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Abstract
The Graph Bandwidth Problem is a well-known and important graph layout problem with a large number of applications
in scientific and engineering fields. The problem is proved to be NP-complete, and so far, a variety of methods have been
proposed for its solution. Among these methods, the most popular ones include search methods, in particular informed
search methods. An informed search method normally requires a metric to guide the search toward high-quality solutions.
The most frequently used metric in previous studies on the Graph Bandwidth Problem is simply the bandwidth itself, i.e.,
the most obvious quality measure. In this paper, it is shown that this metric is not always appropriate for comparing the
quality of solutions produced by various search methods, and its use may result in a significant reduction in the performance
of such methods. In order to address this issue, a new metric is presented, and its effectiveness is verified by a considerable
number of numerical experiments on benchmark problems.

Keywords Combinatorial optimisation · Graph layout problems · Bandwidth problem · Search methodologies ·
Informed search methods

1 Introduction

Combinatorial optimisation is a field that aims to address
discrete optimisation problems with the use of combinato-
rial techniques. In discrete optimisation problems, the main
purpose is to determine an optimal solution from a finite
set of possible solutions. The Travelling Salesman Problem
(TSP) is a classical example of problems in combinato-
rial optimisation. Such problems are generally very hard to
solve [1].

Graph layout problems are a category of combinatorial
optimisation problems. In these problems, the goal is to
discover a layout or a linear arrangement of a given graph
in such a way as to optimise a specific objective function. A
layout is generated by labeling the vertices of a graph with
distinct integers (i.e., from the set {1, 2, . . ., n}) [2].

Minimum Linear Arrangement, Bandwidth, Cutwidth,
Sum Cut, Modified Cut, Envelope, Vertex Separation, Vertex
Bisection and Edge Bisection problems are considered
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the most important graph layout problems. Most of
these problems are known to be NP-complete, meaning
that finding optimal solutions cannot be guaranteed in
polynomial time. However, because feasible solutions with
near-optimal cost are usually sufficient, approximation
algorithms and heuristics can also be employed for solving
them [2, 3].

The Graph Bandwidth Problem (GBP) is a well-known
and important graph layout problem, that was originally
proposed to speed up a number of computations on sparse
matrices [4]. The GBP is to label the vertices of a graph with
distinct integers such that the maximum absolute difference
between the labels of adjacent vertices is reduced. The
problem can also be defined in the context of a symmetric
matrix. In that case, the rows and columns of the matrix
are reordered such that its non-zero elements are as close as
possible to the main diagonal [4].

The GBP has a large number of applications in
scientific and engineering fields, e.g., numerical analysis,
large linear systems, circuit design, large scale power
transmission systems, chemical kinetics, VLSI design,
numerical geophysics, data storage, saving large hypertext
media, finite element methods, network survivability,
industrial electromagnetics and topology compression of
road networks [5–8].
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Minimising the bandwidth size is an NP-complete
problem [9]. The GBP is also NP-complete even for trees
having a maximum degree of three, and finding the optimal
ordering in polynomial time is possible only in very special
cases [10].

Highly effective methods for addressing the GBP are
mainly informed search methodologies (i.e., Heuristics and
Metaheuristics) in which a metric is required to guide the
search towards better areas of the search space. The most
frequently used metric in previous studies is simply the
bandwidth itself, which is in fact the most obvious quality
measure (See Section 2.3).

In this study, we show that this metric is not always
suitable for comparing the quality of solutions produced
by different informed search methods, and its utilisation
may cause a remarkable reduction in the performance and
effectiveness of such methods. In order to deal with this
issue, a new metric is proposed, and its effectiveness is
tested and verified by a large set of numerical experiments
on standard benchmark problems from the University of
Florida Sparse Matrix Collection [11]. The results are very
promising and indicate that further progress on search-
based GBP solvers can be expected from incorporating the
proposed new metric into these solvers.

This paper is organised as follows. In Section 2, some
background information about the GBP, search methods and
relevant existing algorithms is provided. In Section 3, the
motivation for the present study is described. In Section 4,
the new metric is defined, and its application is discussed.
In Section 5, the numerical experiments carried out to
assess the effectiveness of the proposed metric are presented
and analysed, followed by a discussion. In Section 6, the
conclusions of this research are summarised.

2 Background

2.1 Problem definition

The GBP can be formally defined as follows. Let G (V, E)

be a graph with vertex set V and edge set E. Further, let
|V | = n. A labeling f of G assigns the integers {1, . . ., n}
to the vertices of G. Let f (v) be the label of vertex v. Note
that each vertex of G has a different label.

The bandwidth of a vertex v ∈ V , Bf (v), is the
maximum of the differences between f (v) and the labels of
its adjacent vertices with respect to the following conditions:

Bf (v) =
{

max (f (v) − f (u)) if {∃u : (u ∈ N (v)) ∧ (f (u) < f (v))} ,

0 otherwise .

(1)

where N (v) is the set of vertices adjacent to v. Considering
(1), the bandwidth of G with respect to f can be expressed
as:

Bf (G) = max
{
Bf (v) : v ∈ V

}
. (2)

The GBP, therefore, consists of finding a labeling f

that minimises Bf (G). Note that a labeling is simply a
renumbering of the vertices of G.

