bound algorithms tominimize the
makespan for the two-stage assembly scheduling problem
with separated setup time [32]. Zhao et al. proposed an opti-
mal block knowledge-driven backtracking search algorithm
(BKBSA) to solve the distributed assembly no-wait flow-shop
scheduling problem (DANWFSP) [33]. In the above-

mentioned methods, the improvements of the algorithm effec-
tiveness are still substantially conducted based on the balance
of intensification and diversification. The characteristics of the
problem and the execution process of the algorithm are not
organically integrated.

The estimation of distribution algorithm (EDA) has been
widely used in scheduling problems as a meta-heuristic meth-
od. The EDA algorithm comes with a natural learning mech-
anism based on the evolution of probabilistic models. The
process of the EDA algorithm is divided into sampling, selec-
tion, recombination, and updating of the probability model.
The update of the probability model is based on the selected
individuals of the population. The probability model directly
affects the quality of the algorithm candidate solution and
determines the optimization efficiency of the algorithm. In
[34], the path relinking enhanced estimation of distribution
algorithm has been proposed for the direct acyclic graph task
scheduling problem. Sun and Gu proposed an effective hybrid
estimation of distribution algorithm to solve the HFSP with an
unrelated parallel machine [35]. The EDA structure and the
teaching learning-based optimization (TLBO) strategy were
used for global and local searches, respectively. Du et al. in-
troduced a hybrid EDA for distributed flexible job shop sched-
uling with crane transportations [36]. An identification rule of
four crane conditions was designed tomake fitness calculation
feasible. In the EDA component, the parameters in probability
matrices are set to be self-adaptive for stable convergence to
obtain better output. In the variable neighborhood search
(VNS) component, five problem-specific neighborhood struc-
tures including global and local strategies are employed to
enhance exploitation ability.

This paper optimizes the production process of the rare
earth. The mathematical model, a two-stage heterogeneous
hybrid flow-shop scheduling problem with sequence-
dependent setup time constraints (TSHHFSP with SDST), is
extracted from the process of ion exchange in the immersion
pond during the production of rare earth oxides. The objective
of this optimization problem is the maximum completion time
of jobs. According to the no free lunch theorem for optimiza-
tion, the existing approaches may not be effective for solving
the TSHHFSP with SDST. Therefore, it is a challenge to de-
velop effective and efficient algorithms for TSHHFSP with
SDST, especially for large-sized problems. In this paper, an
estimation of the distribution algorithm with multiple intensi-
fication strategies (EDA-MIS) is proposed to solve the
TSHHFSP model with SDST. The proposed algorithm is
based on the framework of the EDA algorithm. The model
studied in this paper incorporates a constraint of the sequence-
dependent setup time. A constructive heuristic strategy is de-
signed based on this constraint in the initialization method.
The initial solutions of the algorithm are generated through
the heuristic and random construction method. The probabil-
ity model of EDA-MIS is constructed based on the order of
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jobs in the outstanding individuals of the parent population.
The neighborhood search strategy is added to the algorithm to
further optimize the performance of the solutions. The funda-
mental contributions of this paper are summarized as follows.

& A new scheduling model named TSHHFSP with SDST is
developed based on the production process of rare earth.
In this model, the production capacities of all machines in
a certain stage are heterogeneous. The sequence-
dependent setup time of the first stage is considered in
the new scheduling model.

& An estimation of distribution algorithm with multiple in-
tensification strategies is proposed to solve the TSHHFSP
with SDST. In the initialization phase of the proposed
algorithm, some constructive heuristics based on the
knowledge of the production data are presented. The
EDA and two strategies of neighborhood search are used
to further intensify the candidate solutions.

The remainder of this paper is organized as follows.
Section 2 presents the modeling and application of the Two-
Stage Heterogeneous Hybrid Flow-shop Scheduling Problem
(TSHHFSP) with Sequence-Dependent Setup Time (SDST).
Section 3 provides the description and detailed decoding pro-
cess of the TSHHFSPwith SDST. Section 3 also describes the
proposed EDA-MIS algorithm. The experimental analysis of
the proposed algorithm and comparison experiments are pre-
sented in Section 4. Finally, conclusions are drawn in
Section 5.

2 Two-stage heterogeneous hybrid flow-shop
scheduling problem (TSHHFSP)
with sequence-dependent setup time (SDST)

The HFSP is widely used in practical production processes,
such as iron, and steel casting, glass processing, and paper
production. In this paper, a TSHHFSP with the constraint of
SDST is constructed. This model is derived from the actual
production process of rare earth (RE) metals in the northwest
region of China. The entire generating process can be divided
into two stages: ion exchange in the leaching pool and elec-
trolysis of RE metals. The specific production process is
shown in Fig. 1. In the ion exchange process, the electrolyte
solution is configured as a leaching agent according to the
proportion requirements of RE metals. The RE ore containing
an ionic phase is filtered and extracted in the leaching tank.
The active ions in the solution exchange with RE ions and the
ionic phase of RE are exchanged from the ore carrier to be-
come a new state of RE. The leaching agents need to be
reconfigured when different RE is produced in turn.
Therefore, in this paper, the TSHHFSP model with SDST is
abstracted from the actual production process of RE.

The HFSP can be regarded as a combination of two kinds
of scheduling problems that are flow-shop scheduling and
parallel machine scheduling. The two subproblems should
usually be considered, namely, the sorting of jobs and the
distribution of machines in each stage. In the TSHHFSP prob-
lem with SDST, the production process is divided into two
stages. Several machines need to be selected in each stage, and
the machines in the same stage are heterogeneous. There are n
jobs to be processed in the initial time. All jobs are processed
from Stage 1 to Stage 2. The process of job j ∈ J in machine i
of stage k cannot be interrupted. The processing time of job j
∈ J in machine i of stage k, named as pjik, is positive. At the
same time, the job and the machine have a one by one rela-
tionship. In the first process stage of the job j ∈ J, the setup
times of the jobs are sequence-dependent, as stkjq. All ma-
chines and jobs are available to be processed at time zero
and job preemption is not allowed. The capacity of interme-
diate buffers between stages is unlimited. The travel time be-
tween consecutive stages is included in the processing times
of jobs at the corresponding stages. The problem data is as-
sumed to be deterministic and known in advance. The nota-
tions for the problem are listed in Table 1.

