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Abstract
The Cox proportional hazard model and random survival forests (RSF) are useful semi-parametric and non-parametric
methods in modeling time-to-event data. However, both approaches may fail in case of small sample size and/or high
censoring rate. In this research, we want to tackle such problems within the random forests framework using semi-supervised
data transduction techniques and a layer-by-layer processing similar to deep forest. Experiments from both extensive
simulated data and real-world benchmark datasets have shown that the proposed deep survival forests (DSF) outperforms
Cox, RSF by a noticeable margin and also work better than several state-of-art survival ensembles including Cox boosting
models and latest survival forest extensions on a variety of scenarios. The superiority of DSF stands out when small
sample-sized and highly censored data are confronted.

Keywords Deep survival forests · Semi-supervised learning · Highly censored data · Data transduction · Cascade Forest ·
Few shots learning

1 Introduction

Machine learning methods have been highly successful in
data-intensive survival analysis and applications [34, 36,
37] but it often hampered when the data set is small. Fur-
thermore, in medical studies, there is often a portion of
patients who did not experience the event of interest when
the study ends and for these observations, we have incom-
plete or censored time-to-event data [15, 49]. In the past
few decades, a large amount of parametric, semi-parametric
and non-parametric survival models have been developed
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for modeling time-to-event survival data. Among them,
the most popular is the regression-based semi-parametric
Cox model [12], and its extensions [45, 52, 60]. When
the underlying proportional hazard assumption is not sat-
isfied, nonparametric machine learning-based approaches
are useful alternatives [6, 19, 24, 31]. However, regard-
less of whether it is semi-parametric or non-parametric, all
the aforementioned methods require an adequate number of
both censored and uncensored observations [43]. When a
small sample size and/or highly censored data are present,
these methods may face severe difficulties [50].

Among all machine learning based survival methods,
the most popular one is the Random survival forests
(RSF) model [28] inherited from Random forest (RF) [7].
Different from entropy or Gini-index based RF, log-rank
split rules are generally adopted for RSF. There are many
extensions of RSF in the past decades and one can refer
to [56] for more detailed information. More recently, there
are also quite a few improvements on the traditional RSF
method. For example, linear combination of input variables
are used for recursively partition and a higher prognostic
value is achieved in [30]. In [48], a novel paradigm for
building regression trees is proposed for survival analysis.
In [53], the standard procedure of simple average is replaced
by a weighted average for hazard function estimation in
RSF. In UST (uni.survival.tree) [17], a stabilized score test
is suggested to select significant covariates first to reduce
time complexity.
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One may notice that all the above random forest
based approaches are one-layered, i.e. only the raw
features are exploited to train the forests model and
predictions are immediately made, neglecting the fact that
multiple intermediate trained layers may produce better
representations of the training data [42]. Moreover, as a
machine learning approach, tree-based methods usually
rely on a large or medium number of samples to obtain
a satisfactory predictive performance [44]. However, this
may not be satisfied in real practices as small sample size
survival data are commonplace in clinical studies [29, 61].
Furthermore, a large proportion of censored observations
under such circumstances will make the survival modeling
process more complicated, if not impossible.

In light of the above discussions, we propose to address
the problems mentioned above using a layer-by-layer
deep random forests framework, where perceptions in
traditional deep neural networks are replaced by random
forests. To alleviate the high censoring problem, semi-
supervised learning [21] and data transformation techniques
[3] are also adopted in the proposed deep survival forests
(DSF) method. The superior empirical performance of the
proposed method is illustrated by simulation examples and
real data applications.

The major contributions of this paper are summarized as
follows:

• A non-NN (Neural Networks) style deep learning
method is proposed for survival prediction.

• We provide an effective approach to model highly
censored survival data with a small sample size.

The rest of the paper is organized as follows. Section 2
introduces the motivation to modeling censored data in the
case of small sample size, and then we propose a novel deep
forest structure in Section 3. Experimental analysis and real
data applications are described in Sections 4 and 5. Finally,
we discuss and conclude the paper in Sections 6 and 7.

2 Preliminaries

In this section, we first discuss the highly censoring
problem, then we give a short description of semi-
supervised learning and the deep forest model. Later on
in Section 3, we will develop a novel semi-supervised
framework using deep forest to deal with the highly
censoring problem.

