
https://doi.org/10.1007/s10489-022-03788-7

Interpreting a deep reinforcement learning model with conceptual
embedding and performance analysis

Yinglong Dai1,2 ·Haibin Ouyang3 ·Hong Zheng4 ·Han Long1 · Xiaojun Duan1

Accepted: 18 May 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
The weak interpretability of the deep reinforcement learning (DRL) model becomes a serious impediment to the application
of DRL agents in certain areas requiring high reliability. To interpret the behavior of a DRL agent, researchers use saliency
maps to discover important parts of the agent’s observation that influence its decision. However, the representations of
saliency maps still cannot explicitly present the cause and effect between an agent’s actions and its observations. In this paper,
we analyze the inference procedure with respect to the DRL architecture and propose embedding interpretable intermediate
representations for an agent’s policy, the intermediate representations that are compressed and abstracted for explanation.
We utilize a conceptual embedding technique to regulate the latent representation space of the deep models that can produce
interpretable causal factors aligned with human concepts. Furthermore, the information loss of intermediate representation
is analyzed to define the model performance upper bound and to measure the model performance degeneration. Experiments
validate the effectiveness of the proposed method and the relationship between the observation information and an agent’s
performance upper bound.

Keywords Deep reinforcement learning · Deep neural networks · Interpretability · Conceptual embedding · Perturbation ·
Causality

1 Introduction

The great achievements in various image processing and
speech processing tasks demonstrate the powerful function
approximation ability of deep learning (DL) methods for
high-dimensional data processing. Borrowing the techniques
of DL, a new subbranch of reinforcement learning (RL),
termed deep reinforcement learning (DRL), demonstrates
excellent performance in many complex decision-making
tasks. Since the deep Q-network (DQN) [1] has achieved
human-level performance in a majority of Atari games,
researchers have contributed many methods to the DRL
approach, e.g., extending DRL to a continuous action space
[2], asynchronous training [3], robust exploration [4], and

� Yinglong Dai
daiyl@hunnu.edu.cn

� Xiaojun Duan
xjduan@nudt.edu.cn

Extended author information available on the last page of the article.

effective sampling [5]. DRL methods have achieved many
successes in various fields, such as games [6, 7], robotics
[8–10], natural language processing [11, 12], and healthcare
[13–15].

DRL algorithms are able to train an effective artificial
intelligence (AI) agent, but the agent’s behavior becomes
uninterpretable due to the introduction of a deep learning
model. Human beings cannot feel relieved when AI agents
execute important tasks without reason, particularly in fields
such as automatic pilot and healthcare. For example, a
patient will have no idea how to choose an appropriate
therapy if a healthcare agent just recommends to the patient
a list of therapies without providing any referred reason.
More seriously, the black-box model is susceptible to
adversarial attacks [16]. In addition, end-to-end training
DRL methods that lack interpretability are very difficult to
debug and optimize. DRL agents with good interpretability
will be a significant advancement before they are deployed
to real-world scenes. Accordingly, the interpretability of
DRL methods is becoming increasingly important [17, 18].
Despite its importance, the interpretable property of DRL
methods has not received enough attention. The difficulties
are mainly derived from the poor interpretability of deep

/ Published online: 12 July 2022

Applied Intelligence (2023) 53:6936–6952

1 3

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-022-03788-7&domain=pdf
http://orcid.org/0000-0002-2999-0541
mailto: daiyl@hunnu.edu.cn
mailto: xjduan@nudt.edu.cn

Interpreting a deep reinforcement learning model with conceptual embedding and performance analysis

neural networks (DNNs) applied in DRL models, and the
interpretability of a model is difficult to measure.

As prior work in terms of interpretable DRL, Greydanus
et al. [19] borrowed saliency map techniques from the inter-
pretable DL field for DRL to visualize the important parts of
an agent’s observation and to interpret the relationship
between the observation of an agent and the behavior of an
agent. By generating saliency maps by perturbation tech-
niques, they demonstrated the effectiveness of the methods
in explaining an agent’s attention, the reason for its decision,
and the evolving learning process. Puri et al. [20] proposed
a specific and relevant feature attribution (SARFA) that
improved the precision of the saliency map techniques com-
pared with Greydanus’s work. The saliency maps generated
by the proposed attribution can focus more on the action-
related features, so they can provide more accurate and
focused interpretations. Although their methods can provide
related information between the observation data and the
decision-making processes, the related information is lacks
sufficient clarity and needs to be further explained for non-
professionals. Specifically, the saliency maps still enable
no explicit interpretability of the relationship between the
output action and the input observation data.

In this paper, we analyze the relationship between an
agent’s actions and its observations from the perspective
of information theory. A best policy exists in the condition
of limited information provided by observation data. An
agent’s performance upper bound will be determined by
the amount of information contained in an observation.
To provide explicit interpretability and the causal factors
for the deep model, we propose a conceptual embedding
technique to enhance the interpretability of a DRL-based
agent. We seek the conceptual factors that directly relate
to certain actions and need to measure the importance of
the conceptual factors that affect the decisions of agents.
Consequently, we can directly track the decision-driven
factors for the agents’ different behaviors. To retain the
effective information contained in the observation, we
analyze the observation information of the latent features
with respect to the agent’s performance. Through a simple
example, we also demonstrate how the information loss of
the observation can degenerate an agent’s performance. The
key contributions of this paper are concluded as follows:

• Intermediate representations are introduced to address
the problem of causality between action and observation.

• A conceptual embedding method is proposed to
produce interpretable representation spaces in the deep
reinforcement learning model.

• Based on information theory, a relationship between an
agent’s performance upper bound and its observation
information is identified.

In the following part, we divide this paper into five
sections. In Section 2, we review research on interpretable
DRL methods and summarize the main approaches. In
Section 3, we analyze the information processing of DRL-
based agents and propose our method to improve the
interpretability of DRL agents. Hierarchical conceptual
embedding techniques are proposed, and the corresponding
analyses are presented based on information theory. Next,
certain experiments that can validate the proposed method
and corresponding analyses are demonstrated in Section 4.
We have a discussion in Section 5 and conclude this paper
in Section 6.

2 Related work

In the early stage of the DRL development, Zahavy et al.
[21] applied the t-distributed stochastic neighbor embedding
(t-SNE) technique to explain the behavior of DQN-based
agents in Atari environments and presented the embedding-
based approach of aggregating the representations for state
space. It is a good starting point to analyze the behavior
of DRL-based agents from the perspective of observation
space and state space, and the reduced state space is
more easily related to an agent’s behavior. However, the
authors just aggregated the state space and did not trace the
influence of different features on an agent’s behavior. It is
still necessary to identify an explicit relationship between
an agent’s behavior and its observation.

With the development of interpretable DL, researchers
have begun to borrow techniques from the interpretable
DL field that can be applied to interpret DRL-based
agents. Saliency maps are the main adopted techniques that
highlight the important parts of observation data related
to an agent’s decisions. Generally, the gradient-based
approach and perturbation-based approach are the two
main approaches. The gradient-based approach observes
the sensitive features that greatly influence an agent’s
decision by calculating the gradients. As an efficient
approach, Simonyan et al. [22] calculated the Jacobian of
the DNN model weights to extract the class saliency maps.
Assume that Si[O] is the score of class i with respect
to observation O. The saliency map of the DNN weights
is calculated by the derivative of Si[O] with respect to a
specific observation o, i.e., ∂Si [O]

∂o
. Next, certain improved

variants have been proposed to generate more interpretable
saliency maps, such as DeepLIFT [23] and Grad-CAM
[24]. Although gradient-based methods are mathematically
reasonable for computing saliency maps, they are sensitive
to noise and often generate meaningless salient points.
Specifically, the gradient-based methods cannot be applied
to the nondifferentiable models of the agents, and they

1 3

6937

Y. Dai et al.

cannot be carried out when the models of the agents are
provided as packaged black-boxes.