The TSHHFSP model with SDST aims to find a schedule
that optimizes the maximum completion time (makespan).

The problem can be denoted as FH2; RM kð Þ 2
k ¼ 1

����
� ����� S 1ð Þ

sd

���
Cmax according to the notation proposed by Vignier et al. [37],
which follows the three-fields notation of [38]. The problem is
NP-hard since the standard two-stage HFSP is known to be
NP-hard [39].

The Mixed Integer Linear Planning (MIP) model of the
TSHHFSP with SDST with the maximum completion time
objective is constructed as follows.

Objective:

Minimize maxC j
� � ð1Þ

Subject to:

C j ¼ s2 j þ ∑
i∈I2

xji2pji2; ∀ j∈J ð2Þ

∑
i∈Ik

xjik ¼ 1; ∀ j∈J ; k∈M ð3Þ

skj þ ∑
i∈Ik

xjikpjik þ stkjq≤skþ1; j ∀ j; q∈J ; k; k þ 1ð Þ∈M ð4Þ

skj− skr þ ∑
i∈I k

xrikprik þ stkrq

� �

þ Q 2þ ykjr−xjik−xrik
� �

≥0; ∀ j; r; q∈J

: j < r; k∈M ; i∈Ik ð5Þ
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skr− skj þ ∑
i∈I k

xjikpjik þ stkjq

� �

þ Q 3−ykjr−xjik−xrik
� �

≥0 ∀ j; r; q∈J

: j < r; k∈M ; i∈Ik ð6Þ
skj > 0 ∀k∈M ; j∈J ð7Þ
ykjr∈ 0; 1f g ∀k∈M ; j; r∈J ð8Þ
xjik∈ 0; 1f g ∀ j∈J ; i∈I k ; k∈M ð9Þ
if k ¼ 2; stkjq ¼ 0; ∀ j; q∈J ; k∈M ð10Þ

The objective function (1) minimizes the maximum com-
pletion time. Constraint set (2) calculates the completion time
of each job. Constraint set (3) guarantees that each job passes
through all stages and is processed by exactly one machine at
each stage. Constraint set (4) ensures that the next operation of
a job starts only after its previous operation is completed.
Constraint sets (5) and (6) prevent the overlapping of any
two jobs on the same machine and define the sequence of
the jobs. For any two jobs assigned to the same machine, the
next job can start after the previous one is completed.
Constraint set (7)–(10) defines the domains of decision
variables.

3 The encoding strategy and numerical
illustration

The effectiveness of a metaheuristic algorithm relies on the
performance of encoding and decoding methods. Job
permutation-based encoding method is the most widely used
encoding method. The encoding and decoding methods of
HFSP are different from the traditional permutation FSP. In
the permutation FSP, the coding process is executed based on
the sequence of processing jobs. In the decoding process, the
sequence of the jobs is determined according to the coding
sequence. Then the maximum completion time is calculated
based on the processing time and job sequence.

Fig. 1 The production process of rare earth metal

Table 1 Problem notations

Sets

M Set of stages {1,2}

J Set of jobs

Ik Set of machines at stage k∈M
Parameters

pjik Processing time of job j at machine i of stage

stkjq Setup time of job j to job q at stage k

Q A very large number

Decision variables

skj Starting time of job j at stage k

xjik 1 if job j is processed at machine i at stage k, 0 otherwise

ykjr 1 if job j precedes job r at stage k, 0 otherwise

Cmax Maximum completion time (makespan)
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The certain solution of the HFSP can be transformed into a
specific code through the encoding method. The encoding
method can be understood as a representation of the modern
heuristic. A representation assigns the genotypes of the HFSP
solution to corresponding phenotypes. The job permutation-
based encoding method can effectively clarify the processing
details. In the mutation phase of EDA, the probabilistic model
is efficiently constructed by the job permutation-based
encoding method. The locality of a representation describes
how well the neighboring genotypes correspond to the round
neighboring phenotypes. A representation with high locality
means that the neighboring genotypes correspond neighbor-
ing phenotypes. The job permutation-based encoding method
is a representation with a high locality. The job permutation-
based encoding method is illustrated in Fig. 2.

An example of TSHHFSP with SDST is given as follows.
In this instance, there are 10 jobs to be processed. The num-
bers of machines in the two stages are 2 and 3. The instance is
labeled as {10, (2, 3)}. The matrix of process time is gener-
ated randomly as shown in Table 2.

Assuming that job q is the successor of job j, the matrix of
the sequence-dependent setup time stkjq is randomly generated
as Table 3.

The scheduling solution and its makespan can be generated
based on the production data. Fig. 3 shows the Gannet dia-
gram of a scheduling solution. The maximum competition
time of the 10 jobs is the competition time of Job 2 and the
makespan is 384.