2.1 The highly censoring problem

In survival analysis, an instance can be presented by a triplet
(xi, δi, yi), i = 1, 2, ..., n., where xi = (xi1, xi2, ..., xip)

is the feature vector. In the case of right censored data,

yi = min{Ci, Ti}, where Ti is the truly survival time, Ci

is the censoring time, and δi = I (Ti ≤ Ci) the censoring
indicator. In biomedical studies, such survival data are
often characterized by a small sample size with a high
dimension. Take GEO (Gene Expression Omnibus) (https://
www.ncbi.nlm.nih.gov/geo/) genomics data repository as an
example. So far, this database contains 4348 data sets, all
of which are high-dimensional with sample sizes ranging
from from 2 to 202. When a highly censoring rate is married
with a small sample size, the uncensored samples may not
be sufficient for predictive modeling. In such cases, the
parameter estimation of the Cox model may not converge
in the optimization procedure and the RSF model may fail
due to the constraint that a leaf node must have some unique
samples with events [62].

We will illustrate this problem with the popular RSF
model. In RSF, the Nelson-Aalen (NA) estimator is used to
predict the cumulative hazard function(CHF). The CHF for
terminal node h is

̂Hh(t) =
∑

tl,h≤t

dl,h

Yl,h

, (1)

where dl,h and Yl,h are the number of deaths and individuals
at risk at time tl,h. Obviously, all cases within node h

have the same CHF. Suppose in one terminal node, we
have only one death instance and nine censored instances
and the detailed survival times are (2+, 3+, 5+, 7+, 8+,

10, 13+, 14+, 18+, 25+). In this case, the NA’s estimator
can only show that the risk is 0% at T < 10 and 20% at T ≥
10, which is extremely vague and inaccurate. Consequently,
the resulting RSF model may face an under-fitting problem.

One may notice that, in calculating CHF, only the
number of censored samples are used and other censoring
information such as the specific values of censoring times
are ignored. In case of a small sample size with a highly
censoring rate, one may consider improving the model’s
predictive capability by exploiting such information.

2.2 Semi-supervised learning

In classification and regression problems, semi-supervised
learning can make use of unlabelled data to gain more
information about the underlying marginal data distribution
p(x), and thereby obtain more accurate inference about the
posterior distribution p(y | x) [26].

However, semi-supervised learning for survival analysis
so far is still underdeveloped. In survival analysis, instances
that have experienced the event of interest can be regarded
as labeled data. But censored data are not the same as
unlabeled data in that censored data always imply that the
truly survival times are within some intervals specified by
survival times and hence carry more information than the
unlabeled data.
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Here, we consider a toy example in Fig. 1 with which
we can observe how censored information may help us in
classification problem. In this example, we have two classes
of 34 instances: eight of them (squared dots) denotes event
(uncensored) data and 26 others (circled dots) are censored.
If we only use 8 uncensored instances (E1 to E8 in Fig. 1) in
model training, the decision boundary may be the densely
dotted line. However, from semi-supervised learning, we
know that the dotted line violates the smoothness and low-
density assumptions as the decision boundary of a classifier
should preferably pass through low-density regions in the
input space [54]. Hence, if both censored and uncensored
samples are dealt with properly, the solid optimal decision
hyper-plane may be found.

2.3 Deep forest

Deep learning based approaches find vast applications in a
variety of fields. The mystery behind the success of deep
learning may lie in three characteristics, i.e., layer-by-layer
processing, in-model feature transformation and sufficient
model complexity [63]. However, training of deep neural
networks requires a large number of samples [1], which
is often difficult to be satisfied in medical practice. In
2017, a deep forest framework with a cascade random forest
structure is proposed to hold the strengths from the deep
leaning [63].

One may observe that both deep neural network (DNN)
and deep forest (gcForest) have a layer-by-layer structure
for representational learning. As stated in [42], for any
g ∈ (Cr [0, 1]r , β, H), there exists a deep neural network
f ∈ F(l, {dj }L+1

j=0 , s, V ) such that

‖f −g‖∞ ≤(2H +1)6r ·(1+r2+β2)·N2−m+H ·3β ·N−β/r

m ∝ depth; N ∝ width.

(2)

According to (2), the generalization error upper bound
decreases exponentially with the increase of the model
depth. Later on in the next section, we shall develop a
different deep forest framework for highly censored survival
data using a semi-supervised learning technique.

3 The DSF approach

In this section, we first show how pseudo survival times
can be approximated using censored times through a
semi-supervised learning approach called data transduction
technique. Then we propose a deep survival forest(DSF)
approach that can utilize both censored and uncensored
sample information.

