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Abstract
Open-Set Domain Adaptation (OSDA) aims to adapt the model trained on a source domain to the recognition tasks in
a target domain while shielding any distractions caused by open-set classes, i.e., the classes “unknown” to the source
model. Compared to standard DA, the key of OSDA lies in the separation between known and unknown classes. Existing
OSDA methods often fail the separation because of overlooking the confounders (i.e., the domain gaps), which means their
recognition of “unknown classes” is not because of class semantics but domain difference (e.g., styles and contexts). We
address this issue by explicitly deconfounding domain gaps (DDP) during class separation and domain adaptation in OSDA.
The mechanism of DDP is to transfer domain-related styles and contexts from the target domain to the source domain. It
enables the model to recognize a class as known (or unknown) because of the class semantics rather than the confusion
caused by spurious styles or contexts. In addition, we propose a module of ensembling multiple transformations (EMT)
to produce calibrated recognition scores, i.e., reliable normality scores, for the samples in the target domain. Extensive
experiments on two standard benchmarks verify that our proposed method outperforms a wide range of OSDA methods,
because of its advanced ability of correctly recognizing unknown classes.

Keywords Open-set domain adaptation · Image classification

1 Introduction

Deep learning has made a remarkable success in a wide
range of computer vision tasks [1–3], given a large amount
of annotated training data. However, deep models can not
generalize well to novel domains due to the domain shift [4].
To adapt these models, people always have to collect and
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annotate a large volume of training samples in the target
domain as well, which is costly.

Unsupervised Domain adaptation (UDA) [5] tackles this
issue by transferring knowledge from a source domain to a
related but different domain (target domain) through using
only unlabeled data. Most of UDA algorithms assume that
the source and target datasets cover identical categories,
known as Closed-Set Domain Adaptation (CSDA), as
shown in Fig. 1a. While this assumption does not stand
in real applications, as it is not possible to guarantee two
domains sharing the same label space if no labels are
available in one domain (the target domain). Therefore,
researchers come up with a more reasonable and realistic
setting called Open-Set Domain Adaptation (OSDA) [6–8].
The mainstream setting was introduced by Saito et al. [7],
where the classes in the source domain are fully known and
some of the classes in the target domain are unknown to the
model trained in the source domain, as shown in Fig. 1b. The
methods for OSDA specifically aim to classify the target
domain samples correctly either into the label space of the
source domain or as a special class called “unknown”.

The key in OSDA lies in how to effectively recognize
and isolate the unknown samples, compared to the DA
in closed-set scenarios. Existing methods usually define
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Fig. 1 A comparison between the CSDA setting and the OSDA setting. (a) The CSDA setting assumes that the label space of two domains is
identical. (b) The OSDA setting assumes that the target domain includes both known (shared) classes and unknown classes

the normality score whose value shows to be lower for
unknown sample than known sample. There are two typical
issues. First, the model producing such scores is trained
solely on source datasets, overlooking the confounder, i.e.,
the domain gap between source and target datasets. The
essential reason behind is that when the model learns the
semantic information of shared (known) classes, it is misled
by spurious image styles or contexts. For example, if there
are many samples of “dog” on grass in source domain and
“sheep” on grass in target domain (while there are quite
fewer “dog” on grass in the target domain), the model
gets misled by the context “on grass” and thus makes the
wrong prediction on “sheep” samples as “dog” [9]. The
second issue is that the model usually produces a single

uncalibrated prediction on each input data, making the
recognition of unknown samples unstable or unreliable.

In this paper, we solve the above issues in the two-stage
framework presented in Fig. 2. In the first stage, we improve
the ability and stability of the model to separate known
and unknown samples. 1) We propose an explicit module
of deconfounding domain gaps (DDP), which transfers
image styles and contexts from the target domain to the
source domain. We then fine-tune the model on the source
samples with transferred styles and contexts to enable it to
recognize target samples as known (or unknown) because
of their class semantics (rather than the confusion caused
by spurious styles or contexts). 2) We propose a module
of ensembling multiple transformations (EMT), which