In the HFSP, the machine allocation of stages should be
considered in the process of coding and decoding. The coding
rule used in this paper is still based on the job sequence. In the
decoding process, the machine with the earliest completion
time is selected for processing. In the second processing stage,
the job completed early in the first stage is processed prefer-
entially. For example, the sequence of operation in Fig. 3 is
(8,5,6,4,9,10,7,3,2,1). Job 9 precedes Job 10 in the first pro-
cessing stage. The processing time of Job 9 is much longer
than that of Job 10. Thus, Job 10 prepares early than Job 9 in
the second processing stage. Then Job 10 precedes Job 9 in the

Fig. 2 The job permutation-based representation of the TSHHFSP with SDST solution

Table 2 The matrix of process time pjik

pjik Stage 1 Stage 2

Machine 1 Machine 2 Machine 3 Machine 4 Machine 5

Job 1 24 29 28 35 30

Job 2 47 50 19 23 19

Job 3 88 83 48 39 46

Job 4 80 76 30 34 34

Job 5 44 46 68 65 61

Job 6 85 78 50 52 50

Job 7 106 101 67 54 64

Job 8 100 86 44 49 51

Job 9 78 87 62 62 69

Job 10 30 25 102 97 97
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second processing stage. Under this coding rule, the job se-
quence in Fig. 3 can be coded as π = {8, 5, 6, 4, 9,10,7, 3,
2, 1}. In the decoding process, the process details can be
obtained through the analysis of this code and are shown in
Table 4.

4 The proposed EDA-MIS algorithm

4.1 The framework of the EDA-MIS algorithm

In the proposed EDA-MIS algorithm, the initial solutions are
generated by the heuristic method and the stochastic method.
In the evolutionary process, the candidate solutions of the
algorithm are optimized by the EDA algorithm. Then the in-
dividuals in the population evolve ulteriorly by the strategy of
neighborhood search. The specific process of the proposed
EDA-MIS is shown in Algorithm 1.

The EDA-MIS algorithm can learn the implicit knowledge
of the HFSP in the evolutionary process and that knowledge
can be used to decide the job sequence in the next generation.
Figure 4 illustrates the framework of the proposed EDA-MIS
algorithm.

The probability distributionmodel is constructed according
to the excellent individuals of the candidate solution in the
evolutionary process of EDA. The individuals of the next
generation are obtained by sampling based on the proba-
bility distribution model. Then, the individuals are opti-
mized by performing selection, model mutation, resam-
pling, and other operations, until a certain stopping crite-
rion is met. In this paper, an order matrix ϕ is constructed
to count the order of jobs in the excellent individuals of
the population.

ϕ ¼

φ1;1 φ1;2 φ1;3 ⋯ φ1;n
φ2;1 φ2;2 φ2;3 ⋯ φ2;n
φ3;1 φ3;2 φ3;3 ⋯ φ3;n
⋯ ⋯ ⋯ ⋯ ⋯
φn;1 φn;2 φn;3 ⋯ φn;n

2
66664

3
77775 ð11Þ

Where φj, i is used to count the number of times job j
appears in and before the position i. The order matrix ϕ de-
scribes the order of jobs in the processing sequence. A new
probability distribution model P is obtained by normalizing

Table 3 The matrix of sequence-dependent setup time stkjq

q
j

1 2 3 4 5 6 7 8 9 10

1 0 10 6 6 7 10 13 13 10 12

2 8 0 5 11 7 7 7 14 6 7

3 11 12 0 8 5 14 14 11 11 7

4 11 10 12 0 11 5 10 9 10 6

5 5 13 14 5 0 8 5 6 14 8

6 12 11 12 10 12 0 14 7 9 8

7 9 5 5 7 12 10 0 13 5 7

8 11 7 12 5 14 13 9 0 11 5

9 9 13 7 7 11 5 12 7 0 10

10 13 14 14 5 14 6 9 9 13 0

Fig. 3 A feasible scheduling
solution of {10, (2, 3)} instance
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the order matrix and learning from the distribution model of
the previous generation.

P ¼

p1;1 p1;2 p1;3 ⋯ p1;n
p2;1 p2;2 p2;3 ⋯ p2;n
p3;1 p3;2 p3;3 ⋯ p3;n
⋯ ⋯ ⋯ ⋯ ⋯
pn;1 pn;2 pn;3 ⋯ pn;n

2
66664

3
77775 ð12Þ

The probability statistical model P describes the probability
distribution of the location of each job in the processing

sequence. The individuals of the next generation are
sampled from model P. The probability model is obtain-
ed by the previous probability model and the order ma-
trix of the current generation. The specific update formu-
la is as follows:

P gþ1ð Þ ¼ αP gð Þ þ 1−αð Þnormlise ϕf g ð13Þ
where α is the learning factor and normlise{ϕ} represent
the normalization results of the order matrix ϕ.

Table 4 The details of the
decoding processing Job Stage 1 Stage 2

Machine Start
time

Process
time

Setup
time

End
time

Machine Start
time

Process
time

End
time

1 1 319 24 11 354 3 354 28 382

2 2 308 50 5 363 5 365 19 384

3 1 224 88 7 319 5 319 46 365

4 2 86 76 5 167 4 167 34 201

5 1 0 44 0 44 5 44 61 105

6 1 44 85 8 137 3 137 50 187

7 2 198 101 9 308 4 308 54 362

8 2 0 86 0 86 3 86 44 130

9 1 137 78 9 224 4 224 62 286

10 2 167 25 6 198 5 198 97 295

Fig. 4 The framework of the proposed EDA-MIS algorithm
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4.2 Heuristic rules

The HFSP is the coupling of many scheduling problems, in-
cluding the combination optimization of job sequence and the
choice of the processing machine. This paper studies the
TSHHFSP with the constraint of SDST. Thus, compared with
the traditional HFSP model, the reduction of the total
sequence-dependent setup time should be considered when
scheduling the job sequences. In this paper, several heuristic
construction rules are proposed for the above research prob-
lems, which provide the initial solutions for the meta-heuristic
algorithm.

