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Abstract
This paper describes the experimental studies of ensembles of binary classifiers conformed of individual support vector
machines. The GenBoost-SVM method is proposed to construct such ensembles. Our ensembles considered an adaptive
boosting algorithm. We analyzed different pre-selections using genetic algorithms to reduce the size of the training samples
and hence the training times. These genetic selections addressed the imbalanced data challenge directly. Furthermore, in our
ensembles, diversity and early stopping were considered to help to reduce the generalization error. We proposed 56 different
types of ensembles that permute the support vector machine kernels, genetic selections and diversity. We found that our
ensembles, which consider genetic selections and diversity, exhibit competitive performances when compared with various
popular classifiers, and for imbalanced data, they outperform most of the considered popular classifiers. We show that using
different support vector machine kernels leads to enhanced performances. To the best of our knowledge, this is the first study
that combines adaptive boosted ensembles, genetic selections, and support vector machines.
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1 Introduction

Ensemble methods that create a strong classifier from a
linear combination of weak classifiers are powerful tools
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to tackle real world machine learning challenges [1, 2].
Building an ensemble with boosting techniques has recently
become popular; particularly, in an ensemble built using the
adaptive boosting algorithm (AdaBoost), the generalization
error is rapidly reduced when adding classifiers since the
algorithm enhances/boosts the weights of misclassified
samples for every added classifier in the ensemble. In super-
vised learning, the ensemble’s base classifiers are trained
with well-characterized data and are required to be accu-
rate only slightly better than random guess (weak classi-
fiers). The AdaBoost algorithm dictates how to combine
these base classifiers into a single classifier and allows
for properties of data not used in the training phase to
be inferred [3–5]. Examples of classifiers that have been
successfully combined with Adaboost are: artificial neural
networks [6], decision trees [7], k-nearest neighbors [8],
naive Bayes [9] and convolutional neural networks [10].

Support vector machines (SVM) [11] are expected to
be useful base classifiers in an ensemble, since they offer
high accuracy and work well in high dimensional spaces.
Their decision functions can be easily tuned by appropriate
kernel functions [12]. SVMs rely entirely on a geometric
approach to the binary classification problem, making them
robust against noisy data and outliers [13, 14]. The use
of SVMs is wide in several fields and is in constant
expansion; for example, in agricultural sciences [15], stock
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market prediction [16], medical image recognition [17],
swarm computing [18], health monitoring [19], and other
disciplines.

An SVM classifier needs to be optimized in terms of
its kernel function and hyper-parameters. Determining the
optimal kernel and hyper-parameters is time consuming
and computationally expensive. For example, the simplest
practice is to perform a grid search to assess the perfor-
mance of the SVM for several configurations. The number
of configurations becomes intractable when the considered
amount of kernel functions and hyper-parameters grows,
thus rendering it impractical. To overcome this problem,
the construction of ensembles using SVMs as base classi-
fiers to avoid grid searches has been under study. Moreover,
SVMs present a major inherent drawback: the training pro-
cess escalates in time and memory complexity (O(n3) and
O(n2), respectively) as the number of samples n in the train-
ing set increases, limiting the use of SVM within the realm
of big data analysis. To reduce the number of training sam-
ples, and hence the training time, for an SVM to obtain a
good generalization performance, a promising approach is
to use genetic algorithm selections [20].

To collectively study the benefits above mentioned
when using SVMs, this paper investigates a novel method
called GenBoost-SVM that combines genetic algorithms
(GAs), SVMs, and AdaBoost ensembles. We constructed
SVMs ensembles with AdaBoost weights and selected the
most suitable data samples utilizing a genetic algorithm.
Particularly, we boosted the SVM classifiers by changing
the kernel hyper-parameters for different kernels. Moreover,
we varied the genetic selections using several scores
and selection types to find a reduced data sample that
potentially contains the vectors needed to find an effective
SVM separating hyper-plane. We also included ensemble
diversity selection criteria to address the accuracy-diversity
dilemma. We found the best ensemble configuration and
genetic selection that maintains a competitive classifier
performance and reasonable training times. The latter is
achieved since no SVM hyper-parameter tuning is needed
and the number of training vectors is reduced.