Fig. 2 An illustration of the proposed method. Stage I: we propose an
explicit module of deconfounding domain gaps (DDP), which trans-
fers domain information (i.e., image styles and contexts) from the
target domain to the source domain. We then train the encoder F and
semantic network C1 on the source samples with transferred styles
and contexts to enable the model to recognize a class as known (or
unknown) because of the class semantics rather than the confusion
caused by spurious styles or contexts. After convergence, we propose
a module of ensembling multiple transformations (EMT), which cali-
brates the model predictions by ensembling predictions from multiple
transformations of each target sample. Based on the calibrated pre-
dictions, we can compute reliable normality scores used to divide the

target datasets into a known target dataset Dknw
t and an unknown tar-

get dataset Dunk
t . Stage II: two networks with the same architecture

are used: a student network f = C2 ◦ F , and a teacher network g with
its weights being automatically set as an exponential moving average
(EMA) of weights of the student network f . We minimize the con-
sistency loss to mitigate the domain discrepancy between the source
dataset Ds and the target known dataset Dknw

t . In addition, we can
classify the target known samples and reject the target unknown sam-
ples by minimizing the classification loss on source dataset Ds and
unknown target datasetDunk

t . We also utilize the proposed DDP to fur-
ther deconfound domain gaps, which is not shown in the right side of
the figure for simplicity

Open-set domain adaptation by deconfounding domain gaps 7863

1 3



calibrates the model predictions by ensembling predictions
from multiple transformations of each target sample. In
the second stage, we leverage both the self-ensembling
method [10] and the proposed DDP to deconfound domain
gaps. Finally, we get the model that can recognize each
target sample either as one of the known classes or as the
special class “unknown”.We conduct extensive experiments
on two OSDA benchmarks and show that both modules
contribute to the performance improvement of the trained
models. Therefore, our main contributions are in three folds.

1. We point out that separating known and unknown
classes remains a challenging problem in OSDA due
to the confusion caused by domain gaps. We propose
a novel OSDA method that can perform effective
separation.

2. We introduce an explicit module of deconfounding
domain gaps (DDP), which transfers image styles and
contexts from the target domain to the source domain
and enables the model to correctly recognize unknown
samples without being confounded by domain gaps. In
addition, we propose a module of ensembling multiple
transformations (EMT) to calibrate the recognition of
the model and get more reliable normality scores.

3. We conduct experiments on two standard OSDA
benchmarks. Our results demonstrate that our method
outperforms the state-of-the-art. Our in-depth analyses
verify that it gets better results because of its advanced
ability of separating between known and unknown
samples in the target domain.

2 Related works

In this section, we briefly review methods for domain
adaptation and anomaly detection.

2.1 Domain adaptation

Closed-Set Domain Adaptation (CSDA) works with the
assumption that two domains have identical categories.
CSDA approaches focus on mitigating the domain discrep-
ancy between domains and can be grouped into several
categories based on the adopted strategy. Discrepancy-
based methods measure the divergence between domains
in the feature space with a discrepancy metric, such as
Maximum Mean Discrepancy (MMD) [11], Higher-order
moment matching (HoMM) [12], and Wasserstein distance
[13]. The domain shift will be reduced by minimizing the
metric during training. Adversarial methods [14] leverage a
domain classifier to distinguish source and target features,
while training the feature encoder to device the domain

classifier in order to extract domain-agnostic feature repre-
sentations. Adversarial methods are the most popular ones
and have obtained promising performance, which is fur-
ther enhanced by recent works [15–18] with novel network
designs. Generative methods [19, 20] leverage generative
models to translate source samples to the target dataset and
then reduce the domain discrepancy in both feature and
pixel levels. Self-supervised methods [21, 22] design auxil-
iary self-supervised tasks for unlabeled target data to learn
robust cross-domain representations. Consistency-enforcing
methods [10, 23] force the model to make similar predic-
tions for unannotated target samples even after they have
been augmented. Feature disentanglement methods [24–26]
decouple the feature representations into domain-invariant
and domain-specific parts, and only the former is used to
predict the target labels. Our proposed DDP shares a simi-
lar spirit with this line of methods, as we also try to separate
the domain-related representation (style/context) from the
semantic representation. However, we intend to transfer the
styles from the target domain to the source domain instead
of only using the semantic representation. In addition, fea-
ture disentanglement methods for CSDA cannot be used in
the OSDA scenario, as they need to exploit adversarial train-
ing to enhance the domain-invariant part, which may incur
negative transfer. In comparison, our proposed DDP explic-
itly exploits feature statistics as the style representation, so
we can also transfer the styles from unknown target samples
without being interfered with by their semantic information.

