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Abstract
Massive amounts of information are generated in various social media and spread across multi-social networks through
individual forwarding and sharing, which greatly enhance the speed and scope of transmission, but also bring great
challenges to the control and governance of misinformation. The characteristics of the spread of misinformation across
multi-social networks are considered, this article investigates the novel problem of misinformation influence minimization
by entity protection on multi-social networks, and systematically tackling this problem. We analyse the hardness and the
approximation property of the problem. We construct a multi-social networks coupled method and devise a pruning and
filtering rule. We develop a two-stage discrete gradient descent (TD-D) algorithm to solve NP-Hard problems. We also
construct a two-stage greedy (TG) algorithm with the approximate guarantee to verify the algorithm we developed. Finally,
the effectiveness of our proposed methods is analysed in synthetic and real multi-network datasets (contains up to 202K
nodes and 2.5M edges). The results show that the ability of the TD-D and TG algorithms to suppress the spread of
misinformation is basically the same, but the running time of the TG algorithm is much higher than (far more than 10 times)
that of the TD-D algorithm.

Keywords Multi-social networks · Influence minimization · Computational complexity · Discrete gradient

1 Introduction

As online social media has grown in diversity and
disruption, large numbers of users are viewing, evaluating
or forwarding information across multiple online social
networks, greatly enhancing the scope and speed of
information diffusion. Information dissemination presents
magnanimity, dispersion, and uncontrollable characteristics.
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While online social media brings great convenience for
people to obtain positive content (news, stories, knowledge,
etc.), it is also a double-edged sword, urging a large amount
of negative content (misinformation, violence, terrorist
information, etc.) to form network public opinion, causing
social unrest. For example, in 2017, online social media
in India sparked panic across the country when false news
surfaced that the perpetrators of two shootings in eastern
Jharkhand were members of child trafficking gangs [1].

At present, the governance of negative content has
attracted the attention of many researchers [2–4], but most
of them study the control strategy of negative content in
a single online social network, which ignores the ever-
changing network environment in real life. Without consid-
ering fake accounts, the individual characteristics reflected
by a single social network are obviously not comprehen-
sive and objective compared to multi-social networks. For
example, in the case of friend relationship recommendation
content, the acceptance rate of the recommendation infor-
mation will be higher when the recommendation informa-
tion is integrated with the friend relationship of multi-social
networks than the recommendation only on the single online
social network. Hence, it is not comprehensive enough to
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study the control strategy of misinformation only in a single
online social network. It is more reasonable and convinc-
ing to propose a misinformation governance strategy by
comprehensively considering the attributes of multi-social
networks.

Example 1 Given a multi-social networks G containing two
online social networks G1 and G2, we call the nodes in
G1 or G2 the accounts, and an individual who controls
the accounts in multi-social networks is called an entity.
In G1 and G2, a node represents the account controlled
by the entity, and directed edges indicate the spread of
content, as illustrated in Fig. 1. In the multi-social networks
G(G1, G2), entity a controls two accounts, a1 and a2.
In G1, account a1 will send the information actively, and
account a2 will only passively receive information in G2. It
can be seen that different accounts controlled by the same
entity may play completely distinct roles in information
dissemination.

Different misinformation control and governance strate-
gies have been proposed based on distinct actual back-
grounds [5–10]. Some scholars [7, 8, 10, 11] considered
the influence of nodes, and chose to block a set of nodes
or links to reduce the final acceptance rate of misinforma-
tion. Although these strategies exhibit good performance in
suppressing the spread of misinformation, they violate the
ethical standards of censorship. Since the blocking nodes
(links) measures mainly work on the accounts (posts pub-
lished) that an entity owns on a social network platform,
they seem to be ineffective or pay multiple times to achieve
the desired results in multi-social networks. Therefore, this
paper considers the characteristics of multi-social networks
and designs a misinformation control strategy that acts on
entities. Of course, some scholars [9, 12, 13] have proposed
a misinformation control strategy that acts on entities: select
some entities to spread positive information. Since whether
entities spread positive information in real life is mainly
based on their own wishes, this measure strongly assumes

that selected individuals must spread positive information,
which greatly violates the ethical standards of censorship.
Hence, to compensate for the shortcomings of the existing
research, this paper proposes an ‘entity protection’ strategy
to combat the spread of misinformation.

Given a multi-social networks G(G1, G2, · · · , Gn) =
G(V, E) containing n online social networks, the initial
influence entities R ⊆ V , and a positive integer K , we aim
to centrally identify and protect the set Λ of K entities to
minimize the number of entities ultimately influenced byR.
The contributions of this work are as follows:

• We devise a model of information propagation across
multi-social networks, and investigate a novel problem
of Misinformation Influence minimization by Entity
protection on multi-social networks (MIE-m).

• We prove the hardness of the MIE-m problem and
discuss the properties of the objective function. We
devise the procedure of coupled multi-social networks
and the pruning rules, and construct a discrete gradient
descent method to optimize the supermodular set
function.

• We introduce the method of estimating the influence of
information and define the supermodular curvature of
the supermodular function. A two-stage discrete gradi-
ent descent algorithm is developed. We also construct
a two-stage greedy algorithm with approximate guaran-
tees as a baseline to evaluate our developed algorithm.

• We appraise our methods in synthetic and three real-
world multi network datasets. The experimental results
show that the comprehensive performance of our
algorithm is superior to the existing heuristic methods,
even the greedy algorithm.

The content of this article is arranged as follows. In
Section 2, we review the related work. We give the
preliminary knowledge in Section 3. Section 4 formulates
the problem of MIE-m and discusses its valuable properties.
In Section 5, we explore approximate methods to optimize
the problem of influence minimization. We develop a

Fig. 1 A simple multi-social networks G(G1, G2)
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two-stage discrete gradient descent algorithm to solve
the problem in Section 6. Section 7 uses synthetic and
real-world multi networks to verify the efficiency and
effectiveness of our algorithm. Finally, the article is
summarized and prospected in Section 8. Table 1 gives the
characters required in the article.

2 Related works

Domingos and Richardson [14] first put forward the
problem of maximizing the influence of information, and
then Kempe et al. [15] turned the problem into a discrete
optimization problem, and proposed two classic information
diffusion models: the independent cascade (IC) model and
the linear threshold (LT) model. Many researchers [10,
16, 17] have expanded or improved the IC (LT) model to
propose strategies for suppressing negative contents.

Taking into account the topological structure of online
social networks, the utility experience of users and the
method of user interaction, many scholars [18–20] have
proposed the active control strategy of blocking nodes or
links to minimize the influence of negative contents. Zhang
et al. [19] formulated a novel rumour containment prob-
lem based on the user’s browsing behaviour, namely, the
rumour block based on user browsing, to actively limit
the spread of rumours. Yan et al. [20] blocked a set of
links from the perspective of diminishing margins to min-
imize the total probability of nodes being activated by
rumours. As proactive measures to control misinforma-
tion may have a negative impact on the user experience,
some researchers [9, 21, 22] have proposed a strategy

of publishing positive information or strategies of reflex-
ive rumours to counter the spread of misinformation. Wu
et al. [9], based on the maximum influence arborescence
structure, constructed two heuristic algorithms CMIA-H
and CMIA-O to identify a set of seeds that initiate posi-
tive information against misinformation dissemination. Lv
et al. [22] considered the locality of influence diffusion and
proposed a new community-based algorithm to optimize
the influence blocking maximization problem. Ghoshal
et al. [21] leveraged a known community structure to pro-
pose probability strategies for beacon node placement to
combat the spread of misinformation in online social net-
works. In addition, some scholars [6] have proposed sup-
pressing the spread of misinformation by injecting influence
messages related to multiple hot topics. Summarizing the
existing research works, we know that most scholars inves-
tigated information dissemination in the context of virtual
single social network and rarely considered the charac-
teristics of information dissemination across multi-social
networks in real life. Moreover, most of the existing mis-
information control strategies do not consider the ethical
standards of censorship, and the main body of the con-
trol strategy is mostly an account owned by the entity on
a certain social network. Therefore, this paper devises a
misinformation control strategy that acts on entities, called
entity protection, for multi-social networks.

At present, some scholars [23, 24] have also carried
out research on the dissemination of misinformation based
on multi-social networks. Yang et al. [23], based on the
study of dynamic behaviors related to multiple network
topologies, constructed a competitive information model
on multi-social networks. Hosni et al. [24] considered

Table 1 Frequency of Special
Characters Notation Description

G(G1, G2, · · · , Gn)= G(V, E) Multi-social networks with n online social networks, where V

denotes the entity set and E indicates the relationship between
entities.