The notion of profile is a key concept regarding the
bandwidth. Given a graph G (V, E), its profile (or of the
corresponding sparse matrix) is:

Pf (G) =
n∑

v=1

Bf (v) . (3)

Figure 1 shows an undirected graph having 6 vertices
and 7 edges. The bandwidth and profile of this graph are
calculated as follows:

2.2 Searchmethods

The solution to a large number of problems in science
and engineering can be obtained by discovering a series of
related actions leading to a particular goal. The state of a
problem is altered by applying each action, and the main
aim is obviously finding a series of states and actions by
which reaching a goal state from an initial state is possible.
The search space can be defined as the set of possible states
with their associated operators (actions). Search can then be
defined as systematically examining problem states with the
aim of finding a path from an initial state to a goal state.
Therefore, an algorithm with the ability of performing such
a search is called search method [12].

There are generally two types of search methods, namely
uninformed search methods and informed search methods.
Breadth-First Search (BFS) and Depth-First Search (DFS)
are examples of uninformed search methods. In these
methods, the information provided in the problem definition
is the only information that is available and can be
used by the algorithm. Tabu search (TS) and Simulated
Annealing (SA) are examples of informed search methods.
In these methods, domain-specific information is available
that can be used by the algorithm to decide which path is
more promising for continuing the search. Informed search
methods are much more effective compared to uninformed
search methods and employed extensively for solving hard
problems. Informed search methods use a heuristic function
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Fig. 1 An undirected graph

(also called a fitness function) for evaluating the fitness of
a solution (i.e., the distance to a goal state). The heuristic
function is responsible for guiding the search towards
desirable areas of the search space. This is accomplished by
returning a metric which indicates how effective a solution
is. It is therefore clear that the quality of the metric returned
by the heuristic function is a key factor in the performance
of informed search methods [12].

Heuristics are informed search methods. They are, in
fact, intelligent search strategies, which are employed
for addressing problems in different fields. One of the
main characteristics of heuristics is that they are problem-
specific. This means that heuristics are normally designed
for the solution of a particular problem. Metaheuristics
are also informed search methods. They are actually
higher-level heuristics. One of the key differences between
heuristics and metaheuristics is that metaheuristics are
problem-independent, meaning that they can solve a wide
range of problems [13].

2.3 Relevant existing algorithms

The first exact method for the GBP was proposed by
Harary [14]. Gurari and Sudborough [15] and Corso and
Manzini [16] also proposed three other exact methods for
solving the problem. It should be noted that these methods
have only been applied to relatively small-sized matrices,
i.e., up to 100 × 100. Cygan and Pilipczuk [17] proposed
an exact exponential-time algorithm for the GBP. Their
algorithm consists of two phases, including generating
segment assignments and depth-first search.

Cuthill and McKee [18] introduced one of the most
well-known graph theoretic-based search methods for the
reduction of the bandwidth of sparse symmetric matrices.
Their algorithm (i.e., the CM) is heuristic in nature, and
still widely used. In this algorithm, the vertices of a graph
associated with a symmetric matrix are divided into classes
with respect to their distances from a root vertex. This
structure is called a level structure. The best candidates for
the root vertex in the level structure are those vertices with

the minimum degree. If the vertices in the level structure
are visited in increasing-distance order, a permutation is
generated. The permutation is then applied to the matrix or
its associated graph with the aim of reducing the bandwidth.
It was observed that renumbering the CM ordering in a
reverse way (RCM) could produce even better solutions
compared to the original ordering [19].

Gibbs et al. [20] developed another well-known graph-
theoretic heuristic search method (i.e., the GPS). This
algorithm also uses the concept of the level structure as
described earlier. An important feature of the algorithm is
that it incorporates a very effective heuristic for detecting
the endpoints of a pseudo-diameter to be employed as a
suitable starting vertex. The GPS algorithm can generally
outperform the CM algorithm in terms of effectiveness [21].
The GPS has been very successful in reducing the
bandwidth of finite-element stiffness matrices that typically
arise from problems in structural engineering. Wang and
Shi [22] proposed an improved version of the GPS.
This algorithm uses a heuristic parameter for detecting
appropriate pseudo-peripheral vertices.

Gonzaga de Oliveira et al. [23] presented a heuristic
search method for addressing the problem. Their algorithm
employs both the Wonder bandwidth reduction algorithm
and George-Liu algorithm. The George-Liu algorithm is
used to provide a starting vertex. Gonzaga de Oliveira
et al. [24] also proposed an improved version of the George-
Liu algorithm for obtaining pseudo-peripheral vertices.

Metaheuristics, which are higher-level informed search
methods, have been comprehensively examined to see
whether they can be effective alternatives for solving the
GBP. Marti et al. [25] employed a Tabu Search method for
this purpose. A Genetic Algorithm combined with a Hill-
climbing algorithm was used by Lim et al. [26] in order
to solve this problem. Another genetic algorithm-based
approach was given by Pop et al. [27] as well. A greedy
randomized adaptive search method combined with a path
relinking strategy (GRASP-PR) for addressing the GBP was
proposed by Piñana et al. [28]. Lim et al. also presented an
Ant Colony Optimization algorithm combined with a Hill-
climbing algorithm [29] and a Particle Swarm Optimization
algorithm combined with a Hill-climbing algorithm [30].