This paper is organized as follows: Section 2 provides a
description of the previous related work. Section 3 contains
our proposed methodology and the manner in which
the ensembles are constructed is found in Algorithm 2
GenBoost-SVM. Section 4 outlines the experimental details
of our study. Section 5 presents and discusses our obtained
results and gives a description of the best SVM ensembles
found. We give a formal statiscal comparison of our
ensembles against several popular classifiers (PCs). Our
concluding remarks are given in Section 6.

2 Related work

Ensembles with SVMs as base classifiers have previously
helped avoid the time consuming hyper-parameter grid
searches. For example, X. Li et al. [21] showed that SVMs
are suitable for use in ensembles that follow the AdaBoost
algorithm and that they could improve the classification of
imbalanced data sets without searching for optimal kernels
and hyper-parameters. Moreover, H.C. Kim et al. [22]
constructed SVM ensembles with bootstrap aggregation,
demonstrating improvement with respect to single SVM in
real data sets.

Genetic selections for training data reduction for support
vector machines were studied by Nalepa and Kawulok [23].
In another work, they treated the problem of defining the
genetic algorithm parameters with an adaptive selection
[24]; they also implemented a memetic algorithm which
uses the knowledge obtained during the genetic selection to
improve the selected training data [25]. Verbiest et al. [26]
demonstrated the effectiveness of using genetic algorithms
to improve SVMs, by comparing the classifier accuracy
between standard, adaptive, and steady genetic selections.
Fernandes et al. [27] treated imbalanced data sets by
constructing highly accurate and diverse ensembles. They
utilized adaptive genetic sampling methods to optimize the
SVMs that conform the ensemble. Kawulok et al. [28]
combined the training data selection and the search of an
optimal SVM kernel with the aid of genetic algorithms,
yielding competitive results with respect to performing
these selections separately.

3Methods

3.1 AdaBoost

AdaBoost is an ensemble method that dynamically updates
the sample weights using the training error of a given base
classifier to train the next ensemble base classifier [29]. The
process to construct an AdaBoost ensemble is described
in Algorithm 1: For a set of N training samples xi with
labels yi , a uniform distribution of weights wi , is initialized.
In step (1) a base classifier is trained on the weighted
samples and in step (2) the training error is calculated. Then,
the weight αt for the base classifier ht (x) is computed as
a function of the training error in step (3). The sample
weights, subject to normalization, are updated in step (4).
Samples which are correctly classified obtain lower weights
and misclassified samples obtain higher weights; in this
manner, samples harder to classify receive more attention
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by the algorithm. More classifiers are added sequentially
to the ensemble, each one correcting its predecessor. This
process is repeated T cycles. The predicted labels by the
ensemble are given by the sign of the weighted sum of the
base classifiers label predictions.

3.2 SVMs

In a binary SVM classifier, an optimal hyper-plane sepa-
rating two classes in the feature space is found. During the
optimization, the SVM model selects from the training sam-
ples, xi , a subset of support vectors (SVs) that are used to
establish the location of the decision surface. To simplify
the search of the SVs, the training samples are mapped into
a high-dimensional space using kernel functions, k(xi, xj ),
which are expressed in terms of inner products of the train-
ing samples or their mappings. In the feature space, a
specific kernel will yield a hyper-plane that is used to des-
ignate a prediction yi to every xi , depending on which side
of the hyper-plane xi is located. The kernel functions solve
the optimization problem without explicitly utilizing the
actual mappings; the latter is known as the kernel trick. Data
may not be completely separable and some points would lie
within the margin or they may be incorrectly classified; con-
sequently, SVM implementations allow for a given degree
of misclassification by introducing an adjustable penalty
cost C.

An SVM classifier is defined by its kernel and the
parameters that describe the kernel. This paper considers
SVMs with:

• Radial Basis Function (RBF) kernel, k(xi, xj ) =
exp(−γ ||xi − xj ||2), with hyper-parameter γ .

• Sigmoid kernel, k(xi, xj ) = tanh(γ 〈xi, xj 〉 + r) with
hyper-parameters γ and r .

• Polynomial, k(xi, xj ) = (γ 〈xi, xj 〉 + r)d with hyper-
parameters γ , r and d.

• Linear kernel, k(xi, xj ) = 〈xi, xj 〉 with no hyper-
parameters.