Gi(V i, Ei) The i-th online social network in G with account set V i and edge
set Ei

Gcou(V̂ , Ê) A coupled social network, V̂ denotes the entity set, Ê denotes the
relationship set between entities

ξ(wi) Means mapping account wi ∈ V i to entity w ∈ V

P f wd(wi) Probability that entity w forwards misinformation to account
wi in Gi

P inf (wi, ui) Probability that account wi successfully activates its child
neighbor ui

R Initial activation entities of misinformation

ρi
w The preference of entity w for online social network Gi

Λ The protection entity set
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individuals and social behavior in multi-social networks and
proposed an individual behavior statement that simulates
damped harmonic motion in response to rumours. It can
be seen from the above that they pay more attention
to the aggregation of multi-social networks and do not
make a detailed modelling of the details of misinformation
dissemination among multi-social networks. Hence, it is
necessary to carefully consider the details of misinformation
dissemination between multi-social networks and propose
a reasonable model of the dissemination of misinformation
across multi-social networks.

Computational influence propagation has been proven to
be #P-hard [15]. It has been proven that using a greedy
strategy can obtain the solution of the (1−1/e) approximate
guarantee of the set function with submodular [15].
Manouchehri et al. [25] developed a two-step algorithm
of the (1 − 1/e − ε)-approximate guarantee based on the
martingale to solve the influence blocking maximization.
Unfortunately, the set function without submodules will no
longer hold this property [26, 27]. Zhu et al. [26] proposed
the disbanding strategy of groups in online social networks
to curb the spread of misinformation and constructed a
greedy algorithm without approximate guarantees to solve
nonsubmodular objective functions.

Moreover, many scholars have constructed heuristic meth-
ods [28–30] to tackle nonsubmodular set functions. Wang
et al. [28] constructed the upper and lower bounds of the
submodular for the nonsubmodular function and used the
sandwich method to maximize activity. Unfortunately, there
is currently no universal and effective way to find the lower
and upper bounds of the submodular of the nonsubmodu-
lar set function. Ghoshal et al. [30] leveraged the underlying
community structure of an online social network to select
influential nodes with true information for misinformation
blockage. Hosseini-Pozveh et al. [29] applied random key
representation technology to propose a continuous particle
swarm optimization method to solve the nonsubmodular set
function. Most of the current heuristic methods sacrifice
the accuracy of the solution in exchange for the solution
speed of the nonsubmodular function. Hence, the solving
efficiency and accuracy of the equilibrium algorithm in
this paper, develops a two-stage discrete gradient descent
algorithm to solve the supermodular set function.

3 Preliminaries

3.1 Definitions

Since multi-social networks are disparate from a single
social network in terms of network topology, nodes, and
edges, we will define multi-social networks and their
characteristics.

Definition 1 (Multi-social networks) A directed asymmet-
ric multi-social networks G(V, E) = G(G1, G2, · · · , Gn)

containing n online social networks, v ∈ V denotes
the entity in G, and (v, w) ∈ E denotes the rela-
tionship between entities. For the online social network
Gi(V i, Ei) (1 ≤ i ≤ n), V i and Ei respectively represent
the node set and edge set. The precondition for the exis-
tence of an edge (v, w) is that there is an edge (vi, wi) in
at least one online social network Gi . A simple multi-social
networks is shown in Fig. 2.

Definition 2 (Entity and Account) Without causing ambi-
guity, we call the node in the online social network the
account and an individual who controls the accounts in
multi-social networks is called an entity. When an entity
controls multiple accounts in G, w = {ξ(wi)|wi ∈ V i, 1 ≤
i ≤ n} represents the account controlled by it, and ξ(wi)

means mapping wi to w.

Definition 3 (Entity Preference) When an entity accepts
information through account wi in Gi , he/she may forward
the information to other online social networks Go(o �=
i). Considering the discrepancies in services provided by
different online social networks, the propensity of entities
to use distinct online social networks to spread information
is also inconsistent. Hence we define the entity’s propensity
to employ diverse online social networks as the entity’s
preference for different online social networks, and the
preference of entity w for Gi is denoted as ρi

w.

Definition 4 (Account and Entity Status) In multi-social
networks, when an entity accepts information through the
account, we call that entity successfully activated. When an
entity is activated, the accounts it controls are also activated
simultaneously.

Fig. 2 A simple multi-social networks G(G1, G2, G3) with eight
entities {v1, v2, · · · , v8}. The solid lines represent information
exchanges between accounts, and the dotted lines indicate the accounts
controlled by the entity
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Definition 5 (Entity Protection). Entity protection refers to
the use of personalized recommendation technology to let
some entities know positive information in advance before
receiving misinformation, so that they will not share it
when they receive misinformation to achieve the purpose of
actively ‘blocking’ misinformation dissemination.

In real life, once people are influenced by the correct
information spread by verified sources, they will believe
the correct information regardless of the misinformation
[30, 31]. Since people are more inclined to share novel
information with their friends [32, 33], entities that receive
positive information may be willing to share it. Considering
that forcing an entity to spread positive information violates
the ethical standards of censorship, this paper assumes that
an entity receives positive information and does not spread
it. People with correct information will not be affected by
misinformation [30, 34]. If entities already realize positive
information before receiving misinformation, they are likely
to ignore it when they receive misinformation and will not
share it again to fulfil the intention of actively ‘blocking’
misinformation dissemination.

3.2 Disseminationmodel

This article studies governance strategies of misinformation
based on the IC model. Next, we review the IC model.
Consider a directed social network G(V , E), where V

denotes the set of nodes, (u, v) ∈ E denotes the relationship
between node u and v, and each edge (u, v) has an attribute
puv that indicates the probability of node u successfully
activating node v.

Let Rt be the set of nodes that are activated in time steps
t (t = 0, 1, 2, · · · ), and when u ∈ Rt , it has one and only
one chance to activate its inactive neighbor child node v

with puv in t + 1. In addition, in the process of information
dissemination, the node can only switch from the inactive
state to the active state, not reverse. The specific spreading
process of information in discrete time is as follows: At time
t = 0, information diffusion starts, and source nodes R are
triggered at the same time, that is,R0 = R. In t = q(q ≥ 1),
u ∈ Rq−1 activates the set of its inactive child neighbors
with probability pu·. If the node is successfully activated, it
will be added to Rq , and the information dissemination will
stop when Rq is empty.

4 Problem formulation

In this part, we first devise a model of information
propagation across multi-social networks, then give a formal
statement of the problem of MIE-m, and discuss the
properties of the objective function.

4.1 Misinformation dissemination across
multi-social networks

In multi-social networks G(G1, G2, · · · , Gn), when entity
w accepts misinformation in online social network Gi ,
the entity w may choose i (1 ≤ i ≤ n) online social
networks to disseminate misinformation in the next. Entities
send misinformation to other online social networks by
forwarding or sharing, and the entity’s preferences affect
the probability of misinformation being forwarded and
shared among its own accounts. Therefore, we define
the probability that entity w forwards misinformation to
account wi in Gi as

P f wd(wi) =
ϕ · (1 + ∑n

o=1,o �=i
ρi

w

ρo
w+ρi

w
)

|w| (1)

where ϕ is a constant parameter, ρo
w represents entity w’s

preference for online social network Go, and |w| denotes
the number of accounts controlled by entity w.

In an online social network Gi , the higher the similarity
between accounts, the more similar the types of topics
they follow, and the greater the probability of sending
misinformation to each other. Moreover, according to the
ideology of the celebrity effect [15, 24], the higher the
out-degree of account is, the greater the impact on other
accounts and the less likely they are to be influenced by
other accounts. Hence, we conclude that the probability that
account wi successfully activates account ui ∈ Nout (wi) is

P inf (wi, ui) = � + |Nout (wi)
⋂

Nout (ui)|
|Nout (wi)| + |Nout (ui)| (2)

where� is a constant parameter andNout (wi) represent the
child neighbors of account wi in online social network Gi .

Based on the IC model, we construct a dynamic
propagation model of misinformation across multi-social
networks. In multi-social networks G(G1, G2, · · · , Gn),
misinformation dissemination occurs in discrete steps t =
0, 1, 2, · · · . Once the entities (accounts) are activated,
they will remain active until the end of misinformation
dissemination. The specific process of dissemination of
misinformation across multi-social networks is as follows:

1. When misinformation in multi-social networks begins
to spread at step t = 0 and simultaneously triggers a
set of initial activation entities R ⊂ V . Let Rt be the
entities that are influenced in steps t (t = 0, 1, 2, · · · )
and R0 = R.