1. Heuristic rule 1

The constraint of SDST is considered in the study model. In
the model of this paper, there is no setup time before the first
machining job of each machine. Therefore, the jobs with the
largest setup time are operated preferentially in the construction
heuristic method to avoid the maximum value of the SDST.
The maximum value of SDST is found to decide which job
operates first. Such as the maximum setup time in Table 3 is
setup time from Job 2 to Job 8, i.e. stk28. Then the successor job
of this setup time, which is Job 8, is chosen as the first machin-
ing job. Assuming that there are kmachines in the first stage. In
this example, k is 2. The kth maximum value is found in turn
from the remaining SDST, the stk36 of Table 3 is picked up. The
successor jobs of these setup times, Jobs 6, are chosen as the
first machining job in the remaining machines of the first stage.
According to the above process, the first machining jobs in the
machines of the first stage are determined. The job with the
lowest setup time is identified as the subsequent machining
job. This operation is repeated until all jobs are scheduled for
processing in the first stage. The final processing sequence is
obtained, the result of Table 3 is {8, 6, 4, 10, 2, 7, 3, 9, 5, 1}.

2. Heuristic rule 2

In this paper, the proposed TSHHFSP problem with SDST
consists of two stages. The start time of the second stage
directly determines the final makespan. The jobs are processed
as the planned sequence, in which the start time of each ma-
chine in the second stage is early as possible. In this heuristic
construction method, the jobs, as well as the processed ma-
chines, with the shortest processing time in the first stage are
identified in turn. Such as the processing time of Job 1 on
machine 1 and Job 10 on machine 2 in Table 2 are selected.
Then the jobs with the earliest completion time on each ma-
chine in the first stage are processed as successors.

4.3 Neighborhood search

In the proposed algorithm, two neighborhood search strategies
are used to further optimize the performance of the population.
These two strategies are reference-based neighborhood search
and tabu-based neighborhood search.

1. Reference-based neighborhood search

In this method, the optimal individual in the population is
recommended as the reference solution. The process of neigh-
borhood search is performed based on the reference solution.
Two locations i and j, where (i < j), are selected during the
search process. The jobs at positions i and j in the reference
solution are inserted into i and j positions of the population
individuals, respectively. Then, the neighborhood search so-
lution is obtained. The new solution is compared to the orig-
inal population individual. If the performance of the new
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solution is better than that of the original population individ-
ual, the original population individual is replaced by the cor-
responding neighborhood search solution.

2. Tabu-based neighborhood search

In the method, the truncated individuals of the population
in the previous generation are added to the taboo table. The
candidate solution is compared with the taboo table. If the
candidate solution is included in the taboo table, the neighbor-
hood search is not carried out. Otherwise, the neighborhood
search is carried out. One strategy is randomly selected be-
tween swap and insertion operators for neighborhood search.

4.4 Computational complexity of the EDA-MIS

In the proposed TSHHFSP model with SDST, the approxi-
mate optimal solution can be obtained by the EDA-MIS algo-
rithm. The specific model is extracted from the actual produc-
tion process. The computational time is an important indicator
to measure the quality of the proposed algorithm. The con-
sumed time is also an important indicator in the actual pro-
duction process. In this section, the time complexity of the
proposed EDA-MIS is analyzed.

Suppose that the number of the processing jobs is n. The
numbers of machines in the two processing stages are I1 and
I2. The population size of the proposed EDA-MIS is set asNp.
The number of iterations is supposed as T. The EDA-MIS
algorithm is composed of five phases, which are the initiali-
zation of the population and the other four operators for the
further evolution of the solutions. In the initialization phase,
the individuals are generated based on the two constructive
heuristics and stochastic methods with the complexity O(Np
× n2). For the sampling operation, each sequence is generated
with the roulette strategy by sampling based on the probability
matrixP. The time complexity of the sampling operator is also
O(Np × n2). In the selection process, the job sequence is
decoded into the production details and then the objective
value is obtained. The computational complexity of the selec-
tion operator is O(Np × n × (I1 + I2)). For model updating,
the probability matrix P is updated based on the selected so-
lutions. The computational complexity of the model updating
process is O(Np × n + n2). Finally, the neighborhood search
operator is executed for further evolution. The computational
of this operator is O(Np × 2n + Np × n2). Thus, the time
complexity of the proposed EDA-MIS is calculated as
follows.

O n; I ; T ;Npð Þ ¼ O Tð Þ � O Np� n2
� �þ O Np� n� I1 þ I2ð Þð Þ þ O Np� nþ n2

� �þ O Np� 2nþ Np� n2
� �� �

¼ O Tð Þ � O Np� n2 þ Np� n� I1 þ I2ð Þ þ Np� nþ n2 þ Np� 2nþ Np� n2
� �

¼ O Tð Þ � O 2� Np� n2 þ Np� n� I1 þ I2ð Þ þ 3� Np� nþ n2
� �

≈O Tð Þ � O 2� Np� n2 þ Np� n� I1 þ I2ð Þ þ n2
� �

5 Experiment and analysis

To verify the performance of the proposed EDA-MIS algo-
rithm in solving the TSHHFSP, 140 test instances were ran-
domly generated. The size of processed jobs is divided into 4
types, 5, 10, 20, and 50. For each size of the job, there are

various species of machine numbers. The specific test param-
eter combinations are shown in Table 5. Each combination of
test problems contains 10 test instances. The specific process-
ing time is a randomly generated integer between 1 to 99. The
SDST in the first stage is also a randomly generated integer
between 1 to 10.

1 3

5168



An estimation of distribution algorithm with multiple intensification strategies for two-stage hybrid...