Fig. 1 A basic example to
explain semi-supervised learning
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3.1 Data transduction

Given m labeled samples (x1, y1), ..., (xm, ym) as well as
n − m unlabeled samples xm+1, xm+2, ..., xn, the purpose
of semi-supervised learning is to predict the remaining
unknown labels ym+1, ym+2, ..., yn [11]. However, most
semi-supervised learning approaches are born for regression
or classification problems and cannot be extended to
survival modeling directly [32]. Here, we try to employ a
transductive semi-supervised algorithm [54] in dealing with
censored observations.

Formally, given a supervised loss function � for the
labeled data and unsupervised loss function �U for the pairs
of labeled or unlabeled data, transductive methods attempt
to obtain a pseudo labeling ŷ that minimizes

λ ·
l

∑

i=1

�(ŷi , yi) +
n

∑

i=1

n
∑

j=1

Wij · �U (ŷi , ŷj ) (3)

where Wij contains the edge weights for all pairs of nodes
and λ governs the supervised term’s relative importance.

In the most typical right censored survival case, censored
instances’ actual survival times are unknown but are greater
than observed censoring times. Based on this fact, we
can assign an optimal class label (or possible target label)
to each censored instance via data transduction. In other
words, we attempt to infer a pseudo-label for ith right
censored instance by

̂Ti = f (xi, xj , Ci, Tj ), j �= i and δj = 1 (4)

where δj is the censoring indicator, δj = I (Tj ≤ Cj ).
We assume that the distribution of survival time

possesses the memoryless property, that is P(T > t) =
P(T > s + t | T ≥ s). For one censored instance at
time C, we suppose that the longest survival time of this
instance is C + τ where τ is the maximum event time in
the training set. As a result, an effective way to obtain an
optimal target is data transduction via exhaustive searching
from the censored time to maximum pseudo timeC+τ . The
transduced time can be further formulated as

̂Ti = Ci + k
τ

ζ
= Ci + ks (k = 1, 2, · · · , ζ ) (5)

In (5), s is an iteration stride which determines the iteration
times ζ . The larger ζ , the more time the algorithm will takes
and a higher accuracy will be obtained.

To avoid noise accumulation from pseudo-labels of the
censored data and ensure the robustness of the whole data

transduction, the proposed method makes the censored
samples enter the model one by one, and carry out
collaborative training with the uncensored data. Once an
instance obtains the transduced pseudo-label, it becomes a
new “uncensored” instance in the next training process. That
is to say, a pseudo-label for the ith ( m + 1 ≤ i ≤ n − m)
censored sample is transduced, and the m + 1, · · · , m + i

censored observations are regarded as uncensored samples
in the subsequent training process.

3.2 Deep survival forests

In the proposed deep survival forests (DSF) approach,
we attempt to apply a similar methodology to survival
data in the hope to have a smaller error upper bound.
However, the censored data problem makes the popular
cascade structure in trouble. Hence, the cascade structure is
redesigned to cope with the challenges from highly censored
data.

As illustrated in Fig. 2, DSF is distinct from deep
forest in that each level of cascade receives new transduced
censored samples from its preceding level, and transduce
its processing result to the next level. Compared to
a hierarchical framework extracting complex non-linear
features in deep forest, a sequential framework expanding
the training sample size by transducing survival time for the
censored samples is applied in the proposed approach.

In each layer of cascade forest, the stride or the number of
forests should be determined in advance. In practice, these
settings depend on the accuracy requirements. For example,
if the censored time for one instance is 300, and if the
maximum survival time in the training set is 600, and if
our stride is set to 50, we need six random forests in this
layer to search the optimal target time for this censored
sample. If higher accuracy is required, a smaller stride
(such as 10) can be set and more (30) random forests are
involved.

We then will replace the censored time with a transduced
label for each censored sample that yields the best
performance improvement on out of bag (OOB) data. In
other words, the pseudo-label of this instance is obtained
based on the minimum error criterion on the testing set.
The corresponding status is also transduced from censored
to uncensored. Instead of other imputation methods, we
design a cascade forest to realize data transduction. This
procedure minimizes the corresponding estimation bias and
extracts more effective feature information than one-of
f procedure.

Finally, once optimal pseudo-values are transduced for
all censored instances, a learning model such as random
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Fig. 2 The overall procedure of
DSF

forest can be built with these pseudo-label censored samples
and uncensored samples. As we can see, the final model is
actually a cascade of cascades, where each cascade consists
of multiple levels.