2. At step t (t ≥ 1), first, the w ∈ Rt−1 forwards
the misinformation to each account wi (1 ≤ i ≤
n) with the probability P f wd(wi). Then, account wi

tries to activate the inactivated child neighbor ui ∈
Nout (wi) with the probability P inf (wi, ui). If account

6405Misinformation influence minimization by entity protection on multi-social networks



ui is activated, its mapped entity u is converted into an
activated entity and added to Rt .

3. Repeat Steps 2. until Rt = ∅, and the dissemination of
misinformation across multi-social networks stops.

Algorithm 1 outlines the procedure of misinformation
spread across multi-social networks.

Example 2 In Fig. 3, given R = {z}, the influence
probability P inf (·, ·) = 1 for all edges in each online social
network, and the probability P f wd(·) = 1 for all entities.
At t = 0, R0 = R = {z}. When t = 1, entity z activates v1

with account z1 in G1 and activates w2 with account z2 in
G2. Then entities v and w are added to R1. At t = 2, entity
v successfully activates account u1 in G1, and all child

Fig. 3 A simple multi-social networks G(G1, G2) with four entities
{z, w, u, v}

neighbors of entity w have been activated; then, R2 = {v}.
At t = 3, all entities in G have been activated, so R3 = ∅,
and misinformation dissemination is terminated.

4.2 Problem definition

Since misinformation spreads across multi-social networks,
which increases the dissemination speed and expands the
spread range of misinformation, it also brings great chal-
lenges to the control and governance of misinformation.
For this reason, considering the characteristics of the dis-
semination of misinformation across multi-social networks,
we propose the problem of Misinformation influence Min-
imization by Entity protection on multi-social networks
(MIE-m). Next, we give the formal statement of this prob-
lem.

Definition 6 (MIE-m) Let G(V, E) = G(G1, G2,

· · · , Gn) denote directed multi-social networks with n

online social networks Gi(V i, Ei). Given an initial
influence entities R, the positive integers K and a
propagation model M. MIE-m tries to identify and protect
the set Λ containing K entities from the V \R to minimize
the number of entities ultimately activated by R,

Λ∗ = arg min
Λ⊆V \R,|Λ|≤K

E [σR(Λ)] (3)

where E[·] is the expectation operator and σR(Λ) is the
number of entities successfully activated by R when entity
set Λ is protected.

Example 3 In Fig. 1, a multi-social networks G(G1, G2)

with entities {a, b, c, d, v, w}. We set R = {a}, the
probability P inf (·, ·) = 1 for all edges in G1 and G2, and
probability P f wd(·) = 1 for all entities. When Λ = ∅, the
spread value of misinformation σR(Λ) = 6. Let K = 1,
protect the entity u ∈ V \R, and obtain σR({b}) = 2,
σR({c}) = 4, σR({v}) = 3, σR({w}) = 3, σR({d}) = 4.
Obviously, choosing to protect entity a can better suppress
the spread of misinformation, that is, Λ∗ = {b}.

4.3 Hardness results

Definition 6 shows that the problem of MIE-m is a discrete
optimization problem, then we evaluate the hardness of this
problem.

Theorem 1 Influence minimization is NP-hard in multi-
social networks.

Proof See Appendix A.1.
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Theorem 2 Given initial influence entities R ⊆ V ,
computing σR(Λ) is #P-hard in multi-social networks.

Proof See Appendix A.2.

4.4 Modularity of objective function

Next, we prove the monotonicity and modularity of the
objective function. Let SG be the set of ‘live-edge’ graphs
[15] generated from G based on the existence probability
of the edges, where the existence probability of the edges
means the influence probability or forwarding probability.
Pr(sg) is the probability of generating graph sg ∈ SG.
σ

sg

R
(Λ) is the number of entities influenced by R in

the network topology sg\Λ. Therefore, the number of
entities that are expected to accept the misinformation after
protecting K entities until the end of the dissemination of
misinformation is σR(Λ) = ∑

sg∈SG P r(sg)σ
sg

R
(Λ).

Theorem 3 σR(Λ) is nonnegative and monotonically
decreasing.

Proof Since σ
sg

R
(Λ) is nonnegative, σR(Λ) is also non-

negative. For a fixed sg ∈ SG, given L1 ⊆ L2 ⊆
V , there is σ

sg

R
(L1) ≥ σ

sg

R
(L2). That is, σR(L1) =∑

sg∈SG P r(sg)σ
sg

R
(L1) ≥ ∑

sg∈SG P r(sg)σ
sg

R
(L2) =

σR(L2). Therefore, σR(Λ) is monotonically decreas-
ing.

Theorem 4 σR(Λ) is supermodular in multi-social net-
works

Proof Because σR(Λ) = ∑
sg∈SG P r(sg)σ

sg

R
(Λ), we

prove that σR(Λ) is supermodular, and we only need to
prove that 	R(Λ) = σ

sg

R
(Λ) is supermodular for each ‘live

edge’ graph sg. Let L1, L2 be two subsets of V \R and
L1 ⊂ L2. We have v ∈ V \L2, considering the difference
between 	R(L1) and 	R(L1 ∪ {v}), which must come
from node v that can be reached, but node set L1 cannot
be reached. Similarly, the difference between 	R(L2) and
	R(L2 ∪ {v}) must be reachable from v but cannot be
reachable from the nodes L2. Since L1 ⊂ L2, it follows that
	R(L2)−	R(L2∪{v}) ≤ 	R(L1)−	R(L1∪{v}), that is,
	R(L2∪{v})−	R(L2) ≥ 	R(L1∪{v})−	R(L1). Hence,
	R(Λ) is supermodular and the theorem is proven.

5 Solutions methods

In this section, we explore approximate methods for solving
MIE-m. First, we design the method of coupled multi-social
networks. Then, a pruning and filtering rule is introduced.

Finally, a discrete gradient descent method is developed for
solving NP-Hard problems.

5.1 Multi-social networks coupledmethod

Considering that the account only serves as a carrier
for spreading misinformation, the subject of sending and
accepting misinformation is still an entity. In addition, if
the problem of MIE-m is solved by using accounts as
the object, the time complexity of solving the problem
will be increased. Therefore, we hide accounts, map the
relationships between accounts to entities, and devise
methods for coupled multi-social networks.

In the coupled of multi-social networks, the accounts
controlled by the entity cannot be simply regarded as the
same entity for coupled. The characteristics and attributes
of the account should be guaranteed first, and then how
to add connections among multiple social factors should
be considered. To more directly add relationships between
entities, we give the relational network Gcou(V̂ , Ê), V̂ is
the entity set, and Ê is the edge set that maps from accounts
connections to entities.

Based on the entity’s preference for diverse online
social networks, we give the calculation formula for the
probability p̂(ŵ, v̂) that entity ŵ successfully activates v̂ as

p̂(ŵ, v̂) = 1 −
n∏

i=1

(1 − P f wd(wi) · P inf (wi, vi)). (4)

In Algorithm 2, the procedure of multi-social networks
coupled into a single social network is summarized.

Example 4 In Fig. 4a, multi-social networks G con-
tain three online social networks (G1, G2, G3),
and V = (v1, v2, v5, v8). P inf (·, ·) is calculated,
which is shown on the edge between the accounts
in Fig. 4a. The result of P f wd(vi· ) for each account
vi· ∈ {v21, v31, v15, v25, v22, v32, v18, v28, v38} is
{0.77, 0.61,0.61, 0.63, 0.88, 0.67, 0.83, 0.67, 0.67, 0.67}.
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Fig. 4 The example of coupled of multi-social networks G into a single social network Gcou

Next, given the relationship network Gcou(V̂ , Ê), V̂ = {v̂1,
v̂2, v̂5, v̂8}, Ê = {(v̂1, v̂5), (v̂5, v̂8), · · · }, and p̂(·, ·)
is calculated according to (4), such as, p̂(v̂1, v̂5) =
1− (1−0.77∗0.6)(1−0.61∗0.22) = 0.54. Finally, Fig. 4b
provides the result of the coupled social network Gcou, and
the number on the edges denotes the influence probability
between entities.

Proposition 1 Given a multi-social networks G(V, E) =
G(G1, · · · , Gn), letNe = ∑n

i=1 |Ei | andNa = ∑n
i=1 |V i |,

CMN(G) ends in O(Ne) time.