During the experiment, each instance was solved 51 times
by the algorithms [40]. The termination conditions of the ex-
periment were set as follows: the number of iterations reaches
1000*n or the maximum stagnation iteration reaches 50. All
experiments were programmed in Python language and exe-
cuted on a Windows 7 system. The integrated development
environment of the experiment was Anaconda 3. The experi-
mental computer processor was configured as a 2.3 GHz Intel
Core i5. According to the experimental results, the average
relative deviation percentage (ARPD) indicator value is se-
lected as the evaluation indicator in this paper. The calculation
formula for ARPD value is:

ARPD ¼ Average
ins

1

R
∑
R

i¼1

Ci−Copt

Copt
� 100%

� �
ð14Þ

where Ci represents the makespan of the optimal solution
obtained by an algorithm in the run i, Copt indicates the
makespan of the optimal solution found, R is the number of
times the algorithm runs on a single instance and ins repre-
sents the instance label for each problem, ins = 1, 2, 3,…, 10.

In this paper, the estimation of distribution algorithm
(EDA) [41], estimation of distribution algorithm with tabu
search (EDA-TS) [42], estimation of distribution algorithm
with iterated local search (EDA-iLS) [43], discrete artificial
bee colony (DABC) [44], shuffled frog-leaping algorithm
(SPLA) [10], and the genetic algorithm with tabu search
(GA-TS) [45] are selected as the comparison algorithms.
The population sizes of the comparison algorithms were uni-
formly set to 10 ∗ n, where n was the number of jobs. In the
EDA and its variant algorithms, the selection ratio of the pop-
ulation was set to 0.3. The comparison of ARPD can be ob-
tained according to the running results of the algorithm. The
comparison results are shown in Table 6. The best

performances of the comparison algorithms in the test prob-
lems are marked as bold in the Table 6. The experimental
results show that the ARPD value of the EDA-MIS algorithm
is significantly better than that of the EDA, EDA-TS, EDA-
iLS, DABC and SFLA algorithms onmost problems. It can be
found that the performance of the GA-TS algorithm is better
than that of the EDA-MIS algorithm in some problems of
small sizes, such as n = 5, 10. However, the EDA-MIS algo-
rithm is better than the GA-TS algorithm in the problems
where the number of jobs is high, such as n = 20 and 50. In
view of the makespan indicator, the EDA-MIS algorithm is
also significantly better than the GA-TS algorithm.

In the actual production process, the number of jobs is gen-
erally very large. The weakness of the EDA-MIS algorithm in
the low-level problems can be ignored. On the other hand, the
TSHHFSPmodel with SDST in this paper is extracted from the
actual production factory. In this model, the limitation of max-
imum stagnation iteration is added to the termination condi-
tions. In some low-level problems, the termination condition
of maximum stagnation iteration leads to the early ending of
the evolution process in the EDA-MIS algorithm. Therefore,
the performance of the proposed EDA-MIS algorithm in these
instances is poor due to the iterations being less than that in
other comparative algorithms. For example, the performances
of the five algorithms are shown in Fig. 5. The number of jobs is
10. The numbers of machines in Stages 1 and 2 are 1 and 3,
respectively. As Fig. 5 shows, the EDA-MIS algorithm stops
evolution on the 70th iteration. While the GA-TS algorithm
evolves to the iteration of 175. When the iteration of evolution
is 70, the EDA-MIS algorithm outperforms other algorithms.

In addition, another set of experiments ware conducted for
this problem. In the case where the number of jobs was 10, the
stop criteria of the GA-TS and EDA-MIS algorithms were
uniformly set to a fixed iterations number of 1000 times.
The performances of these two algorithms are compared in
Table 7. It can be seen from the table that the EDA-MIS shows
better performance than the GA-TS in the case of the same
number of iterations. These results further validate the effec-
tiveness of the proposed EDA-MIS.

The results of 51 runs of the EDA-MIS algorithm and each
comparison algorithm in all test instances are statistically ana-
lyzed. Themean and the standard deviation ofmakespan solved
by EDA-MIS and each comparison algorithm are obtained.
Finally, the average values of the statistical results on 10 test
instances of each problem are obtained. The results are shown
in Table 8. The best performances of the comparison algorithms
in the test problems are marked as bold in the Table 8.

It can be seen that the performance of the EDA-MIS algo-
rithm is better than that of other comparison algorithms in
solving large-scale problems. When the numbers of jobs are
5 and 10, the performance of the EDA-MIS is slightly imper-
fect compared with the GA-TS. However, the EDA-MIS per-
forms more effectively than the other five algorithms. As the

Table 5 The list of parameters of the production process

Stage number(m) Job number(n) Machine number of each stage

2 5 (1,2)

2 5 (2,2)

2 10 (1,3)

2 10 (2,3)

2 10 (3,3)

2 20 (2,3)

2 20 (2,4)

2 20 (3,5)

2 20 (4,4)

2 50 (3,5)

2 50 (3,6)

2 50 (4,6)

2 50 (5,5)

2 50 (5,6)
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scale of the problem grows, the advantage of the solution
performance of the proposed EDA-MIS algorithm becomes
more apparent.

In the proposed EDA-MIS algorithm, the EDA algorithm is
responsible for performing an exploration search on the deci-
sion space. The solution space is effectively explored by per-
forming the operations such as selection, model updating and
sampling. The reference-based neighborhood search strategy
is responsible for the neighborhood search of the selected
optimal reference solution. This strategy mainly performs
the exploitation search. In the tabu-based neighborhood
search strategy, some solutions with poor performance are
liberated into the tabu list during the search process. If the
neighborhood solution is included in the tabu list, the neigh-
borhood search is abandoned to avoid an invalid search. An
ablation experiment is conducted to verify the effectiveness of
the two searches strategies in the proposed EDA-MIS algo-
rithm. The results of the ablation experiment demonstrate that
the combination of the two neighborhood search strategies can

lead to a performance boost. The results are shown in Table 9,
where “Without RNS” and “Without TNS” represent the
EDA-MIS algorithm without the reference-based and the
tabu-based neighborhood search strategies, respectively. The
best performances of the comparison algorithms in the test
problems are marked as bold in the Table 9.