Open-Set Domain Adaptation (OSDA) assumes target
label set contains source label set. There are two different
settings in the OSDA literature. Busto et al. [6] assumed
each domain includes unknown categories besides the
shared classes. And they proposed an algorithm called
Assign-and-Transform-Iteratively (AIT), which maps target
data to source domain and then utilizes SVMs for final
prediction. Saito et al. [7] eased the setting by requiring
no unknown data from the source dataset, so target dataset
contains all the source classes (known) and additional
private classes that do not belong to the source (unknown).
They also proposed a method, called Open Set Back-
Propagation (OSBP), which adversarially trains a classifier
with an extra ‘unknown’ class to achieve common-private
separation. Later OSDA methods all follow this more
challenging and realistic setting. Separate To Adapt (STA)
[8] aims to conduct known and unknown separation through
a coarse-to-fine filtering process which includes two stages.
First, multiple binary classifiers will be trained to compute
the similarity score between source and target data. Second,
target samples with very low and high scores will be
selected to train a final binary recognizer to distinguish
known and unknown target samples. Attract or Distract
(AoD) [27] leverage metric learning to match target samples
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with the corresponding neighborhood or distract away from
the known classes. Rotation-based Open Set (ROS) [28]
adopts rotation classification, a self-supervised method, to
distinguish the known and unknown target samples and then
adapt source knowledge to the target known data.

Universal domain adaptation (UniDA), as a more gen-
eral scenario, makes no assumption about the relationship
of label sets between two domains. Universal Adaptation
Network (UAN) [29] designs a measurement to evaluate
sample-level transferability based on domain similarity and
prediction uncertainty. Then samples with high transferabil-
ity will be used with higher weight to promote common-
class adaptation. However, as pointed by [30], this criterion
is not discriminative and robust enough. Fu et al. [30]
designed a better measurement that combines confidence,
entropy, and consistency using multiple auxiliary classifiers
to measure sample-wise uncertainty. Similarly, a class-level
weighting strategy is applied for subsequent adversarial
adaptation.

2.2 Anomaly detection

Anomaly detection targets at detecting out-of-distribution
(anomalous) samples by learning from normal samples.
The approaches in this direction can be grouped into three
categories. Distribution-based approaches [31, 32] leverage
the normal samples to model the distribution function so that
anomalous samples with lower likelihood can be filtered
out. Reconstruction-based approaches [33, 34] leverage the
encoder-decoder network to reconstruct the normal training
samples. Then anomalous samples can be recognized
as they have larger reconstruction error compared with
normal samples. Discriminative approaches [35, 36] train
a classifier on the normal samples and directly recognize
anomalous samples based on the model prediction.

3Method

In this section, we first formally introduce the preliminaries,
then we present an overview of the proposed method and
describe it in detail.

3.1 Preliminaries

We denote the annotated source domain drawn from

distribution ps as Ds =
{(

xs
j , y

s
j

)}Ns

j=1
∼ ps and the

unannotated target domain drawn from distribution pt as

Dt =
{
xt
j

}Nt

j=1
∼ pt . In OSDA, target label set Ct contains

source label set Cs , i.e., Cs ⊂ Ct . We refer to classes from Cs

as the known classes and classes from Ct\Cs as the unknown

classes. In OSDA, we both have ps �= pt and ps �= p
Cs
t ,

where p
Cs
t represents the distribution of the target known

data. Thus, we encounter both domain shift
(
ps �= pCs

t

)
and

class shift (Cs �= Ct ) problems in OSDA. The goal of OSDA
methods is to classify target known data correctly and reject
target unknown data.

OSDA introduces two challenges: negative transfer and
known/unknown separation. (1) Enforcing to match the
whole distribution of two domains as done in closed-set
scenario will incur negative transfer, as the unknown target
samples will also align mistakenly with source data. To
solve this problem, we need to apply adaptation only to the
shared Cs categories, mitigating the domain shift between
ps and p

Cs
t . (2) Thus, we encounter the second challenge:

known/unknown separation. All target samples should be
recognized from target private categories Ct\Cs (unknown)
or the shared categories Cs (known).