Czibula et al. [31] presented a Reinforcement Learning
approach for solving the matrix bandwidth minimisation
problem. They also applied genetic algorithms and ant-
based systems to the problem [32]. Koohestani and Poli
introduced two Genetic Programming systems in which
genetic programming was used as a meta-heuristic [33]
and as a hyper-heuristic [34]. Pop and Matei [35]
also introduced an improved heuristic based on genetic
programming.

A dual representation simulated annealing (DRSA)
for the bandwidth minimisation problem was developed
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by Torres-Jimenez et al. [36]. In addition, in Chagas
and Gonzaga de Oliveira [37] and Gonzaga de Oliveira
et al. [38], metaheuristic-based approaches and low-cost
heuristics for matrix bandwidth reduction were reviewed
and evaluated, respectively. Mafteiu-Scai et al. [39]
presented two hybrid methods based on Brain Storm
Optimization, which is a swarm intelligence algorithm, for
reducing the bandwidth.

Gonzaga de Oliveira and Silva [40] proposed a hyper-
heuristic approach based on ant colony optimization
(ACHH) for reducing the bandwidth of symmetric and non-
symmetric matrices. The ACHH evolves graph-theoretic
heuristic search methods for specific application areas.
These heuristics are used to achieve low execution times
for addressing the bandwidth reduction of large sparse
matrices. The ACHH is provided with the main structure
of the RCM-GL, KP-band heuristics, and a variation of
King’s algorithm. The algorithm is then asked to evolve low-
cost bandwidth reduction heuristics. Finally, the resulting
heuristics are evaluated and compared against the most
promising low-cost heuristics available in the literature.

Gonzaga de Oliveira and Silva [41] also proposed
another hyper-heuristic approach based on ant colony
optimization. The structure of this hyper-heuristic is similar
to their work described above. This ACHH evolves low-
cost heuristics for bandwidth reduction with the aim of
accelerating the convergence of the zero-fill incomplete
Cholesky-preconditioned conjugate gradient method (ICCG
method). In [42], a modified version of the ACHH is
introduced. The modified version is combined with a Hill-
Climbing algorithm and uses the components of the RCM,
KP-band, RBFS-GL, and RLK heuristics. The heuristics
generated by this hyper-heuristic are capable of producing
better solutions than those delivered by low-cost bandwidth
reduction heuristics.

The most recent metaheuristic approach to the GBP is
probably that of Silva et al. [43] who presented a Biased
Random-Key Genetic Algorithm (BRKGA). In BRKGA,
each gene in a chromosome is a random real number (i.e., a
key) uniformly generated from the interval [0,1]. During the
selection process, one parent is always selected at random
from elite individuals in the current population, whereas the
other is a non-elite individual (i.e., the selection is biased).
In crossover operation, a parameterized uniform crossover
scheme is first applied to a chromosome. A decoder is then
used to map the altered chromosome into a feasible solution
(i.e., a permutation).

3Motivation

As mentioned in the previous section, informed search
methods require a metric by which the search is guided

Fig. 2 Labeling 1, Bf (G) = 2

towards high-quality solutions. In the case of heuristics and
metaheuristics applied to the GBP, the most obvious metric,
normally used in previous studies, is the bandwidth (See
Section 2.3).

However, in spite of the fact that the bandwidth value
is the quantity that should be minimised, it cannot be
considered an ideal metric for a heuristic search. The most
important reason for this issue is that if two or more
candidate solutions have the same bandwidth (i.e., which
is very likely), this does not necessarily mean that their
qualities are the same. They may actually be quite different
in terms of being closer to more promising solutions.

For instance, in Figs. 3 and 4, at first sight, it might seem
that labeling 2 and labeling 3 have no priority over each
other considering their bandwidth measures, which are both

Fig. 3 Labeling 2, Bf (G) = 4
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equal to 4. However, there is no doubt that labeling 2 is
much closer to an ideal solution (i.e., labeling 1 in Fig. 2)
than labeling 3. In fact, by a simple exchange of vertices
labeled by 3 and 6, we can easily obtain labeling 1 from
labeling 2 (Figs. 3 and 4).

This clearly shows that the bandwidth is not always
a suitable metric for comparing the quality of solutions
produced by different search methods. If the comparison of
the solution quality is not done properly, it is not possible
to guide the search towards promising solutions, which in
turn results in a remarkable reduction in the performance
of such methods. In order to deal with this issue, in this
study, a new metric is proposed with the aim of increasing
the effectiveness of heuristic search methods for the GBP,
as described in the next section.

4 Proposed newmetric

Considering the issues mentioned in Section 3, the
development of a new metric seems to be necessary for
addressing the GBP using informed search methods. This
metric should be more informative and able to clearly
differentiate between the quality of candidate solutions in
comparison with the standard metric. In order to reach this
aim, a new metric is proposed in this study for the GBP,
called Modified Profile (MP ) as follows:

MPf (G) =
n∑

v=1

Bf (v)k . (4)

The reason behind the name chosen is that there is
a relation between the profile and this new metric. For

Fig. 4 Labeling 3, Bf (G) = 4

calculating the MP of a given graph G , the bandwidth of
each vertex is raised to the power of k, where k is a positive
integer, and then all of these terms are summed. Now, if
k is equal to 1, the MP will be exactly the same as the
profile. Figure 5 illustrates the process of determining the
bandwidth, profile and modified profile. The MP has an
interesting property as described below.