Figures 6 and 7 are the boxplots of the performance com-
parison between the EDA-MIS algorithm and the EDA, EDA-
TS, EDA-iLS, DABC, SFLA and GA-TS algorithms in the
TSHHFSP problems with SDST. The sizes of jobs in these
problems are 20 and 50. The experimental results show that
the solving performance of the EDA-MIS algorithm in 20-
jobs and 50-jobs problems are better than that of the other four
algorithms in terms of accuracy and stability.

The convergence plots of the compared algorithms are
shown in Figs. 8 and 9 on TSHHFSP problems with SDST
in which the numbers of jobs are 20 and 50. It is observed that
the convergence rate of the EDA-MIS is better than the other
algorithms in these problems. In the proposed EDA-MIS al-
gorithm, the EDA algorithm can learn the characteristic of the
problems through the updating of the probability model. The
performance of the EDA-MIS algorithm can be evolved fur-
ther by the neighborhood search strategy. The modified EDA
algorithm and the neighborhood search operations play a

Table 6 Results of different
algorithms in TSHHFSP problem
with SDST

Instance EDA EDA-TS EDA-iLS DABC SFLA GA-TS EDA-MIS

n5m1–2 0.3154 0.0259 0.2748 0.3092 0.0031 0.0000 0.0000

n5m2–2 1.2195 0.1293 0.5761 1.0358 0.0153 0.0000 0.0000

n10m1–3 1.2503 0.7641 0.7986 0.8399 0.7431 0.2780 0.3555

n10m2–3 2.4535 1.7455 1.9827 2.1416 1.8836 0.6378 1.4296

n10m3–3 3.5679 2.4594 3.0437 3.2579 2.3903 0.7725 2.1357

n20m2–3 2.1771 2.0954 1.6276 1.7295 2.1403 1.9405 1.8474

n20m2–4 2.3095 1.8313 1.7189 1.8323 1.9895 1.6760 1.5112

n20m3–5 3.2089 2.7174 2.5415 2.5211 2.9017 2.4500 2.4217

n20m4–4 4.0233 3.4177 4.0018 2.8003 4.0031 3.1239 3.4437

n50m3–5 2.2085 1.7045 2.2314 1.9701 1.8616 1.6018 1.5712

n50m3–6 2.1755 2.0523 2.0623 1.9598 1.9210 1.6766 1.5314

n50m4–6 2.4473 1.9664 2.5955 1.9751 2.3101 1.9814 1.9444

n50m5–5 2.5087 2.5137 3.1406 2.1976 2.5750 1.9179 2.4046

n50m5–6 2.5235 2.3134 3.0864 1.8565 2.6726 2.4361 2.2802

Fig. 5 The convergence performance of the five comparison algorithms

Table 7 The performance of the comparison algorithms with the fixed
iterations number

Algorithm Instance n10m1–3 n10m2–3 n10m3–3

EDA-MIS ARPD 7.63E-4 6.04E-4 7.59E-4

Mean 610.02 310.15 228.05

GA-TS ARPD 1.45E-3 6.51E-3 6.09E-3

Mean 610.69 311.92 229.16
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desirable role to balance global exploration and local exploita-
tion. The convergence rate and the convergence speed can be
improved by the modified EDA algorithm and the neighborhood
search operations. However, according to the no-free lunch the-
orem (NFL), no algorithm is better than the linear enumeration of
the search space or the pure random search algorithm.

Wilcoxon rank tests are performed based on the above
experimental results to further test the statistical performance
of the proposed EDA-MIS algorithm. The algorithms are
compared in pairs to check the significant difference between
the EDA-MIS algorithm and the comparison algorithms.
Tables 10, 11, 12 and 13 show the statistical results of the
Wilcoxon test between EDA-MIS and the comparison algo-
rithm at different scale problems, with the EDA-MIS algo-
rithm as the control algorithm. In Tables 10, 11, 12 and 13,
R+ is the sum of the rank that EDA-MIS outperforms other
algorithms in the current row, and R− is the sum of the levels
that other algorithms in the current row outperform the EDA-