In general, the DSF can be formulated as the following
optimization problem:

Min
k

B
∑

b=1

n
∑

i=1
Ii,b · δi,b[yi,b − f̂ ∗(xi,b)]2

s.t . y∗
i,b ≤ τ + yi,b · (1 − δi,b)

(6)

where y∗
i,b = yi,b +ki,b · (1−δi,b) · s, for b = 1, 2, ..., B and

B is number of bootstrap samples from the original data;
for i = 1, 2, ..., n; Ii,b = 1 if i is an OOB sample for bth
bootstrap sampling.

In our study, random forests are chosen as the base
learners. And for each random forest, a default of 100
regression trees using the most common Mean Squared
Error (MSE) loss function are built. The Gini-index criteria
is adopted as the splitting rules in these regression trees.
Like deep forest and other deep learning approaches, we
have to make a trade-off between computational efficiency
and predictive performance. If computational resource is
enough, we suggest setting large iteration times ζ such as
1000, 5000 to gain more accurate transduced labels and
more reliable prediction performances.

The pseudo-code of the proposed DSF is presented in
Algorithm 1:

Since the “while” parts based on iteration times ζ can
be executed concurrently, thus in case of big survival data
under the larger ζ , DSF can be trained on a multi-core CPU
or computer clusters in parallel to save time.
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4 Simulation studies

In this section, we use simulation studies to evaluate the
effectiveness of the proposed method for survival prediction
on a variety of scenarios.

4.1 The comparingmodels

We will compare our method with several popular semi-
parametric and nonparametric models widely used in real
applications. We do not consider the deep survival models
such as DeepCox [33] and DeepSurv [31] as competitors,
because these methods require more training samples and
are not applicable in scenarios of small sample size.

• Cox proportional hazards model [12, 13] is a popular
semi-parametric model and the most commonly-used
survival analysis method.

• GlmBoost [9] is a generalized linear model which is
fitted using a boosting algorithm based on component
univariate linear models.

• RSF (Random Survival Forests) [28] extended random
forest [7] to model right-censored data, which is the
most popular nonparametric method in the field of
survival analysis.

• CoxBoost [4] is one of the few methods that allow
the implementation of popular boosting techniques in
conjunction with the Cox model.

• ORSF (Oblique Random Survival Forests) [30] is a
tree-based ensemble for right-censored survival data
that uses linear combinations of input variables to
recursively partition a set of training data.

• OSTE (Optimal Survival Trees Ensemble) [20] is tree-
based ensemble method, which is initiated with the
survival tree which stands first in rank, then further tress
are tested one by one ba adding them to the ensemble in
order of rank.

• UST [17] construct a survival tree by a novel matrix-
based algorithm in order to tests a number of nodes
simultaneously via stabilized score tests [59].

Comparisons with these models are conducted with
corresponding “survival”, “mboost”, “randomForest-
SRC”, “CoxBoost”, “obliqueRSF”, “OSTE” and
“uni.survival.tree” packages in R. The default settings of
these methods in packages are adopted for ensemble tree
methods and the number of trees is set to 500. For the
proposed DSF method, we set trees = 100, iteration times
ζ = 200 for each level. Here, these values are relatively
small to make a trade-off between accuracy and efficiency.
In the last level of DSF, we set T rees = 500.

4.2 Performance comparisonmetrics

To evaluate the predictive accuracy of survival models,
we adopt the concordance index (C-index) measure [22,
23], which is also the most popular criteria for survival
predictions. The C-index metric has an attractive feature
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that does not depend on a single event time for evaluation
and more precisely accounts for censored time. The C-index
value is calculated as follows:

• Calculate all possible pairs of cases over the data.
• Omit those pairs whose shorter survival time is

censored. Omit pairs i and j if yi = yj . Let π denote
the total number of permissible pairs.

• For each permissible pair where yi �= yj , count 1 if
the longer survival time has a better predicted outcome;
count 0 if predicted outcomes have opposite results. Let
ω denote the sum over all permissible pairs.

• C = ω/π defines C-index.

In our experiments, 5∗2 fold cross-validation [57] is used
for all datasets. To be specific, each trial randomly divided
the dataset into two halves, 50% for training and 50% for
testing and vice versa. This process is repeated five times
for each dataset and all the compared methods.