If vertex m is a single vertex with maximum bandwidth,
the following relations are valid:

Bf (m) = Bf (G) . (5)

MPf (G)=Bf (1)k+Bf (2)k+. . .+Bf (m)k+. . .+Bf (n)k .

(6)

MPf (G) = Bf (m)k

[(
Bf (1)

Bf (m)

)k

+
(

Bf (2)

Bf (m)

)k

+. . . + 1 + . . . +
(

Bf (n)

Bf (m)

)k
]

. (7)

Fig. 5 Determination of bandwidth, profile and modified profile
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Fig. 6 (a) Flowchart of
GPS-GBP. (b) Flowchart of
GA-GBP

lim
k→∞ MPf (G) = lim

k→∞ Bf (m)k

[(
Bf (1)

Bf (m)

)k

+
(

Bf (2)

Bf (m)

)k

+ . . . + 1 + . . . +
(

Bf (n)

Bf (m)

)k
]

. (8)

Now, for i �= m & i = 1. . .n, we have:

Bf (i)

Bf (m)
< 1 , lim

k→∞

(
Bf (i)

Bf (m)

)k

= 0. (9)

Thus, we can conclude that

lim
k→∞ MPf (G) = Bf (m)k = Bf (G)k . (10)

For a general case in which there is a set of vertices with
maximum bandwidth (take its cardinality as α), the equation
above reads as follows:

lim
k→∞ MPf (G) = αBf (m)k = αBf (G)k . (11)
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MPf (G) =
{

Pf (G) ifk = 1 ,

αBf (G)k ifk → ∞ .
(12)

As it is clear, the limit of MPf (G) as k approaches
infinity is the bandwidth of G raised to the power of k. Also,
if k is equal to 1, then MPf (G) will be the profile of G.
This is interesting because, in fact, the proposed new metric
(i.e., the MP ) appropriately incorporates information about
both the bandwidth and profile at the same time, enabling
us to control the dominance of the bandwidth over the
profile and vice versa by increasing and decreasing the
power k. Therefore, if the aim is to optimize the bandwidth
and profile simultaneously, there is no need to define the
problem as a multi-objective optimization problem, which
is highly desirable and advantageous.

Also, in the case of using the MP as a metric returned by
a fitness function for a heuristic search applied to the GBP,
it is more informative than the bandwidth itself. The reason
is that the MP indicates the quality of solutions and also
encapsulates an indication of how far a particular solution is
from better solutions in the search space.

In Section 3, the problem with the use of the bandwidth
as a fitness measure was shown by an illustrative example.
In this example, if the MP (with k = 2) is used instead,
then for labeling 1 in Fig. 2, MPf (G) = 11; for labeling
2 in Fig. 3, MPf (G) = 22; and for labeling 3 in Fig. 4,
MPf (G) = 42. Here, we see that labeling 1 is still the best
solution as before. In terms of labeling 2 and labeling 3,
we can easily choose labeling 2 (the second best solution)
over labeling 3 with respect to their MP measures, which is
impossible to do by considering their bandwidth measures.
This is very important for heuristic search methods applied
to the GBP because of enabling such methods to more
precisely assess the quality of solutions and choose the most
promising ones, resulting in a considerable increase in their
effectiveness.

5 Numerical experiments

In this section, we describe the experiments performed
on the proposed new metric (i.e., the MP ) for the GBP.
In order to evaluate the effectiveness of the MP , it was
employed within a Genetic Algorithm (GA) [44] and a
Generalized Pattern Search algorithm (GPS) [45] as their
objective functions. These two algorithms are well-known
heuristic search methods, differing in several respects, some
of which are as follows.

The GPS algorithm does not explore the global structure
of the objective function. Therefore, it can be attracted
by a local or global minimum. The GPS algorithm forms
a sequence of iterates, converging to a stationary point

if the objective function is smooth. If the objective
function is discontinuous, the GPS algorithm may fail at
a discontinuity. For the GPS algorithm, the parameters are
generally continuous. However, it is also possible to have
discrete parameters.

The GA starts with a population of candidate solutions
randomly distributed in the search space. This decreases the
possibility of being trapped in a local minimum which is
not global. However, it is impossible to know for certain
about the convergence of the GA even on smooth objective
functions. In fact, during the optimization process, the
population of candidate solutions may collapse to a small
subset of the search space. In such a situation, the GA can
fail to find a minimum.

The reason we used two informed search methods,
each of which belongs to a different class of search
methodologies, was to verify the effectiveness of the
proposed new metric in a more conclusive manner.

Our GA, called GA-GBP, is an implementation of the
standard Genetic Algorithm described in [44], but we used
permutation encoding to represent candidate solutions and
adapt the algorithm to cope with the GBP. In GA-GBP,
we also used the graph representation, introduced in [46],
and the crossover operator, introduced in [47]. Our GPS
algorithm, called GPS-GBP, is an implementation of the
Generalized Pattern Search algorithm presented in [45] that
we adapted it to deal with the GBP. Algorithms 1 and 2
provide a high-level description of these two algorithms,
and Fig. 6 illustrates their flowcharts. For more details on
the implementations, the interested reader is referred to the
references given here.
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In the present study, we performed three sets of
experiments to examine the effect of employing the MP as
an objective function on the performance of the GA-GBP
and GPS-GBP algorithms, as follows:

5.1 Initial testing

In this first stage, we used the Buckyball graph [48] (better
known as a soccer ball, a Buckminster Fuller geodesic
dome, or a 60-atom carbon molecule) as a test problem. This
graph has 60 vertices and 90 edges as shown in Fig. 7.