Table 8 The statistical results of the comparison experiment

Problem Criterion EDA EDA-TS EDA-iLS EDA-MIS GA-TS DABC SFLA

n5m1–2 Mean 326.39 325.48 326.22 325.42 325.40 326.33 325.49

Std.Dev. 1.6115 0.3488 0.8306 0.0844 0 1.0248 0.4031

n5m2–2 Mean 201.84 199.66 200.59 199.47 199.40 201.54 199.57

Std.Dev. 3.2510 1.0050 2.3116 0.0963 0 2.6207 0.9115

n10m1–3 Mean 619.08 614.05 615.10 612.32 611.25 616.30 613.56

Std.Dev. 3.7027 2.6072 2.4584 1.5709 1.4658 2.8829 2.3337

n10m2–3 Mean 319.14 315.62 317.34 314.81 312.02 318.26 313.36

Std.Dev. 4.0200 3.1188 3.1697 2.5749 1.6571 3.4307 2.3613

n10m3–3 Mean 237.76 233.59 235.93 232.67 229.63 237.12 231.12

Std.Dev. 4.5425 3.7854 3.5270 3.0718 1.7784 3.7411 2.6984

n20m2–3 Mean 611.36 606.46 603.18 599.40 601.73 608.77 605.16

Std.Dev. 9.0924 7.8103 10.9150 7.1972 6.9380 5.5720 4.5216

n20m2–4 Mean 641.75 636.62 632.75 629.07 632.49 637.19 635.84

Std.Dev. 9.7288 8.6828 11.3699 7.2622 7.4547 5.9421 4.9482

n20m3–5 Mean 435.91 430.96 428.62 424.98 426.91 434.74 429.33

Std.Dev. 8.3572 7.3511 9.7944 7.1809 6.2858 5.3906 4.4965

n20m4–4 Mean 322.55 317.65 315.09 311.49 311.61 322.06 314.24

Std.Dev. 7.0401 6.9144 9.0792 7.1649 5.9269 4.6968 4.4151

n50m3–5 Mean 1004.09 998.12 990.49 990.38 994.83 1000.43 999.66

Std.Dev. 7.0608 6.4117 8.8627 6.4324 5.4368 8.4734 6.1972

n50m3–6 Mean 1048.46 1040.65 1033.45 1033.49 1037.75 1044.18 1044.05

Std.Dev. 6.3314 5.6344 5.2612 5.5790 4.6788 8.3654 6.1212

n50m4–6 Mean 822.06 816.79 810.32 809.76 812.04 821.04 816.98

Std.Dev. 6.6344 5.7856 5.3191 4.7662 4.4043 6.9792 5.7650

n50m5–5 Mean 654.08 648.18 641.27 638.38 642.15 652.21 646.09

Std.Dev. 6.2899 5.3953 5.5453 4.8141 4.2412 5.8143 5.6036

n50m5–6 Mean 639.17 634.22 626.98 624.89 628.34 637.29 632.37

Std.Dev. 5.9281 5.1355 5.8302 5.3193 4.3204 6.0471 5.2294

Table 9 The results of the ablation experiment

Problem Without RNS Without TNS EDA-MIS

Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.

n5m1–2 325.48 0.3488 326.22 0.8306 325.42 0.0844

n5m2–2 199.66 1.005 200.59 2.3116 199.47 0.0963

n10m1–3 614.05 2.6072 615.1 2.4584 612.32 1.5709

n10m2–3 315.62 3.1188 317.34 3.1697 314.81 2.5749

n10m3–3 233.59 3.7854 235.93 3.527 232.67 3.0718

n20m2–3 606.46 7.8103 603.18 10.915 599.4 7.1972

n20m2–4 636.62 8.6828 632.75 11.3699 629.07 7.2622

n20m3–5 430.96 7.3511 428.62 9.7944 424.98 7.1809

n20m4–4 317.65 6.9144 315.09 9.0792 311.49 7.1649

n50m3–5 998.12 6.4117 990.49 8.8627 990.38 6.4324

n50m3–6 1040.65 5.6344 1033.45 5.2612 1033.49 5.579

n50m4–6 816.79 5.7856 810.32 5.3191 809.76 4.7662

n50m5–5 648.18 5.3953 641.27 5.5453 638.38 4.8141

n50m5–6 634.22 5.1355 626.98 5.8302 624.89 5.3193
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MIS. A yes means that EDA-MIS is significantly superior to
other algorithms in the current row and a no means the
opposite. The “yes” are marked as bold in the Tables 10, 11,
12 and 13. The table is bolded when the EDA-MIS signifi-
cantly differs from the comparison algorithm and is superior
to the comparison algorithm within the confidence interval. It

turns out that the proposed EDA-MIS algorithm has better
results than the EDA, EDA-iLS, EDA-TS, DABC and
SFLA algorithms in TSHHFSP problems with 5 and 10 jobs.
The performance of the EDA-MIS is slightly worse compared
to that of the GA-TS algorithm. The reasons that lead to this
phenomenon are mentioned above in this paper. The stop

Fig. 6 The boxplots of different algorithms for TSHHFSP with SDST of 20 jobs
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Fig. 7 The boxplots of different algorithms for TSHHFSP with SDST of 50 jobs
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Fig. 8 The convergence plots of different algorithms for TSHHFSP with SDST of 20 jobs

Fig. 9 The convergence plots of different algorithms for TSHHFSP with SDST of 50 jobs
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criterion of the maximum stagnation iterations in the actual
problem is considered.

To evaluate the significance level of all algorithms, an ad-
ditional Bonferroni–Dunn’s procedure is applied as a post hoc
procedure to calculate the critical difference for comparing
their differences with α = 0.05 and α = 0.1.

CD ¼ qα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k k þ 1ð Þ

6N

r
ð15Þ

Where, the parameters k and N are the number of algo-
rithms to be compared and the number of benchmarks, respec-
tively. In the experimental evaluation, k = 5 and N = 14.
When α = 0.05, qα is 2.498 and α = 0.1, qα is 2.241 from
Table B.16 (two-tailedα(2)) of [46]. Figures 10, 11, 12 and 13
illustrate the results of Bonferroni–Dunn’s test that considered
the EDA-MIS as a control algorithm. The numerical results of
the Friedman’s test are shown in Tables 14, 15, 16 and 17.

When the numbers of jobs are 5 and 10, there is no signif-
icant difference in the performance of the EDA-MIS and the
GA-TS algorithms. The EDA-MIS algorithm is slightly worse
than the GA-TS algorithm. However, the performance of EDA-
MIS on these small-scale problems has a clear advantage over
the EDA, EDA-iLS, EDA-TS, DABC and SFLA algorithms in
α = 0.05 andα = 0.1. In the case of larger-scale problemswith
20 and 50 jobs, the proposed EDA-MIS algorithm has a signif-
icant advantage over the comparison algorithms. When the
number of jobs is 20, the performance of EDA-MIS is better
than that of GA-TS. The proposed EDA-MIS algorithm has
significant advantages over EDA, EDA-iLS, EDA-TS,
DABC and SFLA algorithms. When the number of jobs is
50, the proposed EDA-MIS performs better than the EDA-
iLS and offers significant performance advantages compared
to GA-TS, EDA, EDA-TS, DABC and SFLA algorithms.

All in all, the proposed EDA-MIS is an effective and robust
algorithm for solving the TSHHFSP with SDST. The superi-
ority of the proposed algorithm owes to the following aspects.