3.3 Boosted SVMs

3.3.1 AdaBoost ensembles

The main motivation to construct AdaBoost ensembles
using SVMs as base classifiers resides in the fact that
only few kernel hyper-parameters are needed to achieve
a good ensemble performance; the latter simplifies the
task of building an effective ensemble. X. Li et al. [21]
studied AdaBoost SVM ensembles with RBF kernels. They
showed that the hyper-parameter γ has the most relevant
role in the ensemble classifier accuracy and they updated the
sample weights by automatically modifying this parameter.
Here, we constructed AdaBoost SVM ensembles with the
kernels mentioned above and modified the kernel hyper-
parameters and penalty cost. We set the different kernel
hyper-parameters in such a way that the first base classifier
in the ensemble achieves a classification accuracy slightly
better than random choice. For the next base classifier, if the
latter condition is not met, the hyper-parameters are adjusted
to fulfill it. A moderate accuracy is desired, as an ensemble
constructed in this fashion is expected to be more diverse
and hence may have better generalization performance [21].
To determine how to adjust the kernel hyper-parameters and
the penalty cost C in our AdaBoost sample weight updates,
we studied the effect of different values and intervals of
the hyper-parameters on a single SVM. In Fig. 1, we show
the hyper-parameter dependency for the RBF, sigmoid,
polynomial, and linear kernels trained with the Abalone
data sample, described in Table 2. The plots show the
training error as a function of the hyper-parameter γ and
the cost penalty C. Each cell/number corresponds to a
single SVM. The same behaviour is observed for SVMs
trained with the remaining data sets listed in Table 2. From
these studies, we concluded that γ and C should start
with their minimum values of their ranges; subsequently,
to improve the classification accuracy of the next classifier
in the ensemble, we should increase γ and C towards their
maximum values. The study suggests ranges and directions
of change of the hyper-parameters as follows:

• For the RBF kernel, the ranges γ ∈ (0, 100] and C ∈
[0, 100] are used to cover a wide range.

• For the sigmoid kernel, the ranges γ ∈ (0, 0.1], C ∈
[0, 100] are used and we fix r = −1. The γ and r values
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Fig. 1 SVM hyper-parameter
study for the abalone data set.
The plots show the change of
the training error in percentage
in function of γ and C for the
RBF, sigmoid, polynomial and
linear kernels, as indicated in
each plot. The remaining
hyper-parameters are fixed. The
plots corresponding to the other
data samples are not shown
here, nevertheless they exhibit
an analog behaviour

are chosen following Lin et al. [30]. The C values are
chosen to cover a wide range.

• For the polynomial kernel, the ranges γ ∈ (0, 0.1] and
C ∈ [0, 10] are used and we fix r = 1 and d = 2.
The γ , r and d values are chosen following Chang et al.
[31]. The C values are chosen to cover a wide range.

• For the linear kernel, the range C ∈ [0, 10] is used to
cover a wide range.

3.3.2 Ensemble diversity

Diversity in our AdaBoost process was carried out with the
measure of diversity developed by Melville and Mooney
[32], where the disagreement of an ensemble base classifier
with the ensemble’s prediction is taken into account
for the measure. This diversity has proven to improve
boosted ensembles with SVMs [21, 33]. Here, the ensemble
diversity was implemented as follows: let ht (xi) be the
predicted label of the t-th base classifier upon the sample
xi , and the label predicted by all the existing base classifiers
in the ensemble is given as H(xi). The diversity of the t-th
base classifier is determined as

dt (xi) =
{

0 : if ht (xi) = H(xi)

1 : otherwise
(1)

Expressly, we examine the disagreement in predictions
between a new base classifier and the ensemble composed
by the already incorporated base classifiers. The diversity
of the whole ensemble with n samples and m components is
calculated as

dens = 1

mn

m∑
t=1

n∑
i=1

dt (xi). (2)

At each iteration, the ensemble diversity dens is calculated.
If it is greater than a fixed threshold, the new base classifier
is added to the ensemble, otherwise it is discarded and the
cycle continues.