The perturbation-based approach discovers the important
features that can determine an agent’s decision by perturb-
ing certain original features and then observing the variance
of an agent’s decision. This approach is more intuitive and
can provide straightforward explanations. To interpret DL
models, Fong and Vedaldi [25] proposed a perturbation
framework to discover the class-related parts of an image
for any black-box model. Recently, the perturbation-based
approach has become popular for interpreting the behavior
of a DRL-based agent. Greydanus et al. [19] employed a
perturbation-based method based on Gaussian blur that can
produce saliency maps with respect to the actor network and
critic network in the DRL architecture of A3C [3]. Let S[f]
be the importance score or saliency score of the observa-
tion feature f with respect to an agent’s action a, and let
o′ be the perturbed observation of the original observation
o with respect to feature f . S[f] can be calculated by mea-
suring the agent’s policy π(·) difference between the two
observations, i.e., S[f] = ‖π(o)−π(o′)‖ or the value func-
tion Vπ(·) difference, i.e., S[f] = ‖Vπ(o)−Vπ(o′)‖. Based
on the work of Greydanus et al., Puri et al. [20] designed
an improved metric, termed SARFA, which can filter many
irrelevant features and only highlight the key features with
respect to a particular decision. However, it incurs a high
computational cost of perturbing high-dimensional observa-
tion data, and the saliency maps are not explicitly related to
the adopted actions.

The work of Iyer et al. [26] applies an idea similar to the
premise of this work. The authors proposed a recognition
process in the decision process of a DRL-based agent and
produced saliency maps of the conceptual objects rather
than raw pixel features to analyze the decision process of
a DRL-based agent. Nevertheless, the authors still try to
interpret the raw input data, and it is difficult to search the
objects and analyze the complicated relationships with high-
dimensional data. In addition, certain studies introduced
causal models for DRL agents [27, 28]. However, causal
models have to be defined previously, and their fatal defect
is that they cannot discover unknown causal factors from

observations. An overview of the approaches is shown
in Table 1. In this work, we borrow ideas from the
perturbation-based approach and propose our method based
on conceptual embedding techniques. We try to explain
the causality between an agent’s action and its observation
in a reduced representation space. To make the features
more explicit and more interpretable for human beings,
we propose building the conceptual features in the hidden
layers of DNN-based models and analyzing the effective
information contained in the features for an agent’s policy.
Furthermore, we can analyze the relationship between
an agent’s upper bound performance and its observable
information.

3 Conceptual embedding in DRL

For the concept of model interpretability, researchers may
have their own definition with respect to their different
points of view. Nevertheless, it will not be incorrect to
conclude that a model has good interpretability if we
can track and detail the decision process of the model.
In this work, we aim to track the main decision process
of DRL agents and to discover the salient features and
interpretable factors that directly impact certain actions of
DRL agents. First,we analyze the causality between an
agent’s observation and its adopted action. The intermediate
representation space of DRL model is analyzed based on
information theory. Second, we propose using hierarchical
conceptual embedding techniques to build DNN-based
architectures in DRL agents so that we can embed prior
knowledge into the DNN architectures and constrain the
representation spaces of DRL agents. Third, we propose
to generate saliency values for the conceptual embedding
activations in the DNNs so that we can discover the
important factors and track the decision process of DRL
agents. Because the conceptual embedding techniques can
be utilized for any DNN-based model, it is a general
framework that can be applied in different DRL algorithms
to embed conceptual factors and interpret the causal factors
of deep models.

Table 1 Overview of interpretable DRL approaches

References Approach Explanation level Causality Computational cost Information loss

[21] Embedding-based Reduced state space Weak Low Middle

[23, 24, 26] Gradient-based Observation space Weak Middle Low

[19, 20] Perturbation-based Observation space Weak High Low

[27, 28] Causal models Abstract concepts Strong Low High

Ours Embedding-based Reduced representation space Strong Low Low

1 3

6938

Interpreting a deep reinforcement learning model with conceptual embedding and performance analysis

3.1 Preliminaries

RL [29] can be formulated with Markov decision process
(MDP) that can be defined by a six-element tuple <

S,A, T , s0, r, γ >, where S is a set of states s, A is a set
of actions a, T is a transition function st+1 ∼ p(st+1 |
st , at) used to present the state transition probabilities of the
environment from time step t to t + 1, s0 is the initial state
distribution, r is a reward function to generate the reward at
each time step rt+1 = r(st , at , st+1), and γ ∈ [0, 1] is the
discount factor.

Generally, DRL refers to the RL methods that use deep
neural networks (DNNs) to approximate the value function
or/and policy function. DRL usually addresses the partially
observable MDP (POMDP) problem [30], in which the
agent cannot directly observe the true latent state of the
environment. The agent can only receive high-dimensional
observable data o generated by the latent state s of the
environment and then infer the latent state, expressed as
p(s | o). The framework formalization can be extended to
an expanded tuple < S,O,A, T ,G, s0, r, γ >, where O is
the set of observations o, and G is the observation generation
function that specifies the probability of observation ot

given a certain state st , expressed as ot ∼ p(ot | st). An
extension of the POMDP is a partially observable stochastic
game (POSG) [31, 32], which is employed for multiagent
systems. This work will focus on an agent, so we will not
further discuss the POSG.

The DRL framework of an agent is illustrated in Fig. 1.
The agent, which is a module that receives the

observation of the environment ot with the reward signal
rt and outputs an action at , repeatedly interacts with the

Agent

Environment

,

action
observation,

reward

~ (|)

max∑ , ∈ [0,1]

Fig. 1 Illustration of the DRL framework of an agent with a POMDP
environment. The objective of the agent is to learn a DNN-based policy
πθ to maximize its return, i.e., maxπθ

∑∞
k=0 γ krt+k . The environment

has a latent state transition function, which is represented as a
conditional probability function p(st+1 | st , at). The latent state st+1
produces an observation ot+1 by p(ot+1 | st+1)

environment. The POMDP environment is influenced by
the agent’s action at and changes its latent state to st+1

corresponding to observation ot+1 with the reward signal
rt+1. The objective of the agent is to learn an optimal policy
πθ(a | o) to gain maximum future return R, written as

R =
∞∑

k=0

γ krt+k, (1)

where γ ∈ [0, 1] is the discount factor. To judge the
expected future return when an agent adopts a given policy
in a certain state, we can use the state value function Vπ(s)

with respect to policy π , expressed as

Vπ(s) = Eπ [
∞∑

k=0

γ krt+k | st = s], (2)

where Eπ denotes the expectation under policy π and Vπ(s)

is used to estimate the expected return when an agent enters
a certain state s. To judge the expected future return when an
agent adopts a certain action in a certain state and conducts
a given policy in the following step, we can use the state-
action value function Qπ(s, a) with respect to policy π ,
expressed as

Qπ(s, a) = Eπ [
∞∑

k=0

γ krt+k | st = s, at = a], (3)

where Qπ(s, a) is used to estimate the expected return if
an agent adopts a certain action a in a certain state s. With
regard to DRL methods, DNNs are typically deployed to
construct and learn the complicated policy function πθ(a |
o). For instance, the value-based DRL methods such as
DQN [1] employ DNNs to fit the state value function
Vπ(s) or the state-action value function Qπ(s, a) to guide
the policy, and the policy-based DRL methods such as
TRPO [4] directly apply DNNs to learn the policy function
πθ(a | o) that directly maps an observation o to an action
a. There are also combination methods, such as DDPG [2],
A3C [3], and SAC [5]. These methods are termed actor-
critic algorithms, whose policy optimization is guided by a
learned value function. Although DNNs have great function
approximation ability for DRL methods, they also become
a main source of poor model interpretability. The end-
to-end trained models based on DNNs only consider the
results, and the reasons why the results are produced are
disregarded.

3.2 Causality between action and observation

For the behavior of an agent, there is a strong causality
between the action and the observation. An agent will
adopt an action a according to its observation o. Different
observations will prodcue different actions. Particularly,
assume a well-trained agent with a fixed policy πθ(a | o)

1 3

6939

Y. Dai et al.

that

p(A = a | O = o) = 1. (4)

Equation (4) means that an observation o will determine an
action a of the agent. Therefore, we can also state that the
observation is the cause and that the action is the effect. The
causality can be denoted as

o → a. (5)

The observation spaces in terms of DRL problems,
such as images, are usually high-dimensional. Current
methods try to discover the relationship between actions
and observations. It is difficult to directly obtain the
causality between a raw high-dimensional observation and
an action. Even though the methods can identify the
important observation parts, it is still difficult to provide
explicit reasons for an agent adopting a certain action.In
the following subsection, we introduce an intermediate
representation to construct the causal relationship and
analyze the process based on information theory.