3.2 Overview

To handle the aforementioned two challenges, we propose
a novel OSDA method with a two-stage structure (Fig. 2):
(i) we divide target datasets into known and unknown; (ii)
we apply adaptation to source samples and target samples
predicted as known. If we consider the unknown samples
as anomalies, the first stage can be seen as an anomaly
detection issue. And we can also treat the second stage as a
CSDA issue between target known and source distributions.
Specifically, in the first stage, we propose an explicit
module of deconfounding domain gaps (DDP), which
transfers image styles and contexts from the target domain
to the source domain, eliminating the confounding effect
caused by domain gaps. In addition, we propose a module
of ensembling multiple transformations (EMT) to calibrate
the model predictions. Thus, we can obtain more reliable
normality scores based on the calibrated predictions. In the
second stage, on the one hand, we leverage both the self-
ensembling method [10] and the proposed DDP to reduce
the domain discrepancy between the source data and target
known data. On the other hand, we train the network to
classify target known samples and reject target unknown
samples by minimizing the classification loss on source data
and unknown target data.

3.3 Deconfounding Domain Gaps (DDP)

Recent domain generalization works observe that image
styles and contexts are closely related to visual domains [37,
38]. Inspired by this observation, we propose an explicit
module of deconfounding domain gaps (DDP) that transfers
image styles and contexts from the target domain to the
source domain. It enables the model to recognize a class as

Open-set domain adaptation by deconfounding domain gaps 7865

1 3



known (or unknown) because of the class semantics rather
than the confusion caused by spurious styles or contexts.
Following the common practice [39, 40], we use the feature
statistics that preserved at the lower layers of the CNN as
domain-related representation (i.e., styles and contexts) and
their spatial configuration as semantic representation.

For an input sample x, we first obtain its feature maps z ∈
R

C×H×W from the feature encoder, where C indicates the
number of channels, H and W represent spatial dimensions.
Then we compute the channel-wise mean and standard
deviation μ(z), σ (z) ∈ R

C as style/context representation:

μ(z) = 1

HW

H∑
h=1

W∑
w=1

zhw, (1)

σ(z) =
√√√√ 1

HW

H∑
h=1

W∑
w=1

(zhw − μ(z))2 + ε. (2)

Given intermediate feature maps zs, zt ∈ R
C×H×W

corresponding to a source sample xs and a target sample xt ,
we replace the style/context of xs with the style/context of
xt through adaptive instance normalization (AdaIN) [39]:

DDP
(
zs, zt

) = σ(zt ) ·
(

zs − μ (zs)

σ (zs)

)
+ μ(zt ). (3)

After training, the learned model can reject unknown
samples only based on the semantic content without the
influence of the confounder (i.e., the domain gaps).

3.4 EnsemblingMultiple Transformations (EMT)

Previous methods usually utilize confidence (i.e., the
largest probability of all classes) [7, 8] and uncertainty
(i.e., entropy) [28, 29] as the normality score to separate
known (normal) and unknown (anomalous) samples,
with an assumption that known samples have high
confidence and low uncertainty, and vice versa. However,
the confidence and the uncertainty used before are based on
uncalibrated prediction, meaning they cannot represent the
real confidence and uncertainty of the sample. Therefore,
all the previous normality scores are not reliable and thus
unable to separate known and unknown samples accurately.

To obtain more reliable normality score for separation,
we propose a module of ensembling multiple transforma-
tions (EMT), which ensembles predictions from multiple
transformations of each target sample to calibrate the con-
fidence and the entropy. Specifically, given a target image
xt , we apply random transformations (i.e., random crop
and horizontal flip) to it to obtain m augmented samples

{
x̃t
i

}m

i=1. ŷt
i = C1(F (x̃t

i )), (i = 1, ..., m) is the corre-
sponding prediction of each augmented sample x̃t

i , where F

and C1 are the feature encoder and the semantic network.
We compute the confidence wconf and the entropy went as
follows:

wconf
(
ŷt
i

∣∣m
i=1

) = 1

m

m∑
i=1

max
(
ŷt
i

)
, (4)

went
(
ŷt
i

∣∣m
i=1

) = 1

m

m∑
i=1

⎛
⎝

|Cs |∑
k=1

−ŷt
ik log

(
ŷt
ik

)
⎞
⎠ , (5)

where ŷt
ik indicates the probability of k-th class and max

get the maximum entry in ŷt
i . We unify the wconf and went

within [0, 1] by the minmax normalization. The formulation
of the normality score is:

N
(
xt

) = max {wconf, 1 − went} . (6)

We maximize over these two terms to obtain the most
reliable measurement.