4.3 Simulation scenario settings

The simulation settings reported here are very similar
to settings [48, 64]. The five settings considered are,
respectively, described below:

Scenario 1. In this basic scenario, each simulated dataset
is created using 90 independent observations, where the
covariate vector (x1, x2, ..., x10) is multivariate normal
with μ = 0 and a covariance matrix having elements
equal to 0.9|i−j |. Survival times are simulated from an

exponential distribution with μT = e0.1
∑8

i=5 xi (i.e.,a
proportional hazards model) and censoring distribution

is exponential with μC = 0.8e0.1
∑8

i=5 xi to get an
approximately 66% censoring rate (CR for short when
necessary).

Scenario 2. In this nonlinear scenario, the proportional
hazards assumption is mildly violated by our settings.
Each simulated dataset is created using 90 independent
observations, where the covariate vector (x1, x2, ..., x10)
consists of 10 independent and identically distributed
uniform random variables on the interval [0,1]. The
survival times follow an exponential distribution with
μT = sin(x1π) + 2 | x2 − 0.5 | +x3

3 . Censoring

has a uniform distribution over [0,2], which results in
approximately 58% censoring rate.

Scenario 3. In this nonproportional hazard scenario, the
proportional hazards assumption is strongly violated by
our settings. Each simulated dataset is created using
90 independent observations, where the covariate vector
(x1, x2, ..., x10) is multivariate normal with μ = 0
and a covariance matrix having elements equal to
0.9|i−j |. Survival times are gamma-distributed with
shape parameter μT = 0.5 + 0.3 | ∑8

i=5 xi |
and scale parameter 2. Censoring time has a uniform
distribution over [0,25], which results in approximately
71% censoring rate.

Scenario 4. In this dependent censoring scenario, the
underlying censoring distribution is conditionally depen-
dent on covariates by our settings. Each simulated dataset
is created using 90 independent observations, where the
covariate vector (x1, x2, ..., x10) is multivariate normal
with μ = 0 and a covariance matrix having elements
equal to 0.9|i−j |. Survival times are simulated according
to a log-normal distribution with μT = 0.1 | ∑2

i=1 xi |
+0.1 | ∑7

i=6 xi |. Censoring times are log-normal with
μC = μT − 1.5 and scale parameter 1, which results in
approximately 62% censoring rate.

Scenario 5. In this more complicated scenario [27], the
log-rank test may have a significant loss of power when
the hazard function crosses each other. Each simulated
dataset is created using 90 independent observations,
where the covariate vector (x1, x2, ..., x10) is uniformly
distributed on the interval [0,1]. Survival time is only
related to x1. Censoring time is uniformly distributed on
the interval [0,10], which results in approximately 42%
censoring rate. The hazard function is
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0.27t, x1 ≤ 0.5, t ≤ 2

0.27(t − 2) + 5.4, x1 ≤ 0.5, t > 2

0.1t, x1 > 0.5, t ≤ 6

5.5(t − 6) + 0.6, x1 > 0.5, t > 6

(7)

4.4 Simulation results

The following Table 1 and Fig. 3 present the performance of
all methods in terms of C-index on five simulation datasets.

Table 1 The result of C-index with other advanced competing approaches

Scenario Cox GlmBoost RSF CoxBoost ORSF OSTE UST DSF

S1 0.548 0.512 0.580 0.514 0.567 0.610 0.573 0.618

S2 0.465 0.456 0.554 0.527 0.462 0.463 0.500 0.563

S3 0.376 0.445 0.448 0.511 0.430 0.488 0.502 0.526

S4 0.572 0.508 0.453 0.497 0.500 0.477 0.467 0.591

S5 0.627 0.649 0.680 0.459 0.631 0.405 0.455 0.690
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Fig. 3 Boxplots of performance
in terms of C-index
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In S1 (the most basic proportional hazards case), all
eight methods perform relatively well and all output C-
index values over 0.5. And the proposed DSF outperforms
the other seven methods by a noticeable margin. For S2-
S5 (non-proportional hazards cases), all competing methods
shows a degrade of performance. In these cases, OSTE and
UST often fail and make predictions worse than random
guessing. However, DSF works strikingly well in all these
scenarios and outperforms the other seven methods by large
margins. In the highest censoring rate case (S3), only DSF
gives adequate predictions with a mean C-index value of
0.526 and all the other methods fails.