To compare the proposed new metric (i.e., MPf (G))
with the standard metric (i.e., Bf (G)), they were incorpo-
rated into the GA-GBP and GPS-GBP algorithms as their
objective functions. In terms of the MP , three different val-
ues of the parameter k (i.e., from 1 to 3) were used. For
each of the two algorithms, 30 independent runs were exe-
cuted for each of the four objective functions employed (i.e.,
MPf (G) with k = 1, 2, 3 and Bf (G)), and the bandwidth
and profile were calculated for every run.

The parameters of the runs related to the GA-GBP were
as follows: Number of generations = 1000, Population
size = 100, Crossover rate = 80%, Mutation rate = 10%,
Reproduction rate = 9%, Elitism rate = 1%. Also, the
parameters of the runs related to the GPS-GBP were as

Fig. 7 The Buckyball graph

follows: Mesh size = 1, Expansion factor = 2, Contraction
factor = 0.5, Max iterations = 100 * number of variables.
Tables 1 and 2 show the results obtained for the experiments
mentioned above.

As described in Section 4, if k = 1, then the MP is
the same as the profile. Also, by increasing the value of the
parameter k (up to infinity), the MP gradually approaches
the bandwidth of G raised to the power of k. However, it
should be noted that by increasing the value of k, the term
(or terms) related to a vertex (or vertices) with maximum
bandwidth in (6) grows considerably, which may not be
desirable when the MP is used as a fitness function. The
reason is that this will result in a strong bias towards such
a term (or terms), and the search will mostly focus on
reducing the bandwidth of such a vertex (or vertices) and
ignore other vertices. Therefore, it is important to find an
appropriate value for the power k.

Considering the results of the experiments reported in
Tables 1 and 2, in particular the mean of the bandwidth
values and the best results obtained (marked in bold) by
both algorithms under test, it is clear that the proposed new
metric is superior to the standard metric.

5.2 Advanced testing 1

This stage deepens the former by employing the HB/can,
HB/dwt and HB/bcspwr sets from University of Florida
Sparse Matrix Collection (available at: https://www.cise.ufl.
edu/research/sparse/matrices/HB/index.html) as test prob-
lems on which to compare the MPf (G) against the Bf (G).

The HB/can set consists of 18 sparse matrices arising
from finite-element applications with sizes ranging from
24 × 24 to 1072 × 1072 (the complete set was used). The
HB/dwt set consists of 30 sparse matrices from NASTRAN
(i.e., a finite element analysis program) users working in
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Table 1 A comparison of MPf (G) with Bf (G), both incorporated into the GA-GBP as its objective function

GA-GBP

SM NM1 NM2 NM3

Iteration Bandwidth Profile Bandwidth Profile Bandwidth Profile Bandwidth Profile

1 30 777 42 453 13 452 11 455

2 36 881 27 438 11 445 10 449

3 42 949 43 441 12 443 11 455

4 31 824 42 453 13 451 11 465

5 29 692 39 476 14 445 11 460

6 42 1002 32 441 11 445 10 449

7 46 1009 38 438 13 453 11 448

8 37 929 35 434 12 462 12 460

9 36 825 37 457 12 455 11 463

10 29 705 30 438 12 454 10 457

11 35 858 48 437 12 461 11 464

12 33 946 45 504 12 445 11 456

13 35 792 48 444 14 447 11 462

14 46 1033 31 438 12 450 11 466

15 43 964 28 435 12 450 10 451

16 35 893 40 470 13 447 11 458

17 40 979 36 445 11 447 11 467

18 34 851 48 444 14 467 11 461

19 29 769 35 496 13 455 11 458

20 40 961 39 438 12 461 12 456

21 35 792 31 433 12 454 11 451

22 36 858 35 442 12 448 12 455

23 38 1012 47 459 11 444 11 460

24 40 966 27 438 11 444 11 450

25 37 904 48 457 13 444 11 472

26 32 915 29 434 12 448 11 458

27 36 867 55 446 12 450 12 467

28 39 957 48 442 13 455 11 452

29 34 844 34 440 12 448 12 472

30 47 1119 31 446 12 448 11 453

Mean 36.73 895.77 38.26 448.57 12.27 450.60 11.03 458.33

Best 29 27 11 10

SM: Standard Metric, NM: New Metric

SM: Bf (G).

NM1: MPf (G) (with k = 1).

NM2: MPf (G) (with k = 2).

NM3: MPf (G) (with k = 3).