3.2.1 Intermediate representation embedding

For human beings, high-dimensional sensory signals will
form abstract concepts in the brain’s cognitive system,
and decisions will be made by reasoning according to the
concepts. It is reasonable to map the high-dimensional
observation space into a compact representation space for
decision-making. The causes in a compact representation
space are easier to interpret than in a raw high-dimensional
observation space. Therefore, we propose an embedding
causality discovery approach for interpreting the behavior
of a DRL agent. Instead of directly establishing the
causality between an action a and an observation o, we
introduce an intermediate representation v, which is a
mapping representation from the observation space. We just
need to determine the causality between the intermediate
representation v and the action a. We obtain v from
observation o, denoted as

v = φ(o). (6)

The mapping function φ(·) might be a fixed nonlinear
transformation that can map a certain observation or
similar observations o into a certain representation v. The
mapping function can be a one-to-one mapping or a many-
to-one mapping, but not a one-to-many mapping. The
representation v is determined by a certain observation o,
formulated as

p(V = v | O = o) = 1. (7)

Therefore, the process can be denoted as

o �→ v → a. (8)

The observation o maps to (denoted as �→) a representation
v, and then we use v to deduce action a. We just need to
discover the causality between the intermediate represen-
tation v and the action a. Therefore, we can transform a
high-dimensional observation space to a compressed repre-
sentation space with good interpretability, in which the main
causes of an agent’s behavior are easy to obtain. However,
this transformation will prompt a question. Will the com-
pressed representation produce information loss and cause
an agent’s performance decline? To answer this question,
we analyze the process based on information theory.

3.2.2 Information loss of observation space reduction

The observation space transformation may cause informa-
tion loss for action decision-making. For instance, action
selection will increase uncertainty when the transformation
loses certain observation information. Formally, assume
that given an observation o, the original action selection
conditional probability distribution is

a ∼ p(A | O = o). (9)

The uncertainty of the action selection can be measured by
conditional entropy as

H(A | O) =
∑

o

p(o)H(A | O = o)

= −
∑

o

p(o)
∑

a

p(a | o)log2p(a | o)

= −
∑

o,a

p(a, o)log2p(a | o).

(10)

The conditional entropy H(A | O) will indicate
how much information the observation can provide for
an agent’s decision. A larger H(A | O) means a
smaller amount of observation information, and vice versa.
After we introduce the intermediate representation c for
action decision-making, the action selection conditional
probability distribution will be

a ∼ p(A | C = c). (11)

The uncertainty of the action selection on the basis of the
intermediate representation will be

H(A | V) =
∑

h

p(h)H(A | V = v). (12)

The conditional entropy H(A | V) will indicate how much
information the intermediate representation can provide for
an agent’s decision. A larger H(A | V) means a smaller
amount of information, and vice versa. We assume a rational
agent that can make the best decision estimation according
to its observation. The more information is observed by
the agent, the more certain the behavior of the agent. The
information loss of the transformation from observation

1 3

6940

Interpreting a deep reinforcement learning model with conceptual embedding and performance analysis

space O to intermediate representation space V can be
defined by the difference between (12) and (10).

Definition 1 (Observation Information Loss) The observa-
tion information loss from observation space O to inter-
mediate representation space V can be measured by the
increased uncertainty in an agent’s behavior according to
(10) and (12), as

LV = H(A | V) − H(A | O). (13)

A larger LV means a larger amount of information
loss when the observation space O maps to intermediate
representation space V . A good intermediate representation
space V should have low observation information loss.
Hence, (13) can be a metric for optimizing the mapping
function (6).

Intuitively, the observation information loss will reduce
the performance of the agent. It is necessary to minimize LV

in the agent training phase, such as introducing an additional
loss term to the objective function.

There is also a problem of how to estimate the probability
distributions p(a | o) and p(o). It may be impossible to
know the precise latent distributions of the environment.
However, one approximation method is to count the
historical observation o proportion and observation-action
pair (o, a) proportion. The representation v proportion
and observation-action pair (o, a) proportion can also be
counted by the same experience because each observation o

can be mapped to the corresponding representation v.

3.3 Hierarchical conceptual embedding

Due to the increasingly high-dimensional state space and
action space, DRL agents have to explore exponentially
growth spaces that face the curse of dimensionality. A
hierarchical learning architecture is a way to solve this
problem by dividing a large problem into small subproblems
and by conquering each subproblem to solve the high-
level problem [33]. The hierarchical learning architecture
partially splits the complicated problem while detailing
the multilevel learning process from an easy level to a
difficult level, so it can make the model easy to interpret. To
explicitly demonstrate the interpretable factors aligned with
human concepts, the conceptual embedding technique [34]
can be utilized to embed prior knowledge in DNN models.
We propose combining a hierarchical learning architecture
and conceptual embedding techniques to improve the
interpretability for DRL agents, as illustrated in Fig. 2.

The DNN-based policy model of the DRL agent produces
actions according to observations from the environment.
Generally, the model is a black-box for humans, and
we are concerned with only its input and output. The

Output Layer

Hidden Layer

Input Layer

Observation

FNs CNs

FNs CNs

Embedding layer 2

Embedding layer 1

,

,

Action

Fig. 2 Illustration of hierarchical conceptual embedding architecture
for policy πθ (a | o) approximation. FN means free neuron, and CN
means conceptual neurons [34]

representation spaces of the hidden layers are often
meaningless and too complicated to be understood by our
concepts. Interpretation of all the variables of the hidden
neurons surpass human cognitive ability. Nonetheless, we
can catch the important factors and reduce them to a human-
interpretable representation space.

The DNN-based model can be regarded as a complex
function that maps an observation o to an action a through
multilayer nonlinear transformation,

a = f (o). (14)

When we backtrack the DNN architecture from the output
action a layer by layer. The computational result of a

is obtained from a previous subfunction that selects the
previous computational result (x1, c1) as input,

a = f1(x1, c1), (15)

where x1 and c1 denote the activation values of FNs and
CNs respectively, in macropolicy representation layer 1, and
f1(·) is a nonlinear transformation function. The activation
values of CNs c1 are meaningful representations related to
human concepts. Similarly, we can continue to backtrack to
the next layer,

(x1, c1) = f2(x2, c2), (16)

where x2 and c2 denote the activation values of FNs and
CNs respectively in macro-policy representation layer 2,
and f2(·) is another nonlinear transformation function.

We can also continue to backtrack to the input layer
in a similar way. However, the shallow layers near to the

1 3

6941

Y. Dai et al.

input layer are often employed to extract shallow features,
such as the edge information in images. We are mainly
concerned with the deep layers near the output layer that
have abstracted high-level representations, such as macro
strategy targets.

When an event is interpretable, it usually means that we
can ascertain the reasons and factors related to the event. For
an agent, if we can grasp the factors that caused an agent
to adopt a certain action, we can determine that the agent’s
behavior is interpretable. Therefore, to interpret the agents’
behavior, we can discover some latent variables related to
the adopted actions. The Pearson correlation coefficient
(PCC) is used to measure the correlation between two
variables. In our case, we can use the PCC to measure the
relationship between the activation of conceptual neuron c

and the corresponding probability of a specific action pa =
p(a | c) as

ρ(c, pa) =
∑

c(c − c)(pa − pa)
√∑

c(c − c)2
√∑

c(pa − pa)2
, (17)

where c is the mean of c, pa is the mean of pa , and
ρ(c, a) ∈ [−1, 1]. When ρ(c, a) > 0, there is a positive
correlation between c and p(a | c). The positive correlation
becomes stronger as the value increases. When ρ(c, a) < 0,
it means a negative correlation between c and p(a | c). The
negative correlation becomes stronger as the absolute value
increases. The case ρ(c, a) = 0 also exists, which makes it
difficult to interpret the relationship between c and p(a | c).
We hope that the latent embedding c has a strong correlation
with the probability pa of action a. The value of c will
influence the probability of adopted action a. Therefore, to
the original objective function for training, we can add an
extra optimization objective, expressed as

max |
∑

c

ρ(c, pa) | . (18)

3.4 Perturbation technique for conceptual
embedding

Saliency maps are usually applied to perturb the input layer
and to observe the changes in the output layer. In our case,
we apply the techniques of saliency maps with the hidden
layers. As we embed certain interpretable prior-knowledge
into the hidden layers, we can also generate saliency maps
for the conceptual embedding factors using the related
methods.

Typically, the saliency of specific features can be
measured by policy difference as (19), by the value
difference as (20), or by the Q-value difference as (21)

between original observation o and perturbed observation o′
with respect to feature f .