Proof For every online social network Gi that needs
O(|V i |) (1 ≤ i ≤ n) to compute P f wd(·), and O(|Ei |)
to compute P inf (wi, ui), (ui, wi ∈ V i). It takes O(Ne)

to compute the p̂(ê) for each ê ∈ Ê. Thus, the time
complexity of algorithm 2 is 2 ∗ O(Ne) + O(Na). Since
Ne 
 Na in online social networks, the proposition has
followed immediately.

Based on the above analysis, this article couples multi-
social networks G(V, E) into Gcou(V̂ , Ê). Then, the prob-
lem of MIE-m is transformed into the problem of Misin-
formation Influence minimization by Entity protection in a
coupled social network (MIE-c), and the objective function
(3) can be converted to

Λ̂∗ = arg min
Λ̂⊆V̂ \R,|Λ̂|≤K

E

[
σ̂R(Λ̂)

]
(5)

where Λ̂ is the set of K entities identified and protected
from V̂ \R.

Next, we prove in proposition 2 that the MIE-m problem
is equivalent to the MIE-c problem.

Proposition 2 Given a multi-social networks G(V, E), a
coupled social network Gcou(V̂ , Ê) of G, and an initial
influence entities R, σR(Λ) = σ̂R(Λ̂) for any Λ ⊂ V \R
and Λ = Λ̂.

Proof See Appendix A.3.

Since the problem of MIE-c is equivalent to the problem
of MIE-m, F(Λ̂) is a nonnegative monotonically decreasing
supermodular function, where F(Λ̂) = σ̂R(Λ̂).

5.2 Candidates prune

Since there are disparities in the influence of different
entities in Gcou, we introduce the pruning rules to
discard the relatively ‘unimportant’ entities. The following
propositions prune and filter the candidate set of entities.

Proposition 3 If Nin(ŵ) = ∅, ŵ ∈ V̂ \R, protecting ŵ

does not affect the spread value of misinformation.

Proof When Nin(ŵ) = ∅, ŵ ∈ V̂ \R exists, that is, the
parent entity set of the existing entity ŵ is empty. Therefore,
protecting ŵ will not affect the amount of misinformation
finally accepted, and the entity ŵ can be removed from
V̂ .

Proposition 4 If ŵ /∈ R, Nout (ŵ) = ∅ or Nout (ŵ) ⊂ R

exists, protecting ŵ does not affect the probability that û ∈
V̂ \{R ∪ {ŵ}} will be activated by R.

Proof When ŵ /∈ R, Nout (ŵ) = ∅ or Nout (ŵ) ⊂ R

exists, that is, ŵ does not have a child neighbor or all child
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neighbors are activation entities. Thus, protecting ŵ will not
affect the probability of other entities being activated by R,
and the entity ŵ can be removed from V̂ .

Proposition 5 If ŵ /∈ R, |Nin(ŵ)| = 1, Nin(ŵ) /∈ R,
entity ŵ can be “discarded” from V̂ .

Proof When ŵ ∈ V̂ \R, |Nin(ŵ)| = 1, Nin(ŵ) /∈ R exists,
that is, the entity has and only one parent neighbor that is
not the source. The effect of protecting the parent neighbor
of entity ŵ is better than that of protecting itself. Therefore,
the entity ŵ can be removed from V̂ .

According to propositions 3–5, we obtain the candidate
set of entities. Algorithm 3 provides the procedure to obtain
candidate set V̂sa from V̂ .

Example 5 In Fig. 4b, the coupled social network Gcou has
four entities {v̂1, v̂2, v̂5, v̂8}. LetR = {v̂1}. For the entity v̂2
that satisfies v̂2 /∈ R, Nout (v̂2) = ∅, the entity v̂2 can be
pruned from the candidate set. Thus, the candidate set V̂sa

of Gcou is {v̂5, v̂8}.

5.3 Discrete gradient descent method

In this part, combining the characteristics of the gradient
descent method [35], we propose the discrete gradient
descent method to solve the supermodular function. We
set K protected entities as variables, denoted as X =
{x1, x2, · · · , xK}. Let d be the discrete step size, and
B(xq) be the set of entities d steps away from the entity xq .

For the K-variable single-valued function h(X) =
h(x1, x2, · · · , xK), let 
h

q
s (X) = h(x1, · · · , xq ,

xq+1, · · · , xK) − h(x1, · · · , xq−1, s, xq+1, · · · , xK), where
|xq, s| = d, s ∈ B(xq). 
h

q
s (X) is the difference between

the function value of X and the function value when xq

is substituted for s in X. The approximate discrete partial

derivative of a single-valued function with a given d is

∂sh

∂sxq

(X) = 
maxh
q
s (X)

d
(6)

where 
maxh
q
s (X) = maxs∈B(xq) 
h

q
s (X).

From the properties of online social networks, it is
concluded that the discrete step size d between entities is
integers; then, d = 1 is given in this article, so (6) is
equivalent to

∂sh

∂sxq

(X) = max
s∈B(xq)


h
q
s (X). (7)

We can derive the properties of (7) as follows: When
∂sh
∂sxq

(X) ≤ 0, xq is at the local optimum. When ∂sh
∂sxq

(X) >

0, xq points s in the fastest descending direction; that is,
when the variable s replaces the variable xq , h(X) decreases
the most. Then, we give

γ q =
{
1, ∂sh

∂sxq
(X) > 0

0, ∂sh
∂sxq

(X) ≤ 0
(8)

SV q =
{

s, ∂sh
∂sxq

(X) > 0

xq, ∂sh
∂sxq

(X) ≤ 0
(9)

Definition 7 (Discrete gradient) Given the discrete step size
d, the discrete gradient of h(X) is

∇dh(X) = (
∂s1h

∂s1x1
(X1), · · · ,

∂sK h

∂sK xK

(XK))T (10)

where X1 = X, Xq = Xq−1 ∪ {γ q−1 · SV q−1}\{γ q−1 ·
xq−1}(1 < q ≤ K). Then, ∇dh(X) can be rewritten as
∇dh(X) = (γ 1, γ 2, · · · , γ K), and the corresponding set of
substitution variables is SV = (SV 1, SV 2, · · · , SV K).

In the discrete gradient ∇dh(X) of h(X), xq → s is
one of the steepest descent directions. For the sequence
X1, X2, · · · , Xz, · · · , there is Xz+1 = Xz ∪ {∇dh(Xz) ·
SV z}\{∇dh(Xz) ·Xz}. Because h(X0) ≥ h(X1) ≥ h(X2) ≥
· · · , the iteration terminates when ∇dh(Xz) = 0 or
h(Xz) − h(Xz+1) < ε. For the discrete case, in a certain
precision ε, may appear along the fastest descent direction
search objective function value decreases and convergence
the speed slow, then think that has met the accuracy
requirements, can stop the search.
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Theorem 5 Given a nonnegative set function h(X) and
sequence X1, X2, · · · , Xz, · · · , h(Xz) will converge to
a local optimal solution after using the discrete gradient
descent method.

Proof The termination condition of the discrete gradient
descent method is ∇dh(Xz) = 0 or h(Xz) − h(Xz+1) < ε,
then for the sequence X1, X2, · · · , Xz, · · · , we only need to
prove h(X0) ≥ h(X1) ≥ · · · ≥ h(Xz) ≥ · · · . ∇dh(Xz) =
(γ 1, γ 2, · · · , γ K) exists in variable set Xz, because X1

z =
Xz, X

q
z = X

q−1
z ∪ {γ q−1 · SV q−1}\{γ q−1 · xq−1}(1 <

q ≤ K), and h(X1
z ) ≥ h(X2

z ) ≥ · · · ≥ h(XK
z ). For

Xz = X1
z , Xz+1 = XK

z ∪ {γ K · SV K}\{γ K · xK}, then, we
have h(Xz) = h(X1

z ) ≥ h(XK
z ) ≥ h(Xz+1). Therefore, we

have h(X0) ≥ h(X1) ≥ h(X2) ≥ · · · , that is, h(Xz) will
converge to the local optimal solution.

6 Problem solutions

This section first presents methods for estimating the
influence of misinformation. Then, a two-stage discrete
gradient descent algorithm is constructed, a baseline
algorithm is proposed, and the efficiency of the algorithm is
analysed.

6.1 Influence estimation

Since computing σR(Λ) is #P-hard in multi-social networks,
we estimate the influence of misinformation by utilizing the
(ε, δ)-approximation method [36].

Definition 8 ((ε, δ)-approximation). The mean and vari-
ance of samples Y1, Y2, Y3, · · · are μY and δ2Y , which
follows the independent identical distribution of Y in the
interval [0, 1]. The Monte Carlo estimator of μY is μ̄Y =∑N

j=1 Yj/N , if Pr[(1− ε)μY ≤ μ̄Y ≤ (1+ ε)μY ] ≥ 1− δ,
where δ ≥ 0 and 0 ≤ ε ≤ 1.