The best results are shown in bold

U.S. Navy, Army, Air Force and NASA laboratories. We
employed two largest sparse matrices from this set (i.e.,
dwt 1242 and dwt 2680 with sizes 1242×1242 and 2680×
2680 respectively). The HB/bcspwr set which includes

matrices related to power networks, consists of 10 sparse
matrices. We employed five largest sparse matrices from
this set (i.e., bcspwr06, bcspwr07, bcspwr08, bcspwr09 and
bcspwr10 with sizes 1454×1454, 1612×1612, 1624×1624,
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Table 2 A comparison of MPf (G) with Bf (G), both incorporated into the GPS-GBP as its objective function

GPS-GBP

SM NM1 NM2 NM3

Iteration Bandwidth Profile Bandwidth Profile Bandwidth Profile Bandwidth Profile

1 38 982 37 453 14 484 12 457

2 27 712 35 496 14 470 15 556

3 32 875 27 468 18 455 13 508

4 36 1063 28 446 14 461 13 460

5 34 957 26 446 15 465 13 463

6 37 941 39 476 14 460 12 474

7 27 850 31 460 15 462 13 483

8 29 865 29 473 16 458 13 495

9 32 890 57 479 12 465 13 473

10 35 950 37 457 14 469 11 475

11 33 935 38 491 15 459 11 468

12 35 1046 29 449 13 460 12 464

13 32 978 29 451 14 453 14 476

14 34 1018 34 464 13 460 12 482

15 35 1021 31 433 15 464 12 472

16 33 940 48 457 15 468 14 479

17 31 961 33 478 17 484 13 477

18 34 854 26 462 14 462 13 487

19 33 831 40 470 13 466 13 472

20 31 929 33 501 17 459 21 676

21 33 875 45 503 16 457 12 470

22 35 980 46 456 15 496 12 475

23 32 891 36 448 14 453 13 483

24 34 1037 47 459 13 459 18 577

25 34 1034 39 447 16 507 14 518

26 33 920 45 475 15 471 13 478

27 33 919 30 456 13 454 13 464

28 36 1033 42 530 19 532 13 470

29 33 981 35 457 15 458 16 556

30 34 998 27 449 12 455 12 458

Mean 33.17 942.20 35.96 466.33 14.67 467.53 13.30 491.53

Best 27 26 12 11

SM: Standard Metric, NM: New Metric

SM: Bf (G)

NM1: MPf (G) (with k = 1)

NM2: MPf (G) (with k = 2)

NM3: MPf (G) (with k = 3)

The best results are shown in bold

1723 × 1723 and 5300 × 5300, respectively). These sets are
subsets of the Harwell–Boeing sparse matrix collection, and
have been used extensively by researchers.

Identical to the initial testing stage, first, the MPf (G)

and the Bf (G) were incorporated into the GA-GBP

and GPS-GBP algorithms as their objective functions.
30 independent runs (with the same parameter setting
as before) were then carried out per algorithm per
objective function per test problem, and the bandwidth were
calculated for every run.
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Table 3 A comparison of MPf (G) against Bf (G) (both included in the GA-GBP and GPS-GBP algorithms) on a set of 25 instances from the
University of Florida Sparse Matrix Collection

GA-GBP(SM) GA-GBP(NM) GPS-GBP(SM) GPS-GBP(NM)

Bandwidth Bandwidth Bandwidth Bandwidth

Instance Mean Best Mean Best Mean Best Mean Best

can 24 11.83 7 6.10 5 15.07 13 6.86 5

can 61 38.53 29 21.17 16 40.97 33 24.26 17

can 62 30.66 24 11.57 8 32.83 27 13.60 10

can 73 43.57 37 24.97 22 46.20 38 25.70 22

can 96 66.83 49 24.67 20 72.73 66 28.17 23

can 144 105.30 83 55.80 38 107.90 99 60.80 47

can 161 118.03 103 70.20 42 133.23 120 74.20 59

can 187 135.50 120 61.87 44 158.53 134 82.57 67

can 229 163.53 134 108.83 85 194.33 174 118.20 87

can 256 202.67 174 157.17 137 217.33 202 171.77 154

can 268 218.17 194 162.37 125 232.70 212 170.20 135

can 292 229.13 202 182.00 156 236.50 216 214.33 159

can 445 354.60 288 257.43 217 387.97 366 287.82 252

can 634 540.16 493 475.50 407 570.97 538 510.20 454

can 715 592.13 543 547.46 405 636.27 615 548.73 435

can 838 727.63 650 615.96 520 764.80 726 670.30 575

can 1054 911.17 836 880.10 736 967.37 933 923.63 786

can 1072 932.37 853 863.20 794 979.30 946 924.00 829

dwt 1242 1103.26 1065 1067.63 949 1158.03 1132 1069.46 995

dwt 2680 2579.56 2461 2582.83 2428 2649.93 2606 2659.83 2619

bcspwr06 1288.50 1241 1159.86 1032 1429.33 1402 1409.63 1339

bcspwr07 1438.23 1389 1335.76 1197 1554.40 1505 1516.56 1488

bcspwr08 1460.07 1409 1390.67 1209 1572.83 1525 1499.46 1389

bcspwr09 1553.10 1498 1469.90 1273 1632.16 1596 1585.91 1524

bcspwr10 5064.83 4952 5069.33 5009 5184.93 5082 5243.30 5191

Sum 18834 16874 20306 18661

Wins/Draws 2/0 1/0 23/0 24/0 2/0 2/0 23/0 23/0

SM: Standard Metric, Bf (G)

NM: New Metric, MPf (G)

The best results are shown in bold

The results associated with the tests are summarised in
Table 3. The results reported clearly reveal that the GA-
GBP and GPS-GBP algorithms with the proposed new
metric significantly outperform the GA-GBP and GPS-GBP
algorithms with the standard metric, considering the sum of
the best bandwidth values, the number of the best bandwidth

values and the number of the best mean bandwidth values
(shown in the “Wins/Draws” row) obtained from 30 runs for
each benchmark problem.