3.3.3 Ensemble regularization

To control the number of base classifiers in the ensemble,
we considered a simple early stopping approach [34].
The stopping criteria rely on spotting the ensemble over-
fitting that occurs within the training phase. The presence
of an excessive number of classifiers in the ensemble
makes the prediction accuracy on samples not used for
training (test samples) decrease, diminishing the ensemble
generalization. In this study, we state that over-fitting is
reached when the test accuracy of an ensemble, with a
given amount of base classifiers, decreases with respect
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to the previous ensemble with a lower amount of base
classifiers. To ensure that the over-fitting corresponds to a
global ensemble behaviour and not a local inflection point,
we stop the AdaBoost algorithm when Ndr consecutive
generalization drops take place. Furthermore, to avoid the
inclusion of more classifiers than needed, we stop the
AdaBoost construction after Nst consecutive times the
ensemble generalization exhibits the same value. Finally, we
set Tmax as the maximum amount of base classifiers allowed
in the ensemble.

3.4 Genetic algorithms and SVMs

3.4.1 Genetic selection with support vectors

The GAs are stochastic optimization techniques inspired by
the principles of the biological theory of evolution. GAs
carry out selections with a binary representation and simple
operators based on genetic recombinations and mutations
[35]. In this work, we employ a GA to select a small sub-
set of the training data that will likely contain the support
vectors needed to address the binary classification problem.
First, from the total training data, a group of Nc chro-
mosomes1 referred to as population, is initialized. Later,
a fitness function, SVM, determines how good a chro-
mosome is in classifying new data and assigns a fitness
score considering a given performance metric. Once all
the chromosomes are evaluated, the population is ranked
by fitness score. Next, the selection process takes place.
Two chromosomes, or parents Pa,b, are selected accord-
ing to a specific genetic selection method. The two parents
are used to generate a new offspring of length Nc. The
new set of chromosomes is constructed by randomly select-
ing genes from both Pa and Pb. This stage of the GA
is known as crossover. Afterwards, a mutation procedure
is performed by replacing random vectors from the new
offspring with vectors from the total data set, with a muta-
tion rate Rm. Then, the new generation is appended to the
original population and ranked by fitness. Only the fittest
Nc individuals are kept, preserving the original population
size. These steps are repeated until a termination criterion
is reached to ensure that the scores are the best possible
scores achieved by the algorithm; that is, it does not produce
a new offspring which is significantly different from the
previous generation. During the whole process, class bal-
ance is preserved.

1In this context a chromosome, made of lc genes, consists of a set of
randomly selected vectors which represent two different classes, thus
a gene is a vector or data point. The chromosomes are restricted to
contain an equal number of each class.

3.4.2 Chromosome selection methods

High-low. Originally proposed in [36]. After the population
is ranked by fitness, it is divided in two parts. Individual
Pa is randomly selected from the high fit part, while Pb

is randomly selected from the low fit part. The division
point here is set to divide the population in two parts of
equal length. Choosing a parent from the low fit part of
the population promotes several different combinations and
prevents early convergence.

Roulette wheel. This technique is analogue to a spinning
roulette wheel, where all the chromosomes in the population
occupy a portion of the roulette wheel according to their
fitness values [37]. The fittest individual has the largest
share of the wheel, while the weakest individual has the
smallest share of the roulette wheel. Two parents, Pa and
Pb, are selected with this method by spinning the wheel.

Tournament. Individuals are chosen at random from the
total population and set to compete, the winner being the
one with the highest fitness score [37]. First, a number k
of competitors is chosen and the individuals are randomly
drawn without replacement. Then the fittest competitor
is selected as parent Pa and withdrawn from the total
population. Parent Pb is selected similarly.

3.5 GenBoost-SVM

Our proposed method, GenBoost-SVM, implements the ele-
ments described within the previous sections. Algorithm 2
GenBoost-SVM proceeds as follows:

• Global Input. Input the original sample vectors and
labels {x, y} and define the SVM kernel with its hyper-
parameters as in Section 3.3.1. Include the ensemble
diversity and regularization as in Section 3.3.2 and
Section 3.3.3, respectively. The input also requires
the genetic selection criteria, which defines the
chromosome length lc, the population size Nc, the
chromosome ranking metric, the mutation rate Rm as in
Section 3.4.1, and the selection method for parents Pa

and Pb as in Section 3.4.2.
• Genetic selection. Create a population from {x, y}

comprising Nc chromosomes of length lc. Start a
cycle until the termination criterion of Section 3.4.1 is
met: In step (1), define an AdaBoost ensemble with
Algorithm 1 and weights updated as the SVM kernel
hyper-parameters vary according to the input ranges.
Provide the ensemble diversity and regularization
criteria. In step (2), use a given classifier metric to asses
the performance of the ensemble for each chromosome
in the population. Rank the chromosomes by score from
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low to high and keep Nc of them. In step (3), select
parents Pa,b with the input selection method. In step (4),
crossover the parents Pa,b to generate a new offspring
and then mutate them with a mutation rate Rm. Append
the new chromosomes to the population. After the cycle
is terminated, a small subset {x′, y′} is obtained.