Lemma 1 The mean of samples Y1, Y2, Y3, · · · is μY ,
which follows the independent identical distribution of Y .
LetZY = ∑N

j=1 Yj , μ̄Y = ZY/N , γ = 4(e−2)·ln(2/δ)/ε2
and γ1 = 1+ (1+ ε)γ . When ZY ≥ γ1, if N is the number
of samples, then Pr[(1−ε)μY ≤ μ̄Y ≤ (1+ε)μY ] ≥ 1−δ

and E[N] ≤ γ1/μY .

From lemma 1, we know the stopping rule for obtaining
misinformation propagation estimates. Given δ ≥ 0, 0 ≤
ε ≤ 1, γ = 4(e − 2) · ln(2/δ)/ε2 and γ1 = 1 + (1 + ε)γ .
When the sum ofN times F(Λ̂)′/|V̂ | is greater than γ1, then
Pr[(1 − ε)F (Λ̂) ≤ F(Λ̂)′ ≤ (1 + ε)F (Λ̂)] ≥ 1 − δ. The
procedure for obtaining the estimated value F(Λ̂)′ is given
in Algorithm 4.

Proposition 6 The time complexity of the Influence
Estimate Procedure is O(N ∗ |Ê|).
Proof Algorithm 4 takes O(1) to compute γ1. It needs
at most O(|Ê|) to try to activate the inactive entities.
Satisfying ZY ≥ γ1 takes at most O(N ∗ |Ê|) time. Thus,
algorithm 4 takes O(N ∗ |Ê|) time to obtain F(Λ̂)′.

6.2 Supermodular curvature

Since the optimization problem of the set function is
NP-hard, minimizing the influence of misinformation is
generally impossible to achieve. Fortunately, we can use
the supermodular curvature to obtain the worst-case upper
bound. The supermodular curvature mainly indicates how
far the supermodular function is modular.

Given a nondecreasing set function g : 2I → R+ with
submodularity, and g(∅) = 0, the (total) curvature [37]
of the function g is �g = 1 − minv∈I

g(I )−g(I\{v})
g(v)

. Since
0 ≤ g(I)−g(I\{v}) ≤ g(v)−g(∅), we can get 0 ≤ �g ≤ 1,
and when �g = 0, g is modular. Let f : 2U → R+
be a monotonic nonincreasing supermodular function with
f (U) = 0. Suppose J (·) = f (∅) − f (·). Then, we can
obtain that J (·) is a nondecreasing submodular function,
and J (∅) = 0. Hence, according to the (total) curvature
of the submodular function, we give the definition of the
supermodular curvature.

Definition 9 (Supermodular curvature) Given a monotonic
nonincreasing supermodular function f : 2U → R+, and
f (U) = 0. Then its supermodular curvature is defined as

�f = 1 − minu∈U

f (U\{u})
f (∅) − f (u)

.
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Since the set function f is supermodular and f (U) = 0,
then 0 ≤ f (U\{u}) = f (U\{u}) − f (U) ≤ f (∅) − f (u),
we have 0 ≤ �f ≤ 1. When �f = 0 (or �f = 1), we
say that f is modular (fully curved). we know that F(·)
is a nonincreasing supermodular function, then F(Û) = 0
for Û = V̂ \R. Hence, we can derive the supermodular
curvature �F of the set function F .

Given a monotonic nonincreasing supermodular objec-
tive function F(·) of the problem of MIE-c, computing the
supermodular curvature �F of function F(·) is #P-hard.
Given a coupled social network Gcou(V̂ , Ê), a supermodu-
lar objective function F(·) and R, let N be the number of
Monte Carlo simulations, it takes O(N ∗ |V̂ ||Ê|) time to
obtain the estimated value �́F of �F .

6.3 Two-stage discrete gradient descent method

In this part, we develop a Two-stage Discrete gradient
Descent (TD-D) algorithm to solve the problem of MIE-
c. The main idea of the TD-D algorithm is to first obtain
the candidate entity set V̂sa . Then, based on certain criteria
(given in Section 7.3), select Ŵ as the initial solution Ŵ =
{ŵ1, ŵ2, · · · , ŵK}. Finally, Ŵ is iterated F(ŵ) to reach the
local optimal solution. Algorithm 5 summarizes the specific
steps of the TD-D procedure.

Proposition 7 The time complexity of the TD-D algorithm
is O(MI · N |Ê||V̂ |).

Proof Let MI be the number of iterations when the TD-
D algorithm converges, and let D be the maximum degree
of the entity in the coupled social network Gcou(V̂ , Ê). In
the TD-D algorithm, O(Ne) time is required to obtain Gcou,
where Ne = ∑n

i=1 |Ei |. It takes O(|V̂ |) to obtain V̂sa .

At most, O(K · D · N |Ê|) is required to update Ŵ . Since
K ·D � |V̂ |, the time complexity of the TD-D algorithm is
O(MI · N |Ê||V̂ |).

6.4 Two-stage greedymethod

A Two-stage Greedy (TG) algorithm is constructed based
on the hill climbing approach [38] and used as a baseline
for evaluating the TD-D algorithm. The procedure of the TG
algorithm is given in Algorithm 6. In Algorithm 6, first, V̂sa

is obtained according to Algorithm 3, and then the entity
with the largest reduction in F(·) is selected to protect it
until the K entities are selected.

Proposition 8 The time complexity of the TG algorithm is
O(KN |V̂ ||Ê|).

Proof In the TG algorithm, it takes O(Ne) to couple multi-
social networks G into Gcou, and it needs to spend O(|V̂ |)
to obtain V̂sa . At most O(KN |V̂ ||Ê|) is required to select
protected entity sets Λ̂. The total time spent isO(Ne+|V̂ |+
KN |V̂ ||Ê|), and the time complexity of the TG algorithm
is O(KN |V̂ ||Ê|).

Theorem 6 Let Λ̂∗ be the optimal solution of the
supermodular function F(·), and Λ̂ is the solution obtained
by the TG algorithm, which satisfies

F(Λ̂) ≤ 1 − �F

�F
[e

�F

1−�F − 1]F(Λ̂∗)

where �F is the supermodular curvature of function F .

Proof See Appendix A.4.

Remark 1 When the number of Monte Carlo simulations
MC ≥ N in the TG algorithm, the Λ̂′ obtained by the TG
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Table 2 The statistics of the Synthetic multi-networks

Synthetic #Nodes #Edges ND MD

Rand 1 1870 7122 8.25 109

Rand 2 2381 6853 5.75 87

Rand 3 2934 8139 5.54 95

Rand 4 3030 11154 7.36 126

Rand 5 4846 21786 8.99 218

algorithm is an (
1−�F

�F (e
�F

1−�F −1)+ε) approximation of Λ̂∗
and satisfies

Pr[F(Λ̂′) ≤ (
1 − �F

�F
(e

�F

1−�F − 1) + ε)F (Λ̂∗)] ≥ 1 − δ.

7 Experiment

Experiments were performed on a synthetic multi-networks
and three real-world multi-social networks to verify the
effectiveness of our developed algorithm. We implemented
our algorithms and other heuristic algorithms in Python.
All experiments were performed on a PC with a 3.60GHz
Intel Core i9-9900K processor and 32 GBMemory, running
Microsoft Windows 8.

7.1 Datasets

The synthetic multi-networks contains five random net-
works generated by the forest fire model [39]. By article
[39], we know that there are two parameters in the for-
est fire model: the forward burning probability fp and the
backwards burning ratio br . With the increase in fp and br ,
the networks generated by the forest fire model gradually
become denser, and the effective diameter decreases slowly.
Therefore, to make the synthetic network conform to the
realistic situation and form a complement to the real-world
network, we set fp = 0.33, br ∈ [0, 0.2]. The proper-
ties of the synthetic network are as follows: the number of
nodes from 1870 to 4846, the number of edges from 7122
to 21786, the forward burning probability is 0.33, and the
edge probabilities (backwards burning ratio) were randomly
selected from a uniform distribution between 0 and 0.2 for

Table 3 The statistics of Collaborator datasets

Collaborator #Nodes #Edges ND MD

CA-GrQc 5452 28980 11.03 162

CA-HepPh 12008 237010 39.48 982

CA-HepTh 9877 51971 10.52 130

Table 4 The statistics of Social datasets

Social #Nodes #Edges ND MD

Flixster 127K 514K 8.08 1862

Epinions 130K 841K 12.76 3622

YouTube 200K 1M 11.53 22634

each synthetic network. Accounts owned by entities on dis-
tinct random networks are set to the same tag (ID), and
the main procedure is: (1) A set of potential entities V q is
given, and each entity is assigned a unique tag. (2) Obtain
V c to satisfy V c ⊆ V q as the node set of the random
network. It is worth pointing out that a node in a random
network indicates an account owned by an entity and has the
same tag as its corresponding entity. (3) A random network
is generated based on nodes set V c leveraging the forest
fire model. Repeat steps (2) and (3) to ensure that accounts
owned by an entity in different random networks have the
same tag. The multi-networks detailed description is given
in Table 2, where ND is the average degree of accounts, and
MD denotes the maximum degree of accounts.