S[f] = ‖π(o) − π(o′)‖. (19)

S[f] = ‖Vπ(o) − Vπ(o′)‖. (20)

S[f] = ‖Qπ(o, a) − Qπ(o′, a)‖, (21)

where S[f] is the salient metric value of feature f , π(·)
is the policy function that outputs an action according
to a given observation, Vπ(·) is the observation value
function that directly judges the state value according to
an observation, and Qπ(·, ·) is the observation-action value
function that judges the state-action value according to an
observation and an action. ‖ · ‖ denotes the norm function,
typically the �2 norm, used to calculate the distance between
two vectors.

Equations (20) and (21) presented in [19] judge the
summarized difference over all actions rather than specific
actions or factors. Therefore, they cannot highlight the
saliency maps for the specific factor. Iyer et al. [26] adopted
the Q-value difference as shown in (21), which is somewhat
specific to the actions. However, they still could not provide
distinct and sufficient interpretability for the DRL agents
and disregared the exclusive effects on certain actions.

We propose to generate saliency values for the inter-
pretable CNs in the hidden layers to provide deeper insight
into the behaviors of DRL agents and to track the factors
that influence the decisions. For the CN activation c, we can
also measure the difference between the original activation
and the perturbed activation with respect to feature f as

Sc[f] = ‖fc(o) − fc(o
′)‖, (22)

where fc(·) denotes a function, which is a part of the
feedforward computation of the DNN model, outputting
activation c. For more general cases, the measured activation
c can also be a CN or a group of CNs.

According to (22), we can generate the saliency values
for all the CNs and actions. As a result, we can backtrack
the salient decision factors from the action output layer.

On the other hand, we can also regard the CNs as input
for the action output. Hence, we can also judge the influence
of each CN activation c based on the final action decisions,
represented as

Sa[c] = ‖fa(c) − fa(c
′)‖, (23)

where fa(·) denotes the transformation function to the
action output layer, and c′ denotes the perturbed c.

3.5 Measurements of model performance

To improve an agent’s performance and interpretability,
we must quantify the performance and interpretability.

1 3

6942

Interpreting a deep reinforcement learning model with conceptual embedding and performance analysis

Informally, an agent can achieve good performance when it
can receive enough information from the environment, and
we can achieve a model with good interpretability when
we can identify the key factors that drive the agent adopt a
certain action.

3.5.1 Causality completeness

With regard to an agent, its observation will determine
its action. To interpret the DRL model, we discover
the key causal factors contained in the observation that
influence the agent’s action. We can measure the model
interpretability from the aspect of whether the conceptual
neurons can provide all the reasons for a certain action,
that is, whether the set of conceptual neurons can provide
enough information to determine an agent’s action. Hence,
our task is to measure the information completeness of the
conceptual neurons, i.e., interpretable factors, with respect
to the agent’s observation.

Without any observation and prior knowledge, we can
estimate that all the actions have the same probability
according to the principle of maximum entropy. Assume
that the number of available actions is m, the uncertainty
of an agent’s behavior A can be measured by information
entropy, represented as

H[p(A)] = −
∑

a

p(a)log2p(a) = log2m. (24)

Definition 2 (Complete Causal Factor Set) If a set of causal
factors V = {V1, . . . , Vn} completely determines an agent’s
action A, the set is a complete causal factor set. Formally,
given the specific causal factor v = {v1, . . . , vn}, the best
estimated action of the agent can be determined as

p(A = a | v) = 1. (25)

The behavior uncertainty can be defined by conditional
entropy as

H[p(A | V)] = −
∑

v

p(v)
∑

a

p(a | v)log2p(a | v) = 0.

(26)

The causal factor set V is a complete causal factor set for an
agent’s behavior A.

For general cases, we can define the degree to which a
causal factor set can impact an agent’s behavior.

Definition 3 (Causal Factor Set Completeness) Causal
factor set completeness can be defined by information
entropy as

N = H[p(A)] − H[p(A | V)]
H[p(A)] , (27)

where N ∈ [0, 1].

Similar to Definition 3, we can define the causal factor
set completeness with respect to conceptual causal factor C.

Definition 4 (Conceptual Causal Factor Set Completeness)
Conceptual causal factor set completeness can be defined as

NC = H[p(A)] − H[p(A | C)]
H[p(A)] . (28)

Conceptual causal factor set completeness describes
the degree to which the conceptual factor set C impacts
the agent’s action. We can use NC to measure the
interpretability of an agent’s behavior. A larger NC means
better interpretability. NC = 0 means that the agent’s
behavior is totally unpredictable in terms of conceptual
causal factors and that we cannot interpret the agent’s
behavior. The agent’s behavior depends on conceptual
causal factors when NC = 1, and we can interpret all the
agent’s behaviors through the interpretable causal factors.

Definition 5 (Complementary Causal Factor Set) If the
conceptual causal factor set C combined with another factor
set X can determine the action, i.e.,

H[p(A | C, X)] = 0,

then the factor set X is a complementary free causal
factor set of conceptual factor set C. The causal factor set
completeness of the combination (C, X) is

NC,X = H[p(A)] − H[p(A | C, X)]
H[p(A)] = 1.

3.5.2 Observation information and agent performance

Does a causal factor set contain the full observation
information for decision-making? How much information
will the intermediate causal representations lose, and to
what degree will the model performance be reduced? With
these questions, we need to analyze the relationship between
the observation information and the agent’s performance.

Definition 6 (Complete Observation Information) Assume
that the best estimation of the action distribution with
respect to an observation o is p̂(a | o). If a set of causal
factors v = φ(o) has the same optimal estimation p̂(a |
v) = p̂(a | o), v contains the complete observation
information.

Lemma 1 Let vi ∈ V be the reduced mapping of a subset
of observations {o}i ∈ O, denoted by vi = φ({o}i). For any
set {o}i ∈ O, if and only if all the observations o ∈ {o}i
have the same optimal estimation p̂(a | o ∈ {o}i), all vi in

1 3

6943

Y. Dai et al.

the representation space V contains complete observation
information.

Proof For any representation vi = φ(o), in which o belongs
to any subset {o}i ∈ O, the optimal estimation of the
action distribution with respect to vi will be the mean of
p̂(a | o ∈ {o}i), written as

p̂(a | vi) = 1

ni

∑

o∈{o}i
p̂(a | o), (29)

where ni is the number of observations in {o}i . If all the
observations o ∈ {o}i have the same optimal estimation
p̂(a | o ∈ {o}i), it has an optimal estimation

p̂(a | vi) = p̂(a | o), (30)

i.e., the representation vi has the same optimal estimation
as its original observation o. Hence, all vi in the
representation space V contain complete observation
information. Otherwise, if two observations oa, ob ∈ {o}i
have different optimal estimations than p̂(a | oa) 	= p̂(a |
ob), an optimal estimation does not exist for vi satisfying all
observations in subset {o}i , e.g.,

p̂(a | vi) = p̂(a | oa) = p̂(a | ob). (31)

The representation vi loses certain information that will
degrade the agent performance.

Definition 7 (Optimal Policy Offset) Assume that the
best estimation of the action distribution with respect to
an observation o is p̂(a | o). If a set of intermediate
representations v = φ(o) produces a different best
estimation p̂(a | v) 	= p̂(a | o), the policy based on v is
changed. The optimal policy offset Dv in terms of v can be
measured by KL-divergence as

Dv,o =
∑

a

p̂(a | v)log2
p̂(a | v)

p̂(a | o)
. (32)

Intuitively, the observation information can promote the
estimated performance of an agent.

Definition 8 (Agent Performance Upper Bound) In a
certain task environment, an agent will have a performance
upper bound sup(R) given the limited observation space O.

sup(R) = max
π(a|o)

Eπ(a|o)[
∞∑

k=0

γ krt+k] (33)

After the representation transformation from O to V ,
there might be a reduction in the agent performance upper
bound, represented as

	R = sup(RO) − sup(RV), (34)

where sup(RO) denotes the agent performance upper
bound in the condition of the original observation space,
and sup(RV) denotes the agent performance upper bound
in the condition of the transformed representation space.

Theorem 1 For any subset {o}i ∈ O mapping to a
representation vi in the representation space V = φ(O),
all the observations o ∈ {o}i should have the same optimal
estimation p̂(a | o ∈ {o}i) to guarantee no reduction of the
agent performance upper bound, i.e.,

	R = 0.