Table 10 The Wilcoxon’s rank-sum test results for 5 jobs

EDA-MIS vs R+ R- Z p Value α=0.05 α=0.1

EDA 210 0 −3.920 8.80E-5 yes yes

EDA-TS 115 21 −2.432 1.50E-2 yes yes

EDA-iLS 171 0 −3.725 1.95E-4 yes yes

GA-TS 0 6 1.604 1.09E-1 no no

DABC 171 0 −3.724 1.96E-4 yes yes

SFLA 117.5 18.5 −2.563 1.04E-2 yes yes

Table 11 The Wilcoxon’s rank-sum test results for 10 jobs

EDA-MIS vs R+ R- Z p Value α=0.05 α=0.1

EDA 465 0 −4.782 2.00E-6 yes yes

EDA-TS 410 55 −3.651 2.61E-4 yes yes

EDA-iLS 435 0 −4.703 3.00E-6 yes yes

GA-TS 11.5 423.5 4.455 8.00E-6 no no

DABC 435 0 −4.703 3.00E-6 yes yes

SFLA 174.5 290.5 −1.193 2.33E-1 no no

Table 12 The Wilcoxon’s rank-sum test results for 20 jobs

EDA-MIS vs R+ R- Z p Value α=0.05 α=0.1

EDA 820 0 −5.511 3.57E-8 yes yes

EDA-TS 820 0 −5.511 3.57E-8 yes yes

EDA-iLS 820 0 −5.511 3.57E-8 yes yes

GA-TS 674.5 145.5 −3.555 3.78E-4 yes yes

DABC 820 0 −5.511 3.57E-8 yes yes

SFLA 809 11 −5.363 8.18E-8 yes yes

Table 13 The Wilcoxon’s rank-sum test results for 50 jobs

EDA-MIS vs R+ R- Z p Value α=0.05 α=0.1

EDA 1275 0 −6.154 7.56E-10 yes yes

EDA-TS 1275 0 −6.154 7.55E-10 yes yes

EDA-iLS 926.5 298.5 −3.123 1.78E-3 yes yes

GA-TS 1263 12 −6.038 1.56E-9 yes yes

DABC 1275 0 −6.154 7.56E-10 yes yes

SFLA 1275 0 −6.154 7.55E-10 yes yes
Fig. 10 Results of Friedman’s test of different algorithms for 5 jobs
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Fig. 11 Results of Friedman’s test of different algorithms for 10 jobs

Fig. 12 Results of Friedman’s test of different algorithms for 20 jobs

Fig. 13 Results of Friedman’s test of different algorithms for 50 jobs

Table 14 Ranking of
Friedman’s test for 5 jobs Algorithm Mean Rank

EDA-MIS 2.08

EDA 6.25

EDA-TS 3.40

EDA-iLS 5.43

GA-TS 1.75

DABC 5.83

SFLA 3.28

CD (α=0.05) 2.638

CD (α=0.10) 2.394

Table 15 Ranking of
Friedman’s test for 10
jobs

Algorithm Mean Rank

EDA-MIS 2.62

EDA 6.57

EDA-TS 4.13

EDA-iLS 4.80

GA-TS 1.18

DABC 6.00

SFLA 2.70

CD (α=0.05) 2.638

CD (α=0.10) 2.394

Table 16 Ranking of
Friedman’s test for 20
jobs

Algorithm Mean Rank

EDA-MIS 1.33

EDA 6.65

EDA-TS 5.08

EDA-iLS 3.23

GA-TS 2.15

DABC 5.73

SFLA 3.85

CD (α=0.05) 2.638

CD (α=0.10) 2.394

Table 17 Ranking of
Friedman’s test for 50
jobs

Algorithm Mean Rank

EDA-MIS 1.39

EDA 6.76

EDA-TS 4.64

EDA-iLS 1.85

GA-TS 2.82

DABC 5.76

SFLA 4.78

CD (α=0.05) 2.638

CD (α=0.10) 2.394
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(1) The self-learning probability model and the suitable updating
mechanism are helpful to effectively explore the search space. (2)
The multiple intensification mechanisms are helpful to reason-
ably intensify the qualities of solutions. (3) The suitable param-
eters setting is helpful to perform the EDA-MIS search.

6 Conclusion

This paper studies the actual production process of rare earth
(RE) metals in the northwest region of China. The two-stage
heterogeneous hybrid flow-shop scheduling problem
(TSHHFSP) with sequence-dependent setup time (SDST) is
constructed based on the analysis of the actual production pro-
cess. The makespan criterion is selected as the optimized objec-
tive. The proposed model considers three sub-problems: the
machining sequence of the jobs, the machine allocation of the
jobs, and the constraints of the sequence-dependent setup time.
In this paper, an EDA-MIS algorithm is proposed to solve the
TSHHFSP problem with SDST. The performance of the pro-
posed algorithm is compared with that of other algorithms in
multiple test instances. The obtained results demonstrate that the
performance of the proposed EDA-MIS algorithm is better than
that of most of the comparison algorithms in small-scale prob-
lems. However, the advantages of the EDA-MIS algorithm are
not significant compared with a few comparison algorithms.
The performance of the EDA-MIS algorithm is superior in the
larger-scale problems and has a significant advantage over all
the comparison algorithms. A series of statistical analysis exper-
iments are conducted to further demonstrate and validate the
performance advantages of the proposed EDA-MIS algorithm
compared with other comparison algorithms. In the evolution of
the EDA-MIS algorithm, the characteristics of the TSHHFSP
problem with SDST are learned by constructing the probability
distribution model to optimize the solution. The combination of
self-learning ability and neighborhood search improves the effi-
ciency and accuracy of the EDA-MIS algorithm. The HFSP
problem is a research direction with high research value and
extensive application prospects. The HFSP problems with spe-
cific constraints deserve more research attention.

In future research, further consideration will be given to the
manufacturing environment of multi-factory collaborative
processing. Especially, the energy consumption and collabo-
rative optimization of the production supply chain will be the
focal concerns.
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