3.5 Training procedure

Stage I: known/unknown separation. To separate the
known and unknown samples of Dt , a CNN is trained on
the source samples with transferred styles and contexts. To
boost the discriminability of the model and facilitate the
following known/unknown separation, we also exploit the
label smoothing (LS) as it pushes samples to distribute in
tight evenly separated clusters [41]. The network consists
of a feature encoder F and a semantic network C1. We
train network by minimizing the following cross-entropy
objective:

Lcls = −E(xs ,ys )∈Ds ,xt ∈Dt

[
yls logC1

(
DDP

(
F(xs), F (xt )

))]
, (7)

where yls = (1−α)ys +α/|Cs | indicates the smoothed label
and α represents the smoothing parameter. After training,
we compute the normality score for each target sample using
F and C1 as (6). Known samples have large values of N ,
and vice versa. The target dataset can be divided into an
unknown target dataset Dunk

t and a known target dataset
Dknw

t using the normality score. We use the average of the
normality score over all target samples N = 1

Nt

∑Nt

j=1Nj

as the threshold, without the need to introduce any further
parameter:
{

xt ∈ Dknw
t if N

(
xt

)
> N

xt ∈ Dunk
t if N

(
xt

)
< N .

(8)

The detailed process about the computation of N and the
generation of Dknw

t and Dunk
t is described in Algorithm 1.
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Stage II: domain adaptation. The problem is simplified
to a CSDA problem after the target unknown data have
been filtered out. Without the distraction of Dunk

t , we can
exploit Dknw

t to decrease the domain discrepancy directly.
In addition, Dunk

t can be used to train the classifier to
recognize the unknown samples. The network has a similar
architecture to that of Stage I, consisting of a feature

extractor F and a semantic network C2. The semantic
network C2 is the same as C1 except for the last layer: the
output dimension of C1 is |Cs |, while the output dimension
of C2 is (|Cs | + 1) because of the additional unknown
class. We utilize the self-ensembling method [10] to close
the domain gap. Two networks with the same architecture
are used: a student network f (x) = C2(F (x)), and a
teacher network g(x) with its weights being automatically
set as an exponential moving average (EMA) of weights
of the student network. The student network is trained
to minimize the classification loss on source and target
unknown samples, while maintaining consistent predictions
with the teacher network for target known samples. The loss
function of consistency can be formulated as:

Lcon = Ext∈Dknw
t

[(
f

(
xt

) − g
(
xt

))2] . (9)

The classification losses for samples from source and target
unknown datasets are:

Ls
cls = −E(xs ,ys )∈Ds ,xt ∈Dknw

t

[
ys logC2

(
DDP

(
F

(
xs

)
, F

(
xt

)))]
, (10)

Lunk
cls = −E(xt ,yt )∈Dunk

t

[
yt log f

(
xt

)]
. (11)

It is worth noting that we also exploit the proposed DDP to
transfer styles and contexts from the known target datasets
to the source datasets, aiming to further deconfound domain
gaps.We train the network to minimize the following overall
objective:

L = (Ls
cls + Lunk

cls ) + λLcon, (12)

where λ is the weight that trades off between classification
loss and consistency loss. Once the training is complete, we
predict the labels for all target samples using F and C2.

4 Experiments

In this section, we first introduce the experimental settings
including datasets, compared approaches, evaluation met-
rics, and implementation details. Then, we present classifi-
cation results on two standard datasets. Finally, we conduct
further analysis to verify the effectiveness of the proposed
method.