In order to examine whether or not the relative
performance differences observed in this set of experiments
were statistically significant, the Wilcoxon signed-rank

Table 4 Statistical analysis of the results summarised in Table 3

Algorithm Asymp. Sig. (2-tailed) Exact Sig. (2-tailed) Exact Sig. (1-tailed)

GA-GBP (SM) — GA-GBP (NM) .000 .000 .000

GPS-GBP (SM) — GPS-GBP (NM) .000 .000 .000
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Table 6 Statistical analysis of the results summarised in Table 5

Algorithm Asymp. Sig. (2-tailed) Exact Sig. (2-tailed) Exact Sig. (1-tailed)

GA-GBP — BRKGA .000 .000 .000

GA-GBP — GRASP .000 .000 .000

GA-GBP — RCM .000 .000 .000

test was used for performing nonparametric statistical
tests. The tests were carried out using the SPSS 16.0
software package, and the Exact method was used for
calculating the significance levels of the statistics. The p-
values obtained from the statistical analysis, summarised
in Table 4, demonstrate that the performance differences
caused by the use of the new metric are statistically highly
significant.

The results of the numerical experiments reported in this
section also support the theoretical conclusion previously
presented in Section 4 and confirm that the proposed metric
is capable of increasing the effectiveness of informed search
methods designed to solve the GBP.

5.3 Advanced testing 2

In the second round of the experiments described in the
previous section, we observed that the GA-GBP signifi-
cantly outperforms the GPS-GBP in all cases. Therefore,
we selected the GA-GBP to conduct more experiments and
make comparisons with other GBP solvers as follows.

Unlike the previous experiments, in this set of experi-
ments, the initial population in the GA-GBP was generated
by performing a Breadth-First Search (BFS) algorithm on
a given graph from randomly selected start vertices. We
remind that the BFS is a very well-known uninformed
search method for traversing a graph. This non-random pop-
ulation initialisation mechanism has been used in several
bandwidth reduction studies mentioned in this paper (See
Section 1). Based on these studies and our own, it might
be unlikely that by using a random initialisation, optimal or
near optimal solutions could be found. It should be noted
that the first and second experiments described before were
not designed to find optimal or near optimal bandwidth val-
ues for the test problems, but rather to disclose the weakness
of the standard metric and to demonstrate the effectiveness
of the proposed alternative metric.

In order to further assess the performance of the GA-
GBP, including the proposed new metric as its objective
function, we compared it against three different algorithms
designed for bandwidth reduction, i.e., BRKGA (the
most recent metaheuristic approach), GRASP (a high-
performance multistart metaheuristic) and RCM (the most

well-known graph theoretic-based search method). Each
algorithm was tested on a set of 43 standard benchmark
problems from the SuiteSparse matrix collection (available
at: https://sparse.tamu.edu). This set was used in [43] for
performance comparison.

In this series of experiments, an AMD Athlon(TM) pro-
cessor operating at 2.2 GHz was used to run the GA-GBP.
The parameters of the runs were as follows: Number of gen-
erations = 100, Population size = 100, Crossover rate = 90%,
Mutation rate = 8%, Reproduction rate = 1%, Elitism rate =
1%. We report the best bandwidth obtained for each bench-
mark problem as well as the time needed to find the best
bandwidth for each problem instance on this computer. It
should be emphasised that all the results associated with the
BRKGA, GRASP and RCM were taken from [43].

In Table 5, we report the bandwidth values resulting
from the permutations generated by the GA-GBP, BRKGA,
GRASP and RCM algorithms as well as their corresponding
CPU times for the 43 test problems. With respect to the
sum of the bandwidth values and the number of the best
bandwidth values obtained, it is clear that the GA-GBP
outperforms all three algorithms under test in terms of
solution quality. The results of the Wilcoxon signed-rank
tests, carried out using the SPSS 16.0 software package
and summarised in Table 6, also confirms that there is a
statistically significant difference between the performance
of GA-GBP and the other three algorithms.

Considering the fact that BRKGA, GRASP and RCM
were executed on an Intel(R) Core(TM) i7 processor
operating at 4.2 GHz (as reported in [43]), we could not
directly compare the CPU times of these algorithms (all
rounded to the nearest integer) with the GA-GBP. However,
since the processor used in [43] is substantially faster
than the processor we used, by a simple inspection of
the CPU times reported in Table 5, it can be concluded
that the GA-GBP outperforms both metaheuristics under
consideration (i.e., the BRKGA and GRASP), especially
the BRKGA, in terms of execution speed. Note that the
RCM is a graph theoretic-based search method. Such
algorithms typically have a simple structure and can run
hundreds to even hundreds of thousands of times faster than
metaheuristics (e.g., the GA-GBP). Therefore, a runtime
comparison between them is not reasonable.
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The results obtained by the DRSA, a metaheuristic
approach based on simulated annealing, is also presented
in [43]. According to these results, the DRSA produces high
quality solutions on the 43 benchmark problems used and
outperforms the BRKGA, GRASP and RCM algorithms.
The DRSA also outperforms the GA-GBP, our proposed
algorithm. However, the disadvantage of DRSA is that it is
very slow in execution. As reported in [43], the mean of the
CPU times obtained by the DRSA is 470 seconds (rounded
to the nearest integer) on an AMD Opteron(TM) operating
at 2.2 GHz, while the mean of the CPU times obtained by
the GA-GBP is 3 seconds (rounded to the nearest integer)
on an AMD Athlon(TM) operating at 2.2 GHz. Since the
two processors used are almost identical, we can reasonably
compare the runtimes obtained by the DRSA and GA-GBP
algorithms and conclude that the DRSA is approximately
156 times slower than the GA-GBP when applied to these
43 standard benchmark problems.