Proof According to Lemma 1, if and only if all the
observations o ∈ {o}i have the same optimal estimation
p̂(a | o ∈ {o}i), an agent can achieve the same optimal
policy estimation p̂(a | vi) = p̂(a | o ∈ {o}i). According
to (32), the optimal policy offset Dvi ,o∈{o}i = 0. For any
observation o that belongs to any subset {o}i ∈ O, the agent
can still achieve optimal policy estimation after mapping to
representation space V . The expected returns can remain the
same, i.e.,

Eπ(a|v)[
∞∑

k=0

γ krt+k] = Eπ(a|o)[
∞∑

k=0

γ krt+k].

Hence, sup(RV) = sup(RO). According to (34), we can
obtain 	R = 0.

Theorem 1 states that improving the interpretability of
the DRL model does not mean sacrificing the model per-
formance. In theory, an agent can achieve the performance
upper bound if the interpretable representation space con-
tains complete observation information. However, an agent
cannot often learn the best policy because of the informa-
tion loss of the representation space transformations and the
instability of the DRL algorithms.

4 Experiments

First, we design a simple environment that can accurately
calculate the information loss and an agent’s performance
upper bound to clearly demonstrate the analysis process.
Second, we choose a complex environment, that does not
know the latent state transition function to validate the
effectiveness of the proposed method and the analyses.

4.1 Computational analyses in a naive environment

4.1.1 Environment setup

Assume a naive experimental environment in which a
machine (environment) provides a box to a monkey (agent)

1 3

6944

Interpreting a deep reinforcement learning model with conceptual embedding and performance analysis

at each time. There are three lights of red, green, and blue
on the box that the monkey can observe and then choose
whether to open the box. When the box turns red and green,
there is a banana in it. The monkey can open the box and
retrieve the banana (obtain a reward). In the other cases, the
monkey will receive an electric shock (obtain a punishment)
if it opens the box. The machine is defined as a tuple <

S,O,A, T ,G, s0, r, γ >:

• S : {0, 1, 2, 3}
• O : {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}
• A : {0, 1}

• T :

⎧
⎪⎪⎨

⎪⎪⎩

p(st+1 = st | st 	= 3, at = 1) = 1
p(st+1 = ξ | st = 3, at = 1) = 0.25
p(st+1 = ξ | st , at = 0) = 0.25
ξ ∈ {0, 1, 2, 3}

• G :

⎧
⎪⎪⎨

⎪⎪⎩

p(o = (0, 0, 0) | s = 0) = 1
p(o = (0, 1, 1) | s = 1) = 1
p(o = (1, 0, 1) | s = 2) = 1
p(o = (1, 1, 0) | s = 3) = 1

• s0 :

⎧
⎪⎪⎨

⎪⎪⎩

p(s = 0) = 0.25
p(s = 1) = 0.25
p(s = 2) = 0.25
p(s = 3) = 0.25

• r :
⎧
⎨

⎩

r(st 	= 3, at = 1, st+1) = −1
r(st = 3, at = 1, st+1) = 1
r(st , at = 0, st+1) = 0

• γ : 0.9

Based on the naive example, it is easy to demonstrate the
relationship between the observation information and the
performance upper bound of an agent.

4.1.2 Analysis of an agent’s performance

In the case that the agent can observe the full observation,
the upper bound of an agent’s performance is

sup(Rf o) =
∞∑

k=0

0.9k × 0.25 × 1 = 2.5.

We calculate the upper bound of the agent performance after
the agent converges to s = 3 for computational simplicity.
The upper bound performance can be reached when the
agent adopts the policy π(a | o) as

π(a | o) :

⎧
⎪⎪⎨

⎪⎪⎩

p(a = 0 | o = (0, 0, 0)) = 1
p(a = 0 | o = (0, 1, 1)) = 1
p(a = 0 | o = (1, 0, 1)) = 1
p(a = 1 | o = (1, 1, 0)) = 1

Assume that the agent’s policy model extracts the features
of the observation o to an intermediate causal factor s̃ that

estimates the latent state of the environment before making
a decision, as

o �→ s̃ → a

Let the mapping distribution be

φ1(o) :

⎧
⎪⎪⎨

⎪⎪⎩

p(s̃1 = 0, s̃2 = 0 | o = (0, 0, 0)) = 1
p(s̃1 = 0, s̃2 = 1 | o = (0, 1, 1)) = 1
p(s̃1 = 1, s̃2 = 0 | o = (1, 0, 1)) = 1
p(s̃1 = 1, s̃2 = 1 | o = (1, 1, 0)) = 1

We know that the best policy can be determined by causal
factors s̃1, s̃2 as

π(a | s̃1, s̃2) :

⎧
⎪⎪⎨

⎪⎪⎩

p(a = 0 | s̃1 = 0, s̃2 = 0) = 1
p(a = 0 | s̃1 = 0, s̃2 = 1) = 1
p(a = 0 | s̃1 = 1, s̃2 = 0) = 1
p(a = 1 | s̃1 = 1, s̃2 = 1) = 1

Therefore, {s̃1, s̃2} is a complete casual factor set according
to Definition 2. However, for the set {s̃1}, the best action
cannot be determined. Assume that the occurrences of the
environment states have equal probability. The best policy is

π(a | s̃1, s̃2) :
⎧
⎨

⎩

p(a = 0 | s̃1 = 0) = 1
p(a = 0 | s̃1 = 1) = 0.5
p(a = 1 | s̃1 = 1) = 0.5

According to (23), we can calculate the saliency values of
the intermediate causal factors s̃1 and s̃2 as

Sa[s̃1 = 0] = ‖fa(s̃1 = 0) − fa(s̃
′
1 = 1)‖

= p(a = 0 | s̃′
1 = 1) × 0 + p(a = 1 | s̃′

1 = 1) × 1

= 0.5 × 0 + 0.5 × 1

= 0.5,

Sa[s̃1 = 1] = ‖fa(s̃1 = 1) − fa(s̃
′
1 = 0)‖

= p(a = 0 | s̃1 = 1) × 0 + p(a = 1 | s̃1 = 1) × 1

= 0.5 × 0 + 0.5 × 1

= 0.5.

Similarly,

Sa[s̃2 = 0] = 0.5,

Sa[s̃2 = 1] = 0.5.

According to (27), the causal factor set completeness of {s̃1}
is

Ns̃1 = 0.5.

In the same way, we can calculate the causal factor set
completeness of {s̃2},
Ns̃2 = 0.5.

According to Definition 5, s̃1 and s̃2 are complementary
causal factor sets. The action can be determined by
considering the two factors of s̃1 and s̃2 for the causal factor
set completeness of the combination Ns̃1,s̃2 = 1.

1 3

6945

Y. Dai et al.

Notably, we can further reduce the dimension of s̃ with
respect to another mapping distribution as

φ2(o) :

⎧
⎪⎪⎨

⎪⎪⎩

p(s̃ = 0 | o = (0, 0, 0)) = 1
p(s̃ = 0 | o = (0, 1, 1)) = 1
p(s̃ = 0 | o = (1, 0, 1)) = 1
p(s̃ = 1 | o = (1, 1, 0)) = 1

We know that the best policy in terms of s̃ is

π(a | s̃) :
{

p(a = 0 | s̃ = 0) = 1
p(a = 1 | s̃ = 1) = 1

For s̃ = φ(o), the best estimation of the action distribution
has not been changed, i.e., p̂(a | s̃) = p̂(a |
o). Therefore, the causal factor s̃ preserves complete
observation information that will not degenerate the model
performance. The optimal policy offset is

Dh,o = 0.

In this example, it is also easy to calculate the lower
bound of the agent performance when the agent always sets
a = 1 and remains on the states that s 	= 3 as

inf(R) = −10.

To demonstrate the upper bound of an agent’s performance
in this environment, we use an agent based on Q-learning
and an agent based on DQN to fit the environment. The
experimental results are illustrated in Fig. 3.

4.1.3 Analysis of the agent’s performance reduction

Consider the POMDP case in which the agent can only
partially observe the first dimension of the observation and
where the occurrence of each state has equal probability.

Fig. 3 The training process illustration of the return of two agents
based on Q-learning and DQN in terms of s̃

The conditional distribution p(s | o) is

p(s | o) :

⎧
⎪⎪⎨

⎪⎪⎩

p(s = 0 | o = (0,)) = 0.5
p(s = 1 | o = (0,)) = 0.5
p(s = 2 | o = (1,)) = 0.5
p(s = 3 | o = (1,)) = 0.5

The best policy of the agent would be to adopt a = 0 all the
time. Because it cannot verify whether s = 3 or s = 2 when
it observes o = (1,), it might maintain s = 2 if it adopts
a = 1. The upper bound performance of the agent changes
to

sup(Rpo) = 0.