At present, the multiple accounts identification problem
[40] has become an independent research branch, and vari-
ous methods, such as FPM-CSNUIA [41] and ExpandUIL
[42], have been proposed to identify the multiple accounts
owned by an entity. Since the recognition of multiple
accounts of entities is not the focus on this article, we do not
present a method for multi-social networks account recog-
nition in real life, but conduct experiments with the help
of datasets with multiple accounts information. Next, we
introduce three real-world multi-social networks datasets:
Collaborator datasets, Social datasets, and multi-layer Twit-
ter datasets. The Collaborator datasets [39] contain three
collaborator networks in the fields of general relativity and
quantum cosmology, high energy physics and phenomena,
and high energy physics theory. In the collaborator network,
nodes represent scientists and edges indicate collaborations
(co-authoring a paper). Each scientist in the Collaborator
datasets is characterized by a unique label. Table 3 gives
details of the Collaborator datasets. The Social datasets
contain three online social networks: Flixster [43], Epin-
ions [43], and YouTube [44]. Considering the characteristics
of multi-social networks, in the Social datasets, we define

Table 5 The statistics of Twitter datasets

Twitter #Nodes #Edges ND MD

Mention 4694 6247 2.66 699

Reply 1494 1185 1.59 45

Retweet 4029 4776 2.37 404

Social 2100 69063 65.77 745
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Table 6 The statistics of accounts controlled by entities in multi-social
networks

Multi-social 1 2 3 4 5

Synthetic 6.1% 24.2% 37.9% 25.5% 6.3%

Collaborator 89.55% 10.02% 0.43% – –

Social 23.48% 26.74% 49.78% – –

Twitter 52.74% 33.33% 11.53% 2.39% –

accounts with the same label as belonging to the identical
entity. The specific information about the Social datasets
is given in Table 4. The Twitter [45] datasets contain four
sub-layer network: Mention, Reply, Retweet, and Social.
Accounts of entities in the four sub-layer networks in the
Twitter datasets have the same labels. Table 5 shows the
attributes of specific layers in Twitter.

Table 6 summarizes the information of entity control
accounts in multi-social networks. Table 6 shows that
entities with multiple accounts in multi-social networks
account for a small proportion of all entities. Entities with
two or more accounts accounted for the highest proportion
of Social datasets, and the lowest was Collaborator datasets,
accounting for only 10.45%. Thus, this is one of the reasons
for constructing the synthetic multi-networks in this article.

7.2 Experimental setting

7.2.1 Parameter setting

Since there is no common neighbor between the accounts
in the online social network, it is possible for them to
exchange information, so � = 0.3 is given. We give the
parameter ϕ = 0.9. We use the degree of the entity’s
control of the account in the online social network to express
the entity’s preference for it. We randomly and uniformly
select 3% of the total number of entities from each dataset
as R. Moreover, we give K = 0.03 ∗ |V̂ | in the social
dataset and K = 0.05 ∗ |V̂ | in the other datasets and the
iterative termination value of TD-D, ε = 0.01. To control
the approximate quality of the misinformation spread value,
we set ε = 0.05, δ = 0.01.

Table 7 The statistics of coupled social network datasets

Coupled Network |V̂ | |Ê| Max.Deg D

Synthetic CN 4993 56993 262 10

Collaborator CN 24465 317959 982 16

Social CN 202K 2.5M 22749 –

Twitter CN 7856 79045 1174 19

Table 8 The performance of all methods on Synthetic CN

K Betweenness Closeness Out-degree Random

0 1258.32 1258.32 1258.32 1258.32

23 1201.32 1201.94 1201.74 1203.69

45 1151.14 1149.53 1147.76 1153.95

68 1099.62 1101.43 1093.69 1105.96

90 1051.57 1052.52 1045.08 1054.75

136 952.85 959.69 950.1 961.98

181 869.81 874.88 854.83 873.58

226 788.95 792.8 782.18 801.3

7.2.2 Coupled of multi-social networks

Use Algorithm 2 to couple multi-social networks G into a
single social networkGcou. The details of the coupled social
network are given in Table 7, where Max.Deg denotes the
maximum degree of the entity, and D is the diameter of
Gcou.

7.3 Selection of initial feasible solution

The TD-D algorithm needs to be given an initial feasible
solution Ŵ = {ŵ1, ŵ2, · · · , ŵK}. Since different initial
solutions will affect the convergence speed of the TD-
D algorithm, we study the selection method of the initial
feasible solution based on entity characteristics such as
Out-degree Centrality (abbreviated as Out-degree) [15],
Closeness Centrality (Closeness) [46], and Betweenness
Centrality (Betweenness) [47]. We use the Synthetic CN
and Twitter CN datasets to evaluate the acquisition method
of the initial feasible solution, and the experimental results
are shown in Tables 8 and 9, where K is the number of
protected entities and the numbers in the table indicate the
spread value of misinformation.

As seen from Tables 8 and 9, the initial feasible solution
Ŵ selected by distinct methods on different datasets has
little disparity in the local optimal solutions obtained after
iteration. Then, we evaluate the efficiency of all initial

Table 9 The performance of all methods on Twitter CN

K Betweenness Closeness Out-degree Random

0 1680.84 1680.84 1680.84 1680.84

20 1617.45 1619.02 1617.25 1619.03

39 1573.19 1574.92 1570.77 1576.34

79 1471 1474.18 1487.22 1504.26

118 1391.47 1410.47 1396.2 1420.1

157 1316.84 1312.23 1324.22 1326.32

236 1178.41 1185.1 1141.23 1185.05

314 1023.74 1009.96 963.49 1034.4
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Fig. 5 The running time of all methods on Synthetic and Twitter CN

feasible solution selection methods by comparing the time
to obtain the local optimal solution, and the final result is
shown in Fig. 5. In Fig. 5, the time consumed by diverse
methods to obtain the optimal solution is discrepant, on
the whole; the Betweenness method is better than other
methods.

Next, we give the average number of iterations of the
discrete gradient in the TD-D algorithm based on diverse
initial solution selection methods on the Synthetic and
Twitter CN in Table 10. From Table 10, the Betweenness
method has the minimum number of iterations, and its
running time is relatively short, which is shown in Fig. 5.
Considering the performance and running time of distinct
initial feasible solution selection methods, the Betweenness
method is used to select the initial feasible solution Ŵ in the
TD-D Algorithm.

7.4 Comparisonmethod

The TG algorithm is used as a baseline to evaluate the
TD-D algorithm we developed, and the TD-D method is
compared with heuristic methods such as Degree Centrality
and PageRank. Next, we give the core ideas of these
heuristic methods.

Two-stage PageRank (TPR). PageRank [48] is a technol-
ogy that is calculated based on the hyperlinks between web

Table 10 The number of iterations of the discrete gradient on
Synthetic and Twitter CN by distinct methods

Coupled Network Betweenness Closeness Out-degree Random

Synthetic CN 6.7 8.3 8.3 6.8

Twitter CN 43.89 58.56 53.56 59.56

pages to reflect the relevance and importance of web pages.
The core of the TPR algorithm is to select the entity with
the largest PR in the candidate set V̂sa for protection.

Two-stage Degree Centrality (TDC). Degree Centrality
[49] is an index that characterizes the centrality of a node
based on its degree. The TDC algorithm selects the K

entities with the largest degree of centrality in V̂sa for
protection.

Two-stage RanDom (TRD). The TRD algorithm ran-
domly and uniformly selects K entities from the candidate
set V̂sa for protection.

7.5 Comparison of TD-D and heuristic methods

Next, we compare the TD-D algorithm with other existing
heuristic methods in four datasets by observing the
disparities of the misinformation spread value when
protecting diverse numbers of entities. The experimental
results are shown in Fig. 6.