4.1 Experimental settings

Datasets. Office-31 [42] contains images within 31 classes
collected from three visually different domains: Webcam
(W) with 795 low-quality images obtained by web camera,
DSLR (D) with 534 high-quality images taken by digital
SLR camera, and Amazon (A) with 2820 images obtained
from amazon.com. Following the protocol in [7], we set
the first 10 categories (1-10) as known and the last 11
categories (21-31) as unknown (in alphabetic order). We
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show some example images from Office-31 dataset in
Fig. 3a. Office-Home [43] contains 15,500 images within
65 classes collected from four different domains, Artistic
images (Ar), Product images (Pr), Clip-Art images (Cl),
and Real-World images (Rw). Following the protocol in [8],
we set the first 25 categories (1-25) in alphabetical order
as known classes and the remaining 40 categories (26-65)
as unknown. Office-Home is much more challenging than
Office-31 due to the numerous categories and the large
domain discrepancy. Some example images from Office-
Home dataset are shown in Fig. 3b.

Compared Approaches. We compare our method with:
(1) Source Only model: ResNet-50 [1]; (2) CSDA method:
DANN [14]; (3) OSDA methods: STA [8], OSBP [7], and
ROS [28]; (4) UniDA method: UAN [29]. For ResNet-50
and DANN, we leverage a confidence threshold to separate
known and unknown samples. All the results reported are
the average over three random runs.

Evaluation Metrics. OS∗ and UNK are two usual
metrics used to evaluate OSDA. OS∗ denotes the average
accuracy on known classes, and UNK denotes the accuracy
on the unknown class. They can be combined in OS =

|Cs ||Cs |+1 × OS∗ + 1
|Cs |+1 × UNK to evaluate the overall

performance. However, OS is not an appropriate metric as
it assumes the accuracy of each known class has the same
importance as the whole “unknown” class. Considering the
trade-off between the accuracy of known and unknown
classes is important in evaluating OSDA methods, we
exploit a metric: HOS = 2OS∗×UNK

OS∗+UNK
[28], which is the

harmonic mean of OS∗ and UNK . Unlike OS, HOS gives

a high score only if the method achieves high performance
both for known and unknown data.

Implementation Details. We utilize ResNet-50 [1]
pretrained on ImageNet [44] as the backbone network. The
feature encoder F consists of the first few blocks of the
ResNet architecture (the second residual block and all layers
before it), while the remaining part combines the semantic
network C1. Our proposed DDP module is inserted between
these two networks. We use the same hyperparameters for
each dataset. Following DANN [14], we adjust the learning
rate with lrp = lr0

(1+ωp)φ
, where p changes from 0 to 1

during the training process, lr0 equal to 0.01 and 0.003
for Stage I and Stage II respectively, ω = 10, and φ =
0.75. The batch size is 32 for both two stages. For all the
pretrained layers, the learning rate is 10 times lower than the
layers learned from scratch. We adopt SGD to optimize the
network, setting the momentum as 0.9 and the weight decay
as 0.0005. In Stage I, we set the smoothing parameter to 0.1
and the number of multi-transformations (m) to 5. In Stage
II, the trade-off parameter for consistency loss is λ = 3. We
use the network learned in Stage I as the start for Stage II.
The learning rate of the new unknown class is set to two
times of the known classes.

4.2 Classification results

To evaluate the performance of the OSDA methods, we
focus on the HOS as it can balance the importance between
the accuracy of known (OS*) and unknown classes (UNK),
as discussed in Section 4.1. For a fair comparison, all results

Fig. 3 Example images in Office-31 and Office-Home
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of the compared methods are either taken from [28] or
obtained by running the code of [45].

Table 1 reports the classification results of Office-31. Our
method outperforms all comparison approaches on most
tasks exceptW → D. Specifically, our method significantly
outperforms OSBP by 3.7%. Our method also boosts the
HOS of state-of-the-art method ROS by 1.5%. In addition,
we observe that DANN, STA, and UAN perform even
worse than the ResNet-50 backbone since they suffer from
negative transfer caused by the mismatching between the
source samples and target unknown samples. The failure of
these methods are mainly due to their poor ability to target
known and unknown separation.