Due to the information loss, there is a reduction in the agent
performance upper bound, which is

	R = sup(Rf o) − sup(Rpo) = 2.5.

To demonstrate the upper bound of an agent’s performance
in the POMDP environment, we again use the same two
agents based on Q-learning and DQN to fit the partially
observable case. The experimental results are illustrated in
Fig. 4.

4.2 Experiments in a complex environment

4.2.1 Environment setup

To demonstrate the interpretable methods, we perform
experiments in Atari game environments with the Open AI
Gym API. The observation space of Atari environments is
a video screen, which displays frames of color images of
210 × 160 × 3 pixels. The action space is comprised of
18 discrete numbers corresponding to the buttons of the
joystick controller, and the different games use different

Fig. 4 Training process illustration of the return of two agents based
on Q-learning and the DQN that can only observe the first dimension
of o

1 3

6946

Interpreting a deep reinforcement learning model with conceptual embedding and performance analysis

minimal sets of numbers. The reward can generally be
defined by the game scores.

We choose the game of Breakout-v4 as our experimental
environment and design three observation spaces for
the agent to examine the importance of the observable
information for an agent’s performance upper bound.

• Coordinates of the ball and pad.

O1 : (x1, y1, x2, y2),

where x1 and y1 are the horizontal coordinate of the
ball and vertical coordinate of the ball respectively, and
x2 and y2 are the horizontal coordinate of the pad and
vertical coordinate of the pad respectively.

• Horizontal and vertical relative positions between the
ball and the pad.

O2 : (d1, d2, 0, 0),

where d1 = x2 − x1, and d2 = y2 − y1. To keep
the same dimensional space with O1, we use 0 to
represent a constant zero dimension. Different states
(x1, y1, x2, y2) and (x′

1, y
′
1, x

′
2, y

′
2) will have the same

(d1, d2) relative positions if x2 − x′
2 = x1 − x′

1 and
y2 − y′

2 = y1 − y′
1. The agent will lose the information

about the distance from the ball to the sidewall, which
will make it difficult for the agent to predict the ball
trajectories.

• Horizontal relative position between the ball and the
pad.

O3 : (d1, 0, 0, 0).

Compared with the second case, this case will further
lose the vertical coordinate information of the ball. In
this case, the agent cannot know whether the ball is near
or far from the pad. Therefore, the agent’s best policy
may be to try to reduce the horizontal distance between
the ball and the pad at all times.

First, we need to estimate an agent’s performance upper
bound given a certain observation space. To illustrate
the effective information provided by the three different
observation spaces O1, O2, and O3, we use the DQN to
probe the agent performance upper bound with respect to
each observation space, as illustrated in Fig. 5. Note that
any DRL algorithm can be utilized to probe the agent
performance upper bound if only it can achieve good
performance because our aim is to discover the best agent
in a given observation space rather than to learn how to
train the agent. In this environment, the DQN has achieved
a state-of-the-art performance, and we use it for simplicity.
We also design a rule-based agent that can achieve a
baseline performance for comparison. The rule-based agent
only utilizes the information of O3, and it follows simple
control rules. For example, the pad moves left if the ball is

Fig. 5 Illustration of the training processes of the agents with different
observation information in the Atari Breakout-v4 games. DQN-O1
denotes the agent based on the DQN with observation space O1, DQN-
O2 denotes the agent based on the DQN with observation space O2,
DQN-O3 denotes the agent based on the DQN with observation space
O3, and Rule-O3 denotes the agent using defined control rules with
the information of observation space O3. Each performance curve is
illustrated by merging 10 training results

on the left side of the pad and the pad moves right when
the ball is on the right of the pad. We know that the upper
bound performance of an agent will not be less than that
of the rule-based agent when an agent can only receive the
observation information in terms of the horizontal relative
distance between the ball and the pad, i.e., observation space
O3.

According to the experimental results, the agent perfor-
mance upper bounds of O1, O2, and O3 will not be less than
400, 325, and 60, respectively, represented as

sup(RO1) � 400,

sup(RO2) � 325,

sup(RO3) � 60.

The agent, which only receives the observation space of O1,
reaches the performance declared in [1]. We can reasonably
speculate that the observation space O1 contains complete
observation information of the raw image observation space
for this learning task to reach the performance upper bound.
To a certain extent, assuming that the DQN agents have
achieved the optimal policies, we can estimate the agent
performance upper bounds by the experimental results.

4.2.2 Conceptual embedding in decision-making

In many cases, the prior knowledge of human beings is
incomplete, which explains why we need DRL-based agents
to explore more useful information and policy rules and
can help us improve our knowledge in turn. Therefore, we
set FNs and CNs in the conceptual embedding framework
to learn latent representations that contain complementary

1 3

6947

Y. Dai et al.

Output Layer

Input Layer

1 FN 2 CNs

Action Value Estimation

['NOOP', 'FIRE', 'RIGHT', 'LEFT']

Position

Function

Relative Position

(,)

Preprocess

(210, 160, 3)

(1, 80, 80)

Dense Layer 3

Dense Layer 3

Recognition Part

Decision Part

Bottleneck Layer

Fig. 6 Illustration of the conceptual embedding architecture for
playing Breakout. The architecture can be regarded as two functional
parts: the recognition part and decision part. The recognition part,
which contains three dense layers, maps the high-dimensional
observation data to a low-dimensional representation space. The size
of the original color image is 210 × 160 × 3 pixels. We reduce
the dimension to a gray image of 1 × 80 × 80 pixels that will not
lose effective information for playing the game while it reduces the
computational cost of the experiments. The decision part, which also
contains three dense layers, estimates the best action according to
the extracted information from the compacted representations. The
information bottleneck has two conceptual neurons (CNs) and a free
neuron (FN). The two CNs are trained to be aligned with the horizontal
and vertical relative positions between the ball and the pad (d1, d2).
The position function is artificially designed to extract the relative
position from the image, and the relative position is employed to guide
the training of the two CNs

information with respect to the prior knowledge of CNs. To
observe the complementary information that can be learned
by the DRL model, we set two CNs of the observation
space O2 and an FN in the DRL model, as illustrated in
Fig. 6. A CN is related to the relative horizontal position
d1 between the ball and the pad, and another CN is related
to the relative vertical position d2 between the ball and
the pad. To embed the concept into the DRL model, we
use supervised learning method to align the CNs with
the relative horizontal and vertical positions (d1, d2). A
designed function is employed to extract the positions of
the ball and the pad to calculate the true (d1, d2). In the
training process, we add an extra mean square error (MSE)
loss between the activation (d̃1, d̃2) of the CNs and the true
(d1, d2).

Fig. 7 Illustration of the training process of the conceptual embedding
architecture compared with the DQN agent with observation space O2.
DQN-O2 denotes the DQN agent with observation space O2. DQN-
CF denotes the DQN agent that adopts the conceptual embedding
architecture. The DQN-CF performance curve is illustrated by merging
5 training results

From the previous experimental results illustrated in
Fig. 5, we know that the agent performance upper bound
has a score of approximately the 325 when the observable
information is provided by only two CNs of the observation
space O2. The FN is used to extract extra information,
which can increase the agent performance upper bound.
The training result of the conceptual embedding architecture
is illustrated in Fig. 7. We can observe that the agent
performance upper bound of the conceptual embedding
architecture has an increased score of 350 compared
with the DQN agent with observation space O2. The
experimental results validate that the FN could provide extra
information to promote the agent performance upper bound.

However, we observe that the FN has not extracted
complete complementary information with respect to
observation space O1, in which an agent can reach
a score of 400. In the experiments, we also try to
compare the convergence of the DRL model both with
conceptual embedding and without conceptual embedding.
Unfortunately, we discovered that the DRL agent using the
same architecture without conceptual embedding usually
could not learn a good representation space and converge to
an effective policy. The bottleneck layer of the free training
DRL agent cannot extract enough effective information
to promote the agent performance. Therefore, it is still
a significant problem to extract effective information in
the representation space transformation process of the free
training DRL model. The problem could be a promising
research approach to promote DRL algorithms.