These simulated results indicate that when small sample
sized (n = 90 in our simulations) and highly censored data
(from 58% to 71% in our cases) are confronted and if other
approaches fail, one can resort to DSF for help.

5 Real applications

In this section, we verify the potential of the proposed
DSF based on real data applications. We will demonstrate
its effectiveness using both low dimensional and high
dimensional benchmark datasets.

5.1 Applications to low dimensional data

Here, eight real survival datasets with different censoring
rates ranging from 24% to 88% are employed and all these
datasets are publicly available in corresponding R packages.
These datasets are further preprocessed by eliminating all

columns having the same values or data with missing values.
Short descriptions of the benchmark datasets are given
below.

• The breast [25] is a breast cancer dataset with 74%
censoring rate, containing information on 100 breast
cancer patients, including survival time, survival status,
Tumor stage, Nodal status, Grading and Cathepsin-D
tumor expression. The data can be obtained from the R
package “coxphf”.

• The DLBCL [2] contains gene expression data from
diffuse large B-cell lymphoma (DLBCL) patients. This
dataset contains 34 samples and 14 covariates with 47%
censoring rate, which is available in R package “ipred”.

• The leukemia [18] describes the treatment results for
leukemia patients and contains 51 samples and nine
covariates with 88% censoring rate. The data can be
obtained from the R package “Stat2Data”.

• The WPBC [10] exhibits invasive breast cancer cases
and contains 194 samples and 32 covariates with 76%
censoring rate. The data is available in R package
“TH.data”.

• The ovarian [16] is a randomized trial comparing two
treatments for ovarian cancer with 26 samples and six
covariates with 54% censoring rate. The data can be
found in R package “survival”.

• The colon [35] is from one of the first successful
trials of adjuvant chemotherapy for colon cancer. This
dataset contains 1858 samples and 14 covariates with
50% censoring rate, which can be obtained from the R
package “survival”.
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Table 2 The result of C-index on low dimensional datasets

Dataset Cox GlmBoost RSF CoxBoost ORSF OSTE UST DSF

breast 0.789 0.770 0.763 0.642 0.768 0.629 0.686 0.804

DLBCL 0.579 0.638 0.523 0.659 0.622 0.554 0.505 0.667

leukemia 0.386 0.335 0.543 0.550 0.500 0.500 0.507 0.820

WPBC 0.571 0.641 0.604 0.629 0.634 0.582 0.610 0.645

ovarian 0.669 0.709 0.751 0.572 0.719 0.525 0.623 0.792

colon 0.664 0.661 0.703 0.664 0.692 0.667 0.703 0.707

kidney 0.755 0.765 0.729 0.763 0.735 0.657 0.722 0.743

pbc 0.802 0.814 0.821 0.813 0.829 0.686 0.819 0.829

• The kidney [38] is a kidney patients data. It represents
the recurrence times to infection at the point of insertion
of the catheter for kidney patients using portable
dialysis equipment. This dataset contains 76 samples
and six covariates with 24% censoring rate, which can
be obtained from the R package “survival”.

• The pbc [51] is from the Mayo Clinic trail in primary
biliary cirrhosis (pbc) of liver conducted between 1974
and 1984. A total of 276 pbc patients and 17 covariates
with 60% censoring rate, referred toMayo Clinic during
that ten-year interval, met eligibility criteria for the
randomized placebo controlled trail of the drug D-
penicillamine.

The prediction performance in terms of C-index on
low dimensional datasets is summarized in Table 2 and
Fig. 4. From these results, one may find that DSF
works remarkably well on almost all these datasets and
outperforms most methods by big margins in most cases.
When extremely high censoring rate is encountered such as
the case of leukemia dataset, most competitors lose their

predictive power with low C-index values(0.335, 0.386,
etc.) and CoxBoost manages to give predictions just above
0.5 sometimes but also fails in most runs. However, this
mission impossible case is made possible with our proposed
DSF method. On the same leukemia dataset, DSF performs
strikingly well and achieves an average C-index of 0.820.

We also find that, when low censoring rate is present
as in the case of kidney dataset(24% censoring rate),
DSF performs not as good as some of competing
methods(GlmBoost or CoxBoost), but its performance is
still comparable to other competing approaches.