• Final training. With the obtained {x′, y′}, train an
ensemble of SVM classifiers once, using the Algo-
rithm 1 and same kernel, hyper-parameters, ensemble
diversity and regularization used for the genetic selec-
tion.

• Global output: The output is a final classifier trained
with a reduced subset. Its prediction is given by the
sign of the linear combination of SVMs with AdaBoost
weights. This ensemble classifier is to be tested with the
vectors not included in {x′, y′}.

4 Experimental setup

4.1 Classifier metrics

4.1.1 Metrics

The present paper is restricted to the simple case where
the data is divided in two different classes; that is, binary

classification. We follow the convention of labelling these
classes as ±1. It is possible to summarize the outcome of
a classifier using an error matrix [38]. The error matrix
elements are defined in function of the classifier’s ability to
correctly (incorrectly) classify, as either positive or negative,
a data point skipped during the training phase. In this paper,
the error matrix elements are:

• T P is the number the positive samples correctly
classified (true positives);

• FP is the number the negative samples incorrectly
classified as positive (false positives);

• FN is the number the positive samples incorrectly
classified as negative (false negatives);

• T N is the number the negative samples correctly
classified (true negatives).

The following classifier metrics, in terms of the error
matrix elements, are used through this document:

• Accuracy ACC [39]. The ACC is the number of correct
predictions divided by the total number of predictions.

• Precision-recovery PRC [40]. The PRC plot shows
the precision values (positive predictive value) for the
corresponding sensitivity values, is given by PRC =
T P/(T P + FP).

• Area under the receiver operating characteristic curve
AUC [41]. This curve is a plot of the T P rates
at different thresholds. The thresholds for the SVM
are obtained when the offset of the hyper-plane from
origin is varied to produce different predictions. In the
ensembles, we vary the thresholds of the component
base classifiers. The area under the curve is calculated
with a trapezoidal integration.

The values of the metrics ACC, PRC and AUC are in the
range [0, 1] where 0 corresponds to the worst performance
and 1 to the best performance.

4.1.2 Cross-validation

To provide reliable performance metrics for each ensemble,
we carried out a repeated k-fold cross-validation procedure
[42]. We split the data samples into k different folds. The
ki fold is used to test the model and yield the performance
metrics, whilst the remaining folds are used for training the
model. This process is done for each of the k-folds. The k-
fold cross-validation is repeated Ncv times with a different
ki random generation in every repetition. In total, we train
and test our models k × Ncv times. The reported metric
values are the mean values of the obtained distributions and
we assign one standard deviation as their errors.
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4.2 Model construction

4.2.1 Model combinations

We study a number of ensembles constructed using the
elements of Section 3. First, we set whether to use a
given genetic pre-selection or the traditional test-train data
splitting. The ensembles that include genetic selections
need a metric to assort the fittest vectors in the population
and select the parents Pa,b. We studied the two fitness
metrics ACC and AUC as the assorting metrics. Next, the
ensemble diversity is defined exploring two possibilities:
when there is no requirement for the ensemble diversity
or when we require a threshold in Eq. 2 to add a
new classifier in the ensemble. Finally, we select one
of the four SVM base classifier’s kernels described in
Section 3.3.1. Therefore, for each of the three genetic
selection methods of Section 3.4.1, there will be 16
different manners of how to construct an ensemble. That is,
2 ⊗ 2 ⊗ 4=(AUC, ACC)⊗(Diversity, No-Diversity)⊗(RBF,
sigmoid, polynomial, linear), where the first term of the
right side of this equality corresponds to the metrics used
for the genetic selection method, the second term to the
ensemble diversity and the third term to the SVM kernel
considered. Additionally, 8 combinations are included in
our studies which do not use a genetic selection and are
described with a similar equality, 2 ⊗ 4=(Diversity, No-
Diversity)⊗(RBF, sigmoid, polynomial, linear). We refer to
these selections as traditional selections. Overall, we study
3 ⊗ 16 ⊕ 8 = 56 different combinations. The ensembles
adopt a naming scheme as follows: selection-kernel-
diversity. In Appendix A we give a glossary of the
abbreviations used. For example, an ensemble that uses
a genetic selection with the high-low method is named
as genHLAUC-RBF-YESdiv. This ensemble considers
the AUC as the fitness metric and the RBF as the
SVM kernel and fulfills the diversity criteria. There is an
equivalence with the ensembles proposed by X. Li et al.
[21]. That is, our ensembles trad-rbf-NOTdiv and
trad-rbf-YESdiv correspond to the AdaBoostSVM and
Diverse AdaBoostSVM algorithms respectively proposed in
their work.