To judge the importance of the causal factors, we can
use the perturbation technique described in Section 3.4
to estimate the saliency values of the two CNs and
FN. Specifically, we add Gaussian noise N (0, 0.1) to

1 3

6948

Interpreting a deep reinforcement learning model with conceptual embedding and performance analysis

the activation values of neurons and calculate the mean
difference value between the perturbed actions and the
original actions. We use the well-trained DQN-CF model to
run ten groups of tests, and each group runs 1000 steps. The
experimental results of the calculated saliency values of the
free causal factor and conceptual causal factor are illustrated
in Table 2. Generally, a large saliency value of a conceptual
causal factor corresponds to a small saliency value of a
free causal factor. The saliency values of conceptual causal
factor c and free causal factor f , denoted by Sa[c] and Sa[f]
respectively, can be estimated by the normalized mean of
the experimental results, as

Sa[c] ≈ 0.7099,

Sa[f] ≈ 0.0013.

From the saliency values, we can observe that the perturbed
free causal factor has a small influence on the agent’s
decision. The conceptual causal factor almost dominates the
agent’s decision and verifies that the two CNs have extracted
most of the observation information for the agent’s decision.

Because the saliency values weight the influence of the
causal factors for an agent’s decision, the causal factor
set completeness of conceptual causal factor c and free
causal factor f , denoted by Nc and Nf respectively, can be
estimated by the normalized saliency values as

Nc ≈ 0.9982,

Nf ≈ 0.0018.

5 Discussion

In the training process of the experiments, we discovered
that the DRL methods were very sensitive to the manually
predefined hyperparameters, such as the learning rate,
replay memory size, size of training batches, and update
frequency of the model. The training results were unstable.
The DRL-based agent often cannot explore and converge
to an effective strategy, especially in an environment
of high-dimensional observation space. Thus, we have
to spend substantial amount of time on debugging and
searching for many hyperparameters. We suggest that it
is indispensable to introduce prior knowledge to increase
the interpretability of DRL agents, which can substantially
reduce the debugging time and expedite the training process
of the agents. Just as people need to teach their generations
systematic knowledge and rules, human society can develop
common sense. To improve the interpretability of DRL
agents, prior knowledge embedding methods will be a
potential approach. On the other hand, we determined that
the free training DRL methods often could not learn an
effective representation space while reserving the maximum
observation information. The learned representation space

Table 2 Saliency values of free causal factor and conceptual causal
factor

No. Free causal factor Conceptual causal factor

1 0.000000 0.727728

2 0.002001 0.708854

3 0.002001 0.708854

4 0.001500 0.706927

5 0.001200 0.701940

6 0.001500 0.706784

7 0.001286 0.706815

8 0.001125 0.711589

9 0.001000 0.709634

10 0.001200 0.709971

Mean 0.0012813 0.7099096

has lost certain key information, which can determine the
upper bound performance of an agent. However, in complex
unknown environments, we have to estimate the agent
performance upper bound. How can the estimated upper
bound be guaranteed to be closed to the real upper bound
in a certain range? It is still a problem to be researched.
Reserving the maximum observation information of the
representation space in the DNN-based model could be a
promising approach for future work.

The proposed method is a general framework that can
be applied in different DRL algorithms to improve model
interpretability. In particular, the conceptual embedding
techniques can provide interpretable cause factors for
certain applications that require good model interpretability
and reliability, such as automatic driving and healthcare. For
example, an interpretable automatic driving agent should
know the conceptual reason that a barrier in front of
a car contributes to the braking action. We know that
prior concepts are an indispensable component of the
conceptual embedding model. However, an agent requires
fewer training samples if the concepts can provide sufficient
guidance and contain enough information. In many cases,
compared with agents that collect training samples by
freely exploring, it will cost less to introduce the prior
concepts to DRL agents. Nevertheless, it will be interesting
to investigate how FNs learn unknown complementary
concepts with respect to prior concepts contained in CNs.

6 Conclusion

Interpretability is a key property of DRL agents. For
example, why does an agent adopt a certain action? What
is the key information of the observation that affect an
agent’s performance? We discovered that the difficulties
in interpreting DRL agents are mainly attributed to the

1 3

6949

Y. Dai et al.

DNN-based model. We analyzed the decision process of
DRL agents based on information theory and identified a
relationship between an agent’s observable information and
its performance upper bound. To make the DRL agents learn
a more interpretable representation space, we proposed
using a hierarchical conceptual embedding method and
introducing prior knowledge to constrain the representation
spaces of the DNN-based model. As demonstrated in the
experiments, the method can explicitly indicate the action-
driven factors, which can render the decision process of
the DRL agent tractable and interpretable. In addition, the
method has the benefit that the learning process is more
efficient and the model converges faster than free training
DRL models.

Acknowledgements This work is supported in part by China
Postdoctoral Science Foundation under Grant Number 2021M693976,
the Hunan Provincial Natural Science Foundation under Grant Number
2020JJ5367, and the Key Project of Teaching Reform in Colleges and
Universities of Hunan Province under Grant Number HNJG-2021-
0251.

References

1. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare
MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G (2015)
Human-level control through deep reinforcement learning. Nature
518(7540):529–533

2. Lillicrap T, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver
D, Wierstra D (2016) Continuous control with deep reinforcement
learning. In: International conference on learning representations
(ICLR), pp 1–10

3. Mnih V, Badia AP, Mirza M, Graves A, Lillicrap T, Harley T,
Silver D, Kavukcuoglu K (2016) Asynchronous methods for deep
reinforcement learning. In: Proceedings of The 33rd international
conference on machine learning, vol 48, PMLR, pp 1928–
1937

4. Schulman J, Levine S, Abbeel P, Jordan M, Moritz P (2015)
Trust region policy optimization. In: Proceedings of The 32rd
international conference on machine learning, PMLR, pp 1889–
1897

5. Haarnoja T, Zhou A, Abbeel P, Levine S (2018) Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a
stochastic actor

6. Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang
A, Guez A, Hubert T, Baker L, Lai M, Bolton A et al (2017)
Mastering the game of go without human knowledge. Nature
550(7676):354–359

7. Vinyals O, Babuschkin I, Czarnecki WM, Mathieu M, Silver
D (2019) Grandmaster level in StarCraft II using multi-agent
reinforcement learning. Nature 575(7782):350–354

8. Zieliński P, Markowska-kaczmar U (2021) 3D robotic navigation
using a vision-based deep reinforcement learning model. Appl
Soft Comput 110:107602

9. Saeedvand S, Mandala H, Baltes J (2021) Hierarchical deep
reinforcement learning to drag heavy objects by adult-sized
humanoid robot. Appl Soft Comput 110:107601

10. Jiang R, Wang Z, He B, Zhou Y, Li G, Zhu Z (2021) A data-
efficient goal-directed deep reinforcement learning method for
robot visuomotor skill. Neurocomputing 462:389–401

11. Zhang R, Wang Z, Zheng M, Zhao Y, Huang Z (2021) Emotion-
sensitive deep dyna-q learning for task-completion dialogue policy
learning. Neurocomputing 459:122–130

12. Tiwari A, Saha S, Bhattacharyya P (2022) A knowledge infused
context driven dialogue agent for disease diagnosis using hierar-
chical reinforcement learning. Knowl-Based Syst 242:108292

13. Coronato A, Naeem M, De Pietro G, Paragliola G (2020)
Reinforcement learning for intelligent healthcare applications: a
survey. Artif Intell Med 109:101964

14. Ebrahimi S, Lim GJ (2021) A reinforcement learning approach for
finding optimal policy of adaptive radiation therapy considering
uncertain tumor biological response. Artif Intell Med 121:102193

15. Ciampi M, Coronato A, Naeem M, Silvestri S (2022) An
intelligent environment for preventing medication errors in home
treatment. Expert Systems with Applications 116434

16. Ilahi I, Usama M, Qadir J, Janjua MU, Al-Fuqaha A, Huang DT,
Niyato D (2022) Challenges and countermeasures for adversarial
attacks on deep reinforcement learning. IEEE Transactions on
Artificial Intelligence 3(2):90–109

17. Heuillet A, Couthouis F, Dı́az-rodrı́guez N (2021) Explainability
in deep reinforcement learning. Knowledge-Based Systems
214:106685

18. Chen J, Li SE, Tomizuka M (2021) Interpretable end-to-
end urban autonomous driving with latent deep reinforce-
ment learning. IEEE Trans Intell Transp Syst, pp 1–11.
https://doi.org/10.1109/TITS.2020.3046646