We observe Fig. 6 and draw the following conclusions:
1) With the increase in the number of protected entities,
the influence of misinformation declines in distinct datasets
or diverse algorithms. 2) The performance of the TPR
and TDC algorithms is inconsistent. The TPR algorithm
in Collaboration CN is better than the TDC algorithm
in its ability to limit the spread of misinformation,
but vice versa in Twitter CN. 3) In the four datasets,
we developed the TD-D algorithm, which has the best
performance in misinformation control, while the TRD
algorithm performed the worst. 4) We assume that the
mean value of the reduction rate of the misinformation
spread in the four datasets under the action of the TD-
D algorithm is Ms(T DD). When K = 0.03 ∗ |V̂ |, we
can obtain Ms(T DD) = 34.43%, Ms(T DC) = 23.57%,
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Fig. 6 The misinformation spread on four datasets by diverse methods

Ms(T PR) = 24.23% and Ms(T RD) = 12.11%. It is
obvious that the performance of the TD-D algorithm in
suppressing the spread of misinformation is at least 10%
higher than that of other heuristic algorithms. In summary,
the performance of the existing heuristic methods on distinct
datasets is inconsistent and unstable. The performance of
the TD-D algorithm is stable under diverse datasets, and
the results are better than those of the existing heuristic
methods.

7.6 Comparison of TD-D and TG algorithms

Next, we utilize the TG algorithm as the baseline to evaluate
the TD-D algorithm in four datasets. Figure 7 shows the
difference between the TD-D and TG algorithms to suppress
the spread of misinformation when protecting the same

number of entities, where gR = SV m(T D−D)−SV m(T G)
SV o−SV m(T G)

.
SV m(T D-D) and SV m(T G) represent the spread value
of misinformation under the TD-D and TG algorithms,
respectively. SV o indicates the propagation value of
misinformation when K = 0.

From Fig. 7, we can observe that when the same
number of entities is protected, the discrepancy between
the spreading value of misinformation under the TD-D
algorithm and TG algorithm is very small in different
datasets; that is, the ability of the two algorithms to suppress
the spread of misinformation is basically the same.

In Table 11, we show the running time of the TD-D
and TG algorithms when protecting different numbers of
entities in the three datasets. In each dataset through the
comparison, we found that the running time of the TD-
D algorithm is far less than that of the TG algorithm.
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Fig. 7 The gap between the spreading value of misinformation under
the TD-D and TG algorithms

Moreover, with the increase in the number of protected
entities, the difference in running time between the two
algorithms gradually shrinks, but the running efficiency of
the TD-D algorithm is still much higher than that of the
TG algorithm. According to Fig. 7 and Table 11, TD-D and
TG have basically the same ability to suppress the spread
of misinformation, but the running time of TD-D algorithm
is much lower than that of TG algorithm. Therefore,
the comprehensive performance of TD-D algorithm in
controlling misinformation is better than that of the TG
algorithm. In general, the TD-D algorithm outperforms
other existing algorithms under distinct datasets and diverse
evaluation indexes.

8 Conclusion

In this article, the characteristics of the spread of misinfor-
mation across multi-social networks are considered, and we
propose an entity protection strategy to control misinfor-
mation in multi-social networks, and explore the problem

of misinformation influence minimization by entity protec-
tion on multi-social networks. We prove that the computing
information spread is #P-hard, and the objective function
of the problem of MIE-m is supermodular. We utilize tech-
niques such as multi-social networks coupled and pruning
rules to develop approximate methods for solving MIE-
m. We also construct a two-stage greedy algorithm with
approximate guarantees as a baseline to evaluate our devel-
oped TD-D algorithm. Experimental results on a synthetic
and three real-world multi-social networks, verify the fea-
sibility and effectiveness of our methods. In the future, we
will be interested in studying the control strategies and dis-
semination laws of misinformation in multi-social networks,
including interpersonal networks.

Appendix A: Proof

A. 1 Proof of theorem 1

Proof The problem of MIE-m tries to minimize the number
of entities ultimately activated by the misinformation,

which is equivalent to maximizing the number of entities
that are not influenced by R such that g(Λ) = |V | −
E [σR(Λ)]. We prove this by reducing the problem from
the NP-complete set cover problem [50]. We set |V | = m.
Let a ground set V = {v1, v2, · · · , vm} and a collection of
sets Λ = {Λ1, Λ2, · · · , Λy}, where ∪y

j=1Λj = V . The
set cover problem is to determine whether the union of K

sets in Λ is equal to V . Next, we will show that the set
cover problem can be regarded as a special case of the MIE-
m problem. Given an arbitrary instance of the set cover
problem, we construct a directed graph with m(n + 1) + y

nodes. For each subset Λj we construct a related node aj ,
for each element vz (1 ≤ z ≤ m), construct n + 1 nodes
uz, u

1
z, · · · , un

z , and create a directed edge (uz, u
i
z) for each

node ui
z(1 ≤ i ≤ n) with probability puzui

z
= 1. When

element vz belongs to Λj , we create a directed edge (aj , uz)

with probability paj uz = 1. Since the influence probability
between nodes is 1, the dissemination of information is

Table 11 TD-D and TG algorithms in running times

Synthetic CN Twitter CN Social CN

T ime(min) TD-D TG TD-D TG TD-D TG

0 0.77 0.59 0.16 0.14 2.21 2.2

0.2K 1.52 73.4 29.95 102.75 144.75 4047.9

0.4K 5.74 149.291 48.79 194.35 324.54 5741.7

0.6K 7.54 222.47 101.31 265.73 485.69 7438.43

0.8K 9.72 290.08 84.162 319.16 589.75 9178.515

K 18.5 363.297 92.46 357.83 842.8 10918.37
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a fixed process. Therefore, the set covering problem is
equivalent to deciding whether there are K nodes of Λ.

A.2 Proof of theorem 2

Proof When the number of online social networks is one,
that is, n = 1, the account in an online social network
can be equivalent to the entity. At this time, the problem
of MIE-m is equivalent to the problem of misinformation
influence minimization in single online social networks.
We already know that the influence spread computation
problem in online social network under the IC model is #P-
hard [15]. Since the problem of misinformation influence
minimization in online social networks is a special case of
the problem of MIE-m, the influence spread computation
problem in multi-social networks is also #P-hard, that is,
computing σR(Λ) is #P-hard in multi-social networks.

A.3 Proof of proposition 2

Proof We use the formula [51] to calculate the prob-
ability ϑ(w,R) of w being activated by R to prove
it. In multi-social networks G(G1, G2, · · · , Gn), given
R, we can get ϑ(w,R) = 1 − ∏n

i=1
∏

vi∈Nin(wi)[1 −
P f wd(vi)P inf (vi, wi)] for any w ∈ V , where Nin(wi)

is the set of parent neighbours of entity w in online
social network Gi . Then, we obtain that ϑ(w,R) =
1 − ∏

v∈Nin(w)

∏n
i=1[1 − P f wd(vi)P inf (vi, wi)] = 1 −∏

v∈Nin(w) 1 − p̂(v, w) = 1 − ∏
v̂∈Nin(ŵ) 1 − p̂(v̂, ŵ) =

ϑ(ŵ, R̂) for any ŵ ∈ V̂ , where Nin(w) is the set of par-
ent neighbors of entity w. Since V = V̂ , we have σR(Λ) =∑

w∈V ϑΛ(w,R) = ∑
ŵ∈V̂

ϑΛ(ŵ,R) = σ
R̂

(Λ̂) for all

Λ̂ ⊆ V̂ , and the proposition follows.

A.4 Proof of theorem 6

The proof framework is based on [52], but the supermodular
function that makes the proof applicable to the problem
of MIE-c requires some changes in the following. Given
a coupled social network Gcou(V̂ , Ê), an initial influence
entities R and a nonnegative nonincreasing supermodular
function F(·) with supermodular curvature �F . We set
U = V̂ \R, then F(U) = 0. Let W, M ⊆ U , W =
{w1, w2, · · · , wa} and M = {m1, m2, · · · , mb}, where
Wi = {w1, w2, · · · , wi} (i = 1, · · · , a) and Ms =
{m1, m2, · · · , ms} (s = 1, · · · , b) are sequences. For any
W ⊆ U , we set bw(W) = F(W\w) − F(W).

Lemma 2 For any W ⊆ U , F(W) =∑
wj ∈U\W bwj

(Wa+j ).

Proof By the definition of b·(·), we can get
F(W) = F(Wa) = F(Wa+1) + bwa+1(Wa+1) =
bwa+1(Wa+1) + F(Wa+2) + bwa+2(Wa+2) = · · · =
F(U) + ∑

wj ∈U\W bwj
(Wa+j ). Since F(U) = 0, the

lemma is proved immediately.