4.2.2 Ensemble parameters

To fully define our proposed ensembles, it is necessary to fix
the ensemble parameters. A summary of these parameters is
shown in Table 1 and are explained in the following:

• AdaBoost ensemble. We state that the base classifier
is an SVM. Next, we set the threshold diversity as
described in Section 3.3.2, dens > 0.7 which ensures

a highly diverse ensemble. The maximum number of
base classifiers Tmax is 250, which avoids an excessive
number of classifiers that may cause over-training
and long training times. The number of performance
drops, Ndr = 4, ensures that the reduction of the
ensemble performance is a real effect. We stop adding
base classifiers to the ensemble when the performance
metrics stall after Nst = 10 times. This quantity will
ensure that no ensemble improvement is possible.

• SVM. For the four different types of SVM kernels,
we set C and γ as described in Section 3.3.1. The
remaining hyper-parameters are kept fixed.

• Genetic selection. The population size is set to Nc =10,
which will give enough alternatives to select the parents
Pa,b. The chromosome length lc is given in terms of
the total number of data vectors n. By letting lc = n/4,
we can achieve reasonable statistics for low statistics
samples and reduce the training time for high statistics
samples. We use AUC and ACC as two different
chromosome ranking metrics in order to compare the
effect of choosing a specific ranking metric. Different
parent selections are considered in order to compare the
effect of the popular parent selections, as described in
Section 3.4.1. The mutation rate Rm = 0.25 means that
one quarter of a given chromosome will mutate, whilst
the rest will stay the same. This number is reasonable
since the fraction of not-mutated genes will preserve
the essence of the selected parents while including an
effective mutation. The number of repetitions of the GA
selection is driven by the stop criterion of Section 3.4.1.

• Cross-validation. The 10 k-folds and the repetitions
Ncv = 5 are chosen to produce enough statistics and
provide reliable standard deviations of the performance
metrics, while keeping the number of training times
computationally reachable.

4.3 Data samples

The data samples used to test our models are taken from the
UCI repository [43]. Their characteristics are summarized in
Table 2. For the case when they exhibit categorical features,
we convert these categories to numerical values by assigning
integers in ascending order to every category. Afterwards,
the features of the data samples are transformed to lie in
the range [0,1], where the SVM classifiers perform the best
[44]. Some data sets contain more than two classes, in which
case we grouped them to allow only two classes. The last
column of Table 2 contains the imbalance measures of the
data samples. In a data sample labeled with two different
classes, we define the imbalance as the ratio of the number
of examples with lower presence to the number of examples
with higher presence. Therefore, the imbalance measure is
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Table 1 Parameters used to
construct and characterize our
proposed ensembles

Parameter Value

AdaBoost Base classifier SVM

Diversity threshold for dens 0.7

Max base classifiers Tmax 300

Training metric drops Ndr 4

Training metric stalls Nst 10

SVM Cost C As described in Section 3.3.1

Gamma γ As described in Section 3.3.1

Remaining hyper-parameters Fixed

Kernel RBF, polynomial, sigmoid, linear

Genetic selection Population size Nc 10

Chromosome length lc n/4

Fitness evaluation AdaBoost-SVM

Ranking metrics AUC, ACC

Parent selection As in Section 3.4.2

Mutation rate Rm 0.25

Number of generations Stop as described in Section 3.4.1

Cross-validation k-folds 10

Repeteitions Ncv 5

in the range [0,1], where a value close to 1 corresponds
to a fully balanced data sample and a value close to 0
corresponds to a highly imbalanced data sample.