We also compare our method with previous works on
the challenging Office-Home dataset. From Table 2, we can
find that our method outperforms all compared methods on
a total of 9 out of 12 transfer scenarios, demonstrating that
our method works well with large domain gaps. On average,
our method achieves the highest performance, 1.8% higher
than the second-best method ROS. In addition, Our method
outperforms STA and OSBP by a large margin, 6.9% and
3.3% respectively. The encouraging results indicate that our
method is very effective for the OSDA setting.

From Tables 1 and 2, we can get one key observation
that the advantage of our method is mainly due to its
capability in distinguishing known and unknown samples.
We can observe that while the average OS* of the compared
methods is close to ours, the UNK of our method is much
higher, e.g., 2.8% and 3.4% higher than ROS on Office-31
and Office-Home respectively. This observation proves that
our method is very significant for separating target known
and unknown samples.

4.3 Analysis

Ablation Study. To investigate how our method benefits
known/unknown separation, we compare the performance
of our Stage I with Stage I of ROS and STA. Both ROS
and STA include two stages: they use a multi-rotation
classifier and a multi-binary classifier to distinguish known
and unknown target samples, respectively. We compute
the area under receiver operating characteristic curve
(AUC-ROC) over the normality scores N on Office-31
to evaluate the performance. As shown in Table 3, the
AUC-ROC of our method (93.0) is higher than that of the
multi-rotation used by ROS (91.5) and the multi-binary
used by STA (79.9). Table 3 also reports the performance
of Stage I when alternatively removing the module of
deconfounding domain gaps (No DDP), the module of
ensembling multiple transformations (No EMT), and the
label smoothing (No LS). The performance of all above
cases drops significantly compared to our complete method,
verifying each component’s importance: (1) the DDP
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Table 3 Ablation analysis. The best method is emphasized in bold

STAGE I (AUC-ROC) A → W A → D D → W W → D D → A W → A Avg.

Ours 91.2 91.1 99.6 99.7 89.9 86.2 93.0

Multi-Rotation (from ROS [28]) 90.1 88.1 99.4 99.9 87.5 83.8 91.5

Multi-Binary (from STA [8]) 83.2 84.1 86.8 72.0 75.7 78.3 79.9

Ours - No DDP 84.6 83.9 90.8 80.4 81.3 83.5 84.1

Ours - No EMT 88.4 87.9 99.0 99.6 84.7 83.9 90.6

Ours - No LS 89.8 89.1 98.4 99.7 87.5 86.9 91.9

STAGE II (HOS) A → W A → D D → W W → D D → A W → A Avg.

Ours 83.9 84.5 98.0 99.4 79.5 78.9 87.4

Ours Stage I - GRL [14] Stage II 84.6 84.0 98.4 99.3 79.1 76.4 87.0

Ours Stage I - No DDP in Stage II 83.3 83.9 98.2 99.4 78.6 77.8 86.9

module can shield the distractions caused by confounding
styles and contexts from source domain during separation;
(2) the EMT module can produce reliable normality scores
by the calibration from the ensemble; (3) label smoothing is
helpful to suppress the overconfident predictions. To verify
the efficiency of the self-ensembling method in OSDA, we
also compare our method with the wildly adopted GRL [14]
based on our Stage I. Table 3 shows that self-ensembling
outperforms GRL by 0.4% in average. Furthermore, we
also evaluate the role of the DDP in Stage II. As shown
in Table 3, our full method outperforms the case when
removing the DDP module (No DDP in stage II), which
verifies the proposed DDP is also helpful for domain
adaptation.

Where to apply DDP? We conduct experiments on
Office-31 using ResNet-50 to examine the effect of the
position where DDP is applied. Given that the ResNet
architecture consists of four residual blocks, we apply DDP
to different layers to train different models. For notation,
block1means DDP is applied after the first residual block,
block2 means DDP is applied after the second residual
block, and so on. The results are shown in Fig. 4. We
have the following observations: (1) we can get the best
performance when DDP is applied after block2; (2) DDP
is less helpful when applied after too low-level layers (i.e.,
block1); (3) The performance drops significantly when
applying DDP after too high-level layers (i.e., block4),
even worse than when we do not use DDP in Stage-I and
Stage-II. This makes sense because block4 is the closest
to the classification layer and is inclined to capture semantic
(i.e., label-related) information rather than style/context. As
a result, transferring the statistics at block4 will introduce
unwanted semantic information.