5.2 Applications to high dimensional data

Next, we will verify the validity of DSF on high-
dimensional datasets. Here, for efficiency purpose, a two-
stage strategy is adopted for high dimension survival
analysis. In the first stage, irrelevant features are filtered out
using an effective screening procedure and in the subsequent
stage, different competing models come into play. To ensure
the fairness of comparison, the same model-free screening

Fig. 4 Boxplots of performance
in terms of C-index on low
dimensional datasets
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method (Ball correlation sure independent screening, BCor-
SIS) [41] is applied in all first stages. Short descriptions of
the benchmark higher-dimensional datasets are given below.

• The GSE12945 describes an expression module of
WIPF1-coex pressed genes that identifies patients. This
dataset, with 82 % censoring rate, has 61 patients. For
each instance, 14 clinical covariates and 12985 gene
features are provided. The data can be obtained from
the R package “curatedCRCData” of “Bioconductor”.

• The NSBCD [46] contains repeated observations of
breast tumor subtypes in independent gene expression
datasets. This dataset, with 67 % censoring rate, has 115
patients. For each observation, 549 “intrinsic” genes are
provided and can be downloaded from http://user.it.uu.
se/∼liuya610/.

• The vdv [55] is a gene expression profiling for
predicting the clinical outcome of breast cancer. This
dataset, with 56 % censoring rate, contains 4705
expression values on 78 patients, which is available in
R package “randomForestSRC”.

• The Veer [5] represents the Circulating Breast Tumor
Cells by Differential Expression of Marker Genes. This
dataset, with 56 % censoring rate, has 78 patients.
For each observation, 4571 gene features are provided,
which can be downloaded from https://clincancerres.
aacrjournals.org/.

• The unt [47] contains the gene expression, annotations
and clinical data on breast cancer. This dataset, with 83
% censoring rate, has 62 patients. For each observation,
five clinical covariates and 44928 gene features are
provided. The data can be obtained from the R package
“breastCancerUNT” of “Bioconductor”.

• The vdx [40, 58]contains the gene expression, annota-
tions and clinical data. This dataset, with 64 % censor-
ing rate, has 197 patients. For each observation, three
clinical covariates and 22283 gene features are pro-
vided. The data can be obtained from the R package
“breastCancerVDX” of “Bioconductor”.

• The transbig [14] contains the gene expression infor-
mation for lymph node-negative (N-) breast cancer
patients. This dataset, with 68 % censoring rate, has 196
patients. For each observation, 22292 gene features are
provided. The data can be obtained from the R package
“breastCancerTRANSBIG” of “Bioconductor”.

• The upp [39] contains transcript profiles of 251
p53-sequenced primary breast tumors. This dataset,
with 78 % censoring rate, has 197 patients. For
each observation, 44938 gene features are provided.
The data can be obtained from the R package
“breastCancerUPP” of “Bioconductor”.

From Table 3 and Fig. 5, one can observe that DSF
significantly outperforms all seven competing methods on
all these high dimensional datasets. On datasets that most
methods achieves relatively good predictive performance,
such asGSE12945, NSBCD, vdv ,Veer, unt and vdx datasets,
the proposed DSF is the best performer. On datasets that
most methods may have hard times such as transbig and
upp datasets, DSF performs reasonably well. Thus, from
the results shown above, similar to its performance on low
dimensional datasets, DSF also achieves good predictive
capability in terms of C-index on these high dimensional
survival datasets.

Hence, according to the results from both low and
high dimensional real datasets with different censoring
rates, the proposed DSF method generally obtains a good
predictive performance and its superiority stands out if
heavily censoring is present.

6 Discussions

In the previous two sections, we have demonstrated the
effectiveness of the proposed DSF method using extensive
simulated scenarios and real benchmark datasets. The
success of DSF is probably due to the combination of
both the data transduction technique and the cascade

Table 3 The result of C-index on high dimensional datasets

Dataset Cox GlmBoost RSF CoxBoost ORSF OSTE UST DSF

GSE12945 0.713 0.866 0.846 0.769 0.867 0.668 0.537 0.886

NSBCD 0.605 0.739 0.738 0.715 0.752 0.683 0.631 0.764

vdv 0.628 0.712 0.746 0.700 0.759 0.746 0.749 0.765

Veer 0.653 0.736 0.753 0.720 0.777 0.614 0.631 0.792

unt 0.663 0.735 0.723 0.757 0.706 0.547 0.631 0.797

vdx 0.630 0.699 0.697 0.702 0.723 0.592 0.565 0.732

transbig 0.480 0.502 0.496 0.496 0.500 0.497 0.495 0.532

upp 0.527 0.476 0.604 0.485 0.580 0.539 0.520 0.610
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Fig. 5 Boxplots of performance
in terms of C-index on high
dimensional datasets
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forest structure. The former has shown to exploit more
censored information while the latter can achieve a better
representation of the original features. When adequate
uncensored samples (lower censoring rates and/or large
sample sizes) are given, the proposed method may perform
worse than other competitors as noises may be introduced
in transducting the censored data.