4.4 Experimental implementation

The experiments were carried out within Python using
NumPy [45] and the libsvm [44] implementation from
scikit-learn [46]. The statistical tests of the repeated
cross-validation results are performed using the SciPy [47]
tools. Our experiments follow Algorithm 2, with the

Table 2 UCI [43] data sets used in the experiments

Sample +1 Class −1 Class N features Imbalance

titanic 342 542 7 0.63

cancer 201 85 9 0.42

german 800 300 20 0.38

heart 160 137 13 0.86

solar 865 201 10 0.23

car 518 201 6 0.39

ecoli 143 193 7 0.74

wine 4715 183 11 0.04

abalone 960 3217 8 0.30

adult 7508 22654 15 0.33

ensemble construction guided by Section 4.2.1, with the
parameters of Table 1. Our code is publicily available on
GitHub [48].

5 Results

5.1 Ensemblemetrics

In Fig. 2 we present the ACC, PRC, AUC, total training
time, number of classifiers, and number of training vectors
produced by our 56 proposed ensembles across the data
samples listed in Table 2. Each point in these plots
represents the mean value of the k × Ncv cross validation
calculated metrics. The ACC, PRC, AUC are computed
with the predicted classes from the testing samples which
were not included while training the models. The number
of classifiers corresponds to the number of base classifiers
that each ensemble acquired during the execution of our
algorithm. The number of training vectors is the number
of input vectors {x, y} for the ensembles which do not
consider a genetic selection. For the ensembles that consider
a genetic selection, the number of training vectors is the
number of the reduced set of training vectors {x′, y′} when
applying the genetic selection of Algorithm 2. The training
time is the total time to complete Algorithm 2. The solid
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Fig. 2 ACC, PRC, ACC, the number of classifiers in the ensem-
ble, the training time and training vectors for our proposed ensem-
bles. The x-axis lists the 56 ensembles following the name scheme

selection-kernel-diversity. The points are the mean val-
ues of the k×Ncv repeated cross validation computations. Each marker
and color correspond to a data sample

lines rendered in the plots join the results of a given
data sample in such a way that a solid line displays the
general behaviour of our ensembles evaluating a specific
data sample.

5.2 Best ensembles combinations

To provide insights on how well our proposed ensembles
perform, we carefully studied a selection of them, as it is
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impractical to handle the 56 combinations. Therefore, using
the samples listed in Table 2, we empirically conducted a
selection to obtain the best ensembles. Our procedure is
as follows: First, we computed the ACC and sorted the
values from high to low. Next, the AUC and PRC were
calculated and we only considered ensembles where their
ACC and PRC is higher than the average of the 56 ensemble
combinations. Then we selected the classifiers with the
highest ACC and repeated these steps for each sample in
Table 2. We selected four ensembles which appeared the
most often within the ensembles displaying the highest
ACCs in each data sample:

• Ensemble trad-rbf-YESdiv (E1). Here, the tradi-
tional selection and data splitting procedure to divide
the sample into training and testing is employed. The
RBF kernel is used and diversity is considered. Recall
that E1 is equivalent to the X. Li et al. [21] Diverse
AdaBoostSVM ensemble.

• Ensemble genHLACC-rbf-NOTdiv (E2). A subset
of training vectors is selected with the high-low genetic
selection method. For this ensemble the fitness metric
is the ACC. The RBF kernel is used and the ensemble
diversity constrains are not included.

• Ensemble genHLAUC-sig-YESdiv (E3). A subset
of training vectors is selected with the high-low genetic
selection method. For this ensemble the fitness metric
is the AUC. The RBF kernel is used and the ensemble
diversity constrains are included.

• Ensemble genHLACC-pol-YESdiv (E4). A subset
of training vectors is selected with the high-low genetic
selection method. For this ensemble the fitness metric
is the ACC. The polynomial kernel is used and the
ensemble diversity constrains are included.

5.3 Performance comparison

We compare the ACC, PRC and AUC of our selected best
ensembles against the PCs with the aid of a paired ranked
Wilcoxon statistical test [49]. This test is the analogue of
the Student t-test for data showing non-Gaussian shapes.
The test will assert whether the difference of a given
metric between two classifiers is statistically significant.
The Wilcoxon test performs a hypothesis test where the
null hypothesis, H0, refers to the case when the classifiers
metrics are equal. Namely, we reject H0 setting by α =
0.05, that is, we claim that the AUC, ACC and PRC of two
classifiers are not equal if the p-value < 0.05.