Feature Visualization. To intuitively showcase the
effectiveness of our method, we visualize features of target
samples from the ResNet-50, ROS [28] and our method
on the A → D task by t-SNE [46]. The features
obtained by ResNet-50 can be served as the initial state

without adaptation. As shown in Fig. 5a, the features of
unknown classes and several known classes mix together,
demonstrating that ResNet-50 cannot separate known and
unknown classes. In Fig. 5c, our method is capable of
separating known and unknown features and discriminating
different known classes. Compared with our method, the
known and unknown features obtained from ROS (Fig. 5b)
appear more confused.

Distribution Discrepancy. As discussed in [47], dis-
tribution discrepancy can be measured by the A-distance.
It is defined as dA = 2(1 − 2ε), where ε indicates the
generalization error of a domain classifier. A larger distri-
bution discrepancy corresponds with a larger dA and vice
versa. We compute dA for both source-known and known-
unknown: source-known represents the distribution discrep-
ancy between source samples and target known samples,
and known-unknown represents the distribution discrepancy
between target known samples and target unknown samples.
We compare our method with ResNet-50 and ROS using
a kernel SVM as the classifier on two tasks A → W and

Fig. 4 HOS on Office-31 with applying DDP to different layers
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Fig. 5 Visualization of obtained target features for A → D using t-SNE. Known and unknown samples are denoted as red and blue points
respectively

Fig. 6 The value ofA-distance for source-known (smaller is better) and unknown-known (larger is better)

Fig. 7 Accuracy (%) over the four different openness levels
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Fig. 8 Hyper-parameters sensitivity analysis

D → W . From the Fig. 6, we can observe that dA for
source-known using our method is much smaller than the
ResNet-50 (source-only), while that for known-unknown is
larger than ResNet-50. The above observations demonstrate
that our method can align the source and target known data
while filtering out target unknown samples.

Sensitivity to Varying Openness. The openness is
defined as O = 1 − |Cs ||Ct | , and the value of openness in
the standard OSDA setting is around 0.5 which means the
number of the known and unknown target classes are close.
For example, the openness of Office-31 is O = 1 − 10

21 =
0.52 and that of Office-Home is O = 1 − 25

65 = 0.62. In
practical applications, the number of unknown target classes
may exceed the number of known classes by a large margin,
with openness approaching 1. To testify the robustness
of our method, we conduct experiments on Office-Home
with the following different openness levels: O = 0.38
(40 known classes), O = 0.62 (25 known classes), O =
0.85 (10 known classes), O = 0.92 (5 known classes).
As shown in Fig. 7, the performance of OSBP and STA
drops a lot with larger O, as they are unable to reject
the unknown instances well. In contrast, our method and
ROS are resistant to the change in openness. In addition,
our method outperforms ROS consistently, owing to its
advanced ability of separating between known and unknown
samples.

Sensitivity to Hyper-parameters. We investigate the
sensitivity of two hyper-parameters: the number of transfor-
mations m (in (4) and (5)) and the trade-off weight λ (in
(12)). The experiments are performed on two tasks A → D

and D → A with ResNet-50 as the backbone. We plot
the relationship of the AUC − ROC and the value of m

in Fig. 8a, and the relationship of the HOS and the value
of λ in Fig. 8b. Specifically, m = 0 denotes the ablation

where EMT is not used. We can observe that our method
is not sensitive to both hyper-parameters. We underline that
the same hyper-parameters are used for all 18 domain pairs
demonstrating that the choice of the hyperparameters’ value
is robust across datasets.

5 Conclusions

In this paper, we propose a novel OSDA method that can
conduct effective known and unknown separation. Specif-
ically, we propose an explicit module of deconfounding
domain gaps (DDP) that enables the model to recognize a
class as known (or unknown) because of the class seman-
tics rather than the confusion caused by spurious styles or
contexts. In addition, to obtain the reliable normality scores,
we also propose a module of ensembling multiple transfor-
mations (EMT) to calibrate the model output. The accurate
known/unknown separation results boost the overall perfor-
mance of the OSDA model. Experimental results on two
standard datasets show that the proposed method outper-
forms the state-of-the-art OSDA methods, especially with a
large margin on recognizing unknown samples.
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