5.4 Discussion

In this work, we show that the standard metric used in
previous studies on the GBP is not ideal for comparing
the quality of solutions produced by search-based solvers
and thus for guiding the search. We address this issue
by proposing an alternative metric (i.e., the MP ). The
results of experiments reported here give clear evidence
on the validity of the theoretical conclusions presented
earlier and on the effectiveness of the MP in improving the
performance of search-based GBP solvers.

The MP offers some advantages as follows: being more
informative and providing better guidance for the search,
incorporating information about both the bandwidth and
profile at the same time, controlling the dominance of the
bandwidth over the profile and vice versa by increasing
and decreasing the power k, providing the possibility
of optimizing the bandwidth and profile simultaneously
without the need to define the problem as a multi-objective
optimization problem, and encapsulating an indication of
how far a particular solution is from better solutions in the
search space.

The main disadvantage of using the MP for a heuristic
search applied to the GBP is that an appropriate value for
the power k should be found, otherwise this will result in a
strong bias towards the term (or terms) related to a vertex
(or vertices) with maximum bandwidth, and the search will
mostly focus on reducing the bandwidth of such a vertex (or
vertices) and ignore other vertices, which is not desirable.

In future work, we will investigate the possibility of
improving the MP as well as developing a more robust
metric for the GBP. With respect to the findings of the

present study, we will also examine the standard metrics
associated with other graph layout problems to see whether
more effective alternatives can be introduced for solving
these problems by means of informed search methods.

6 Conclusions

In this paper, a new metric for the Graph Bandwidth
Problem has been introduced. This problem is proved to be
NP-complete and has a significant number of applications
in scientific and engineering domains. Therefore, many
different types of algorithms have been developed for its
solution. These algorithms are generally informed search
methodologies in which a metric is needed for guiding the
search towards good quality solutions. The most obvious
and frequently used metric in earlier studies on the Graph
Bandwidth Problem is the bandwidth itself. In this work,
we have shown that this standard metric is not always
appropriate for comparing the quality of solutions generated
by different heuristic search methods, and its use may
significantly reduce the performance of such methods. In
order to tackle this issue, a new metric was proposed, and its
effectiveness was tested and verified by a large number of
numerical experiments on 68 standard benchmark problems
from well-known sparse matrix collections. The results
obtained were promising and showed that the proposed
new metric was highly effective. Therefore, we believe that
its incorporation into more sophisticated informed search
methodologies previously used for addressing the Graph
Bandwidth Problem may lead to further progress on these
methods.
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I, Taniar D, Apduhan BO, Rocha AMAC, Tarantino E, Torre CM,
Karaca Y (eds) Computational Science and Its Applications –
ICCSA 2020. Springer, Cham, pp 312–321

44. Goldberg DE (1989) Genetic Algorithms in Search, Optimization
and Machine Learning, 1st edn. Addison-wesley Longman
Publishing Co. Inc., Boston, MA, USA

45. Hooke R., Jeeves TA (1961) “direct search” solution of numerical
and statistical problems. J ACM 8(2):212–229

1 3

On the solution of the graph bandwidth problem by means of search methods 8003



46. Koohestani B (2020) A graph representation for search-based
approaches to graph layout problems. Int J Comput Sci Eng
21(3):429–436

47. Koohestani B (2020) A crossover operator for improving the
efficiency of permutation-based genetic algorithms. Expert Syst
Appl 113381:151

48. Chung F, Sternberg S (1993) Mathematics and the buckyball. Am
Sci 81(1):56–71

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Behrooz Koohestani received
the M.Sc. degree in informa-
tion technology from Heriot-
Watt University, Edinburgh,
U.K., in 2008, and the Ph.D.
degree in computer science
from the University of Essex,
Colchester, U.K., in 2013. He
is currently an Assistant Profes-
sor with the Faculty of Electri-
cal and Computer Engineering,
University of Tabriz, Tabriz,
Iran. His research interests
include artificial intelligence,
evolutionary computation and
its applications to significant
scientific, engineering, and
commercial problems.

1 3

B. Koohestani8004


	On the solution of the graph bandwidth problem by means of search methods
	Abstract
	Introduction
	Background
	Problem definition
	Search methods
	Relevant existing algorithms

	Motivation
	Proposed new metric
	Numerical experiments
	Initial testing
	Advanced testing 1
	Advanced testing 2
	Discussion

	Conclusions
	References