Lemma 3 For any W, M ⊆ U , it holds

F(W ∩ M) = F(M) +
∑

wj ∈M\W bwj
(M ∩ Wa+j )

= F(W) +
∑

mz∈W\M bmz(W ∩ Mb+z).

Proof F(M ∩W) = F(M ∩Wa) = F((M ∩Wa+1)\wa+1).
If wa+1 ∈ M\W , we obtain F((M ∩ Wa+1)\wa+1 ) =
F(M ∩Wa+1)+bwa+1(M ∩Wa+1). For any wa+1 /∈ M , we
have F({M ∩ Wa+1}\wa+1) = F(M∩ Wa+1), · · · . Finally,
we can deduce that F(M ∩W) = F({M ∩Wa}∪{M\W })+∑

wj ∈M\W bwa+j
(M∩ Wa+j ) = ∑

wj ∈M\W bwa+j
(M ∩

Wa+j ) + F(M). Then the first equation proof is complete.
Using a similar method, we can get F(W ∩ M) = F(W) +∑

mz∈W\M bmz(W ∩ Mb+z).
Given that Opt is an optimal solution to the problem

of MIE-c, the TG algorithm consecutively acquires the
sequences C0 = ∅, C1 = {c1}, · · · , Ci = {c1, c2, · · · , ci},
· · · , CK = {c1, c2, · · · , cK }. Suppose r = |U | − |Ci |,
W = U\W , Wi = U\Wi , and wj ∈ Wi . Without causing
ambiguity, we abbreviate bci

(Ci) as bi . Then, we can derive
Theorem 7.

Theorem 7 For i = 1, 2, · · · , K , it holds

F(Opt) ≥ (r − si)bi +
∑

j :cj ∈Ci∩Opt

bj − η
∑

j :cj ∈Ci\Opt

bj

where si = |Opt ∩ Ci | and η = �F

1−�F .

Proof Given any W, M ⊆ U , from Lemma 3, we
have F(M) = F(W) + ∑

mz∈W\M bmz(W ∩ Mb+z)

− ∑
wj ∈M\W bwj

(M ∩ Wa+j ). By the definition of super-

modular and �F , we have bwj
(M ∩ Wa+j ) ≤ bwj

(wj ) ≤
1

1−�F bwj
(U) ≤ 1

1−�F bwj
(Wa+j ). Since bmz(W ∩ Mb+z) ≥

bmz(W) for all mz ∈ W\M . Then, we can obtain
F(M) ≥ ∑

wj ∈W bwj
(Wa+j ) + ∑

mz∈M\W bmz(W) −
1

1−�F

∑
wj ∈W\M bwj

(Wa+j ) = ∑
wj ∈W∩M bwj

(Wa+j ) +
∑

mz∈M\W bmz(W) − �F

1−�F

∑
wj ∈W\M bwj

(Wa+j ).

Let M = Opt , W = Ci and η = �F

1−�F , we can get

F(Opt) ≥ ∑
mz∈Opt\Ci

bmz(Ci) + ∑
cj ∈Ci∩Opt bcj

(Ci+j )

−η
∑

cj ∈Ci\Opt bcj
(Ci+j ). By definition of Opt and Ci ,

for any mz ∈ Opt\Ci , bmz(Ci) ≥ bci
(Ci). Therefore,

6417Misinformation influence minimization by entity protection on multi-social networks



∑
mz∈Opt\Ci

bmz(Ci) ≥ |Opt\Ci | ·bci
(Ci) = |Opt\{Opt ∩

Ci}| · bi = (r − si)bi , where si = |Opt ∩ Ci |. Finally,
we get F(Opt) ≥ (r − si)bi + ∑

j :cj ∈Ci∩Opt bj −
η

∑
j :cj ∈Ci\Opt bj .

Given C = CK , C = {c1, · · · , cj , · · · , cr } and Cj =
{c1, c2, · · · , cj }. Let Opt ∩ C = {u1, u2, · · · , us}, where
s ≤ r , that is {u1, u2, · · · , us} be the elements not contained
in Opt or C. Suppose bj = F(C ∪ {Cj\cj }) − F(C ∪
Cj ). By Lemma 2, we can obtain F(C) = ∑

j :cj ∈C bj .

Then, the approximation ratio is defined as F(C)
F (Opt)

=
∑

j :cj ∈C

bj

F (Opt)
. Define yj := bj

F (Opt)
, j ∈ [r]. Since bj ≥

0, then yi ≥ 0. We define L(Opt ∩ C) = ∑
j :cj ∈C

bj

F (Opt)
.

Considering 1 ≤ s ≤ r , for the variables yj ,
there are r constraints. Hence, the worst-case approximate
ratio of F(C)

F (Opt)
can be expressed as the following Linear

Programming (LP).

L({u1, · · · , us}) = max
∑r

j=1 yj

s.t . yj ≥ 0, j = 1, · · · , r (A1)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

r
−η r
...

...
. . .

−η −η · · · r
−η −η · · · 1 r − 1 0
...

...
...

...
. . .

−η −η · · · 1 1 · · · r − s
...

...
...

...
...

. . .
−η −η · · · 1 1 · · · −η · · · r − s

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y1
y2
...

yj

yj+1
...
ys

...
yr

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≤

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1
...
1
1
...
1
...
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Lemma 4 L({u1, u2, · · · , us−1}) ≥ L({u1, u2, · · · , us})
for any s = 1, 2, · · · , r .

Proof We abbreviate L({u1, u2, · · · , us}) as Ls for
simplicity. Let cj = us . When yj > 0, an opti-
mal solution for LP Ls has the following form Y ∗

s =
{y1, · · · , yj−1, yj , yj , yj

r−s+η
r−s

, · · · , yj (
r−s+η
r−s

)r−j−1}.
We construct a feasible solution Ys−1 of Ls−1. Sup-
pose the first j elements of Ys−1 are consistent with
the first j elements of Y ∗

s , then Ys−1 can be expressed
as {y1, · · · , yj−1, yj , yj

r−s+η+1
r−s+1 , · · · , yj (

r−s+η+1
r−s+1 )r−j }.

We can obtain L∗
s − Ls−1 = yj + yj

r−s+η
r−s

+ · · · +
yj (

r−s+η
r−s

)r−j−1 − yj
r−s+η+1
r−s+1 − · · · − yj (

r−s+η+1
r−s+1 )r−j =

yj [1 − r−s+η+1
r−s+1 ] + · · · + yj [( r−s+η

r−s
)r−j−1 −

(
r−s+η+1
r−s+1 )r−j ] ≤ 0. When yj = 0, the form

of the optimal solution of LP Ls can be writ-
ten as Y ∗

s = {y1, · · · , yj−1, 0, yj−1
r−s+η+1

r−s
,

yj−1
r−s+η+1

r−s
r−s+η
r−s

, · · · , yj−1
r−s+η+1

r−s
(
r−s+η
r−s

)r−j−1}.
Similarly, let the first j − 1 items of Ys−1 be consistent with
the first j − 1 items of Y ∗

s , then Ys−1 can be expressed as
{y1, · · · , yj−1, yj−1

r−s+η+1
r−s+1 , · · · , yj−1(

r−s+η+1
r−s+1 )r−j+1}.

Then L∗
s − Ls−1 ≤ 0. Hence, L({u1, u2, · · · , us−1}) ≥

L({u1, u2, · · · , us}) for any s = 1, 2, · · · , r .

Theorem 8 Given that C is the solution obtained by the
greedy algorithm, Opt is the optimal solution of MIE-c,
which satisfies

F(C) ≤ 1 − �F

�F
[e

�F

1−�F − 1]F(Opt).

where �F is the supermodular curvature of set function F .

Proof From LP (A1), it can be inferred that F(C) ≤
F(Opt) · L({u1, · · · , us}) for any s = 1, · · · , r . By lemma
4, we can obtain L({u1, · · · , us}) ≤ L({u1, · · · , us−1}) ≤
· · · ≤ L(∅). Hence, F(C) ≤ F(Opt) · L(∅). When
Opt

⋂
C = ∅, based on LP (A1), we can derive L(∅) =

1
r
+ r+η

r·r + · · · + (r+η)j

r·rj + · · · + (r+η)r−1

r·rr−1 = 1
η
[ (r+η)r

rr − 1] =
1
η
[(1+ η

r
)r −1] ≤ 1

η
[eη−1]. Let η = �F

1−�F , and the theorem
is proved immediately.
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