19. Greydanus S, Koul A, Dodge J, Fern A (2018) Visualizing
and understanding Atari agents. In: Dy J, Krause A (eds)
Proceedings of the 35th international conference on machine
learning, vol 80, PMLR, pp 1792–1801. http://proceedings.mlr.
press/v80/greydanus18a.html

20. Puri N, Verma S, Gupta P, Kayastha D, Deshmukh S, Krishna-
murthy B, Singh S (2020) Explain your move: Understanding
agent actions using specific and relevant feature attribution. In:
International conference on learning representations, pp 1–14

21. Zahavy T, Ben-Zrihem N, Mannor S (2016) Graying the black
box: Understanding DQNs. In: Balcan MF, Weinberger KQ (eds)
Proceedings of The 33rd international conference on machine
learning, vol 48, PMLR, pp 1899–1908

22. Simonyan K, Vedaldi A, Zisserman A (2014) Deep inside
convolutional networks: Visualising image classification models
and saliency maps. In: International conference on learning
representations (ICLR). arXiv:1312.6034

23. Shrikumar A, Greenside P, Kundaje A (2017) Learning important
features through propagating activation differences. In: Proceed-
ings of the 34th international conference on machine learning,
vol 70, PMLR, pp 3145–3153. http://proceedings.mlr.press/v70/
shrikumar17a.html

24. Selvaraju RR, Cogswell M, Das A, Vedantam R, Batra D (2020)
Grad-cam: Visual explanations from deep networks via gradient-
based localization. Int J Comput Vis 128(8):336–359

25. Fong RC, Vedaldi A (2017) Interpretable explanations of
black boxes by meaningful perturbation. In: IEEE International
conference on computer vision (ICCV), IEEE Computer Society,
pp 3449–3457. https://doi.org/10.1109/ICCV.2017.371

26. Iyer R, Li Y, Li H, Lewis M, Sundar R, Sycara K (2018)
Transparency and explanation in deep reinforcement learning
neural networks. In: AAAI/ACM Conference on artificial
intelligence, ethics, and society, new orleans, LA, pp 144–150

27. Madumal P, Miller T, Sonenberg L, Vetere F (2020) Explainable
reinforcement learning through a causal lens. In: Proceedings
of the AAAI conference on artificial intelligence, vol 34,
pp 2493–2500

28. Duong TD, Li Q, Xu G (2022) Stochastic intervention for causal
inference via reinforcement learning. Neurocomputing 482:40–49

1 3

6950

https://doi.org/10.1109/TITS.2020.3046646
http://proceedings.mlr.press/v80/greydanus18a.html
http://proceedings.mlr.press/v80/greydanus18a.html
http://arxiv.org/abs/1312.6034
http://proceedings.mlr.press/v70/shrikumar17a.html
http://proceedings.mlr.press/v70/shrikumar17a.html
https://doi.org/10.1109/ICCV.2017.371

Interpreting a deep reinforcement learning model with conceptual embedding and performance analysis

29. Sutton RS, Barto AG (2018) Reinforcement learning: An
Introduction. MIT press

30. Nguyen DQ, Vien NA, Dang V-H, Chung T (2020) Asynchronous
framework with reptile+ algorithm to meta learn partially observa-
ble markov decision process. Appl Intell 50(11):4050–4062

31. Zheng W, Jung T, Lin H (2022) The stackelberg equilibrium
for one-sided zero-sum partially observable stochastic games.
Automatica 140:110231

32. Kovařı́k V, Schmid M, Burch N, Bowling M, Lisỳ V (2022)
Rethinking formal models of partially observable multiagent
decision making. Artif Intell 303:103645

33. Pang Z-J, Liu R-Z, Meng Z-Y, Zhang Y, Yu Y, Lu T (2019)
On reinforcement learning for full-length game of starcraft. In:
Proceedings of the AAAI conference on artificial intelligence, vol
33, pp 4691–4698

34. Dai Y, Wang G, Li K-C (2018) Conceptual alignment deep neural
networks. Journal of Intelligent & Fuzzy Systems 34(3):1631–
1642

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Yinglong Dai received B.S.
and M.S. degrees in automa-
tion and control theory & con-
trol engineering from North-
eastern University, China, in
2010 and 2012, respectively.
He received a Ph.D. degree in
computer science from Cen-
tral South University, China,
in 2018. He is a lecturer of
College of Information Sci-
ence and Engineering at Hunan
Normal University, China. He
is a postdoctoral research fel-
low of College of Liberal Arts
and Sciences at National Uni-

versity of Defense Technology, China. From 2012 to 2013, he was
an Electronic Engineer with the Research Institute of Intelligent Engi-
neering, Sany Heavy Industry, Changsha, China. His research interests
include multimodal deep learning, deep reinforcement learning, multi-
agent system, and healthcare process.

Haibin Ouyang received the
M.S. and Ph.D. degree in con-
trol theory and control enginee-
ring from Northeastern Univer-
sity (NEU), Shenyang, China,
in 2012 and 2016. Currently
He is an Associate Professor
at School of Mechanical and
Electric Engineering, Guang-
zhou University, Guangzhou,
china. He had published over
50 journal papers like Infor-
mation Sciences, Applied Soft
Computing, Soft Computing
and Applied Mathematics
and Computation. His current

research interests are intelligent optimization algorithm, robotics path
planning, artificial intelligence, and optimal control. Currently he is
the editorial board member of Applied soft computing journal.

Hong Zheng received B.S.
degree in Automation from
Central South University of
Forestry and Technology, China,
in 2016. majoring in Elec-
tronic Information of School
of Physics and Electronics
at Hunan Normal University,
China. His research interests
include deep learning, deep
reinforcement learning, and
multimodal deep learning.

Han Long received the Ph.D.
degree in Construction Engi-
neering from Tongji Univer-
sity, in 2014. He was a Postdoc-
toral Researcher in Applied
Mathematics. He was a visit-
ing scholar at Warwick Uni-
versity. He is currently an
Associate Professor of Col-
lege of Liberal Arts and Sci-
ences at National University of
Defense Technology. He has
published two books and eight
SCI/EI articles. He has been
a director or a member in 10
national grants and projects.

He has received the First Prize of Military Science and Technol-
ogy Progress Award in 2013. His current research interests include
reinforcement learning, multi-agent system, and game theory.

Xiaojun Duan received B.S.
and M.S. degrees in Applied
Mathematics, and Ph.D. degree
in System Engineering at the
National University of Defense
Technology, China, in 1997,
2000 and 2003, respectively.
She is a professor of College
of Liberal Arts and Sciences
at the National University of
Defense Technology, China.
Her research interests include
system modeling and evalua-
tion, experimental design and
data processing.

1 3

6951

Y. Dai et al.

Affiliations

Yinglong Dai1,2 · Haibin Ouyang3 · Hong Zheng4 · Han Long1 · Xiaojun Duan1

Haibin Ouyang
oyhb1987@gzhu.edu.cn

Hong Zheng
459402067@qq.com

Han Long
lonyhan@163.com

1 College of Liberal Arts and Sciences, National University
of Defense Technology, Changsha, 410073, Hunan, China

2 Hunan Provincial Key Laboratory of Intelligent Computing
and Language Information Processing, Hunan Normal University,
Changsha, 410081, Hunan, China

3 School of Mechanical and Electric Engineering, Guangzhou
University, Guangzhou, 510006, Guangdong, China

4 School of Physics and Electronics, Hunan Normal University,
Changsha, 410081, Hunan, China

1 3

6952

http://orcid.org/0000-0002-2999-0541
mailto: oyhb1987@gzhu.edu.cn
mailto: 459402067@qq.com
mailto: lonyhan@163.com

	Interpreting a deep reinforcement learning model with conceptual embedding and performance analysis
	Abstract
	Introduction
	Related work
	Conceptual embedding in DRL
	Preliminaries
	Causality between action and observation
	Intermediate representation embedding
	Information loss of observation space reduction

	Hierarchical conceptual embedding
	Perturbation technique for conceptual embedding
	Measurements of model performance
	Causality completeness
	Observation information and agent performance

	Experiments
	Computational analyses in a naive environment
	Environment setup
	Analysis of an agent's performance
	Analysis of the agent's performance reduction

	Experiments in a complex environment
	Environment setup
	Conceptual embedding in decision-making

	Discussion
	Conclusion
	References
	Affiliations