Here, we have conducted additional experiments to verify
the above conjectures. First, we test the effectiveness of the
deep cascade structure. For this experiment, mean square

error (testing mse) is used for the prediction evaluation
in each layer. Figure 6 shows the error rates in terms of
testing mse for each layer in scenarios 1-5. According to
Fig. 6, one may observe that as censored data is transduced
layer by layer, the testing mse is generally on the decrease.
Hence, if high precision in prediction is required, we can set
a larger ζ value to obtain a deeper cascade.

Next, we test the effect of sample sizes on the proposed
method. For simplicity, here we only consider the most pop-
ular semi-parametric Cox model and non-parametric RSF

Fig. 6 Performance
improvement in terms of the
influence of cascade structure
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Table 4 Predictive result in
terms of average C-index with
different sample sizes

Dataset CR Sample size Cox RSF DSF

S1 48% 60 0.544 0.497 0.619

S4 92% 60 0.450 0.507 0.627

S1 61% 70 0.497 0.499 0.532

S4 90% 70 0.360 0.491 0.788

S1 56% 80 0.386 0.487 0.531

S4 85% 80 0.485 0.488 0.548

S1 53% 90 0.545 0.499 0.560

S4 81% 90 0.505 0.510 0.620

S1 55% 100 0.609 0.648 0.560

S4 86% 100 0.407 0.780 0.751

S1 56% 120 0.537 0.702 0.600

S4 88% 120 0.407 0.766 0.705

S1 54% 150 0.460 0.649 0.506

S4 81% 150 0.524 0.723 0.573

S1 54% 200 0.526 0.674 0.530

S4 91% 200 0.411 0.842 0.598

S1 51% 300 0.516 0.694 0.554

S4 85% 300 0.460 0.775 0.629

S1 56% 1000 0.498 0.730 0.512

S4 84% 1000 0.513 0.777 0.588

model as the comparing methods. Here, we vary the sample
size from 60 to 1000 in two scenarios, one satisfies the pro-
portional hazards assumption (Scenario 1) while the other
violates the proportional hazards assumption (Scenario 4).
Moreover, to make the comparisons more challenging, all
simulated data generated with higher censoring rates. Sum-
mary information of different simulated datasets and corre-
sponding comparison results can be found in Table 4 and
Fig. 7.

It can be observed that DSF is somewhat sensitive to
sample size. When the sample size is less than 100, DSF
performs better than the other two competing approaches
and the censoring rates seem to have little influence on the
predictive performance on DSF. Cox and RSF, however,
usually get a bad performance under such scenarios. In
contrast, when there is a large sample size with a lower
censoring rate, DSF is not as good as RSF, but it still

achieves comparable results and outperforms the Cox model
by a large margin.

Similar to other deep learning approaches, the computing
time of DSF is rather long in the current implementation.
But this limitation is counterbalanced by the ability to
model small sample sized and highly censored survival data
and hence remarkable gains in the predictive capability.
Furthermore, the computational issue can be alleviated by
parallel computing framework and fast C++ routines in
future implementations.

7 Conclusions

In this research, we have proposed a non-neural network like
algorithm deep survival forests (DSF) for modelling highly
censored survival data, which is prevalent in biomedical
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Fig. 7 Performance in terms of C-index on different sample sizes. The deep pink arrow indicates the maximum sample size when the DSF usually
performs well

7052 X. Cheng et al.



studies. Extensive numerical studies from both simulated
and real data have shown that the proposed algorithm
outperforms popular Cox, RSF and other state-of-the-art
survival ensembles in terms of predictive performance.
These results also indicates that the proposed DSF works
best with small sample sized survival data with heavy
censored rates when sufficient samples are not available in
training workable Cox and RSF models.

Potential future research include extending the cas-
cade forest structure to more complex survival data such
as interval-censored data or competing risks data. Mean-
while,we also want to study the performance of other
transduction techniques, such as Buckley-James [8] and
censoring unbiased transduction [48] to make better utiliza-
tion of censoring information.
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