5.3.1 Comparison with popular classifiers

The PCs we considered and their parameters are summa-
rized in Appendix B. Tables 3, 4 and 5 show the Wilcoxon

statistical tests for the wine sample (the tables correspond-
ing to this exercise were produced as well for the data
samples in Table 2 but not shown here). In these tables, the
mean value μ and the standard deviation σ of the k × Ncv

metrics calculated for our ensembles and the PCs are shown
and compared. Here, a cross mark (✗) indicates that we have
failed to reject the null hypothesis H0. Conversely, the check
mark (�) indicates that it is possible to reject H0 with the
established confidence level. In this way, the blue check
mark represents the case when the difference of the mean
value of the metrics between one of our proposed classifier
and a PC is positive. The red check mark indicates that this
difference is negative. Concisely, the (✗) mark states that
our selected ensemble and the PC are not different, the blue
(�) mark states that our selected ensemble outperforms the
PC, and the red (�) mark states that the PC outperforms our
selected ensemble.

5.3.2 Summary tables

Tables 6–8 condense the Wilcoxon statistical tests. In these
tables, we summarize the results of Tables 3–4 and the
ones corresponding to the rest of the samples of Table 2.
Tables 6–8 contain the number of times we are able to
reject H0 when comparing our selected ensembles E1, E2,
E3, E4 (see Section 5.2) against all the considered PCs.
Specifically, N+

rej is the number of times we rejected H0,
when the differences of the mean values of the performance
metrics between one of our selected ensembles and the PCs,
are positive. Similarly, N−

rej represents the number of times
when these differences are negative. Therefore, each count
in N+

rej implies that our selected ensemble performs better
with respect to a given PC. On the other hand, each count
in N−

rej implies that our selected ensemble performs worse

than a given PC. Hence, when N+
rej ≥ N−

rej , we could
state that our selected ensemble is exhibiting a competitive
or better performance compared with the considered PCs.
Tables 6–7 correspond to classifiers metrics, ACC, AUC and
PRC, respectively. The bottom row in these tables adds up
the values of each data sample.

5.4 Discussion

5.4.1 Ensemble performance

In Fig. 2 it is found that most of the ACC, PRC and AUC
values are above 0.5, meaning that our ensembles perform
better than random guess. Another general feature is that
the performance of the ensembles varies according to the
data sample. This is expected since every data sample is
pre-processed in the same manner to avoid biases arising
from knowing too well a concrete data sample. In particular,
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Table 3 Wilcoxon tests for the wine sample using the ACC metric

rbf-svm 0.96 0.01

poly-svm 0.96 0.01

sigmoid-svm 0.96 0.01

linear-svm 0.96 0.01

bag-svm 0.97 0.01

rand-forest 0.97 0.01

bdt-forest 0.96 0.01

bag-forest 0.97 0.01

grad-forest 0.96 0.01

neural-net 0.96 0.01

k-neigh 0.96 0.01

gauss-nb 0.94 0.01

gauss-pc 0.96 0.01

log-reg 0.96 0.01

ridge-cl 0.96 0.01

sgdc-cl 0.96 0.01

pass-agre 0.96 0.01

linear-dis 0.96 0.01

quad-dis 0.94 0.01

The metric mean value and its error are presented in the form μ(σ). The rejection of H0 (R.H0) is indicated with a (�) mark (blue color when
our ensemble outperforms the PC and viceversa for red color) and the failure to reject H0 is indicated with a (✗) mark. Our selected ensembles
E1, E2, E3, and E4 are compared with the considered PCs.

the ACC plot shows for the cancer and german data
samples that the metric value is above 0.5 and stable for all
our proposed ensembles. The PRC for the solar, wine,
cancer and german data samples displays a similar

stability. Finally, the AUC for the titanic and solar
data samples are similarly stable. This performance stability
shown for some samples means that training our proposed
ensembles with different combinations utilizing these data

Table 4 Same as Table 3 but for the wine data sample and the PRC metric

rbf-svm 0.97 0.01

poly-svm 0.96 0.01

sigmoid-svm 0.96 0.01

linear-svm 0.96 0.01

bag-svm 0.97 0.01

rand-forest 0.97 0.01

bdt-forest 0.97 0.01

bag-forest 0.97 0.01

grad-forest 0.97 0.01

neural-net 0.96 0.01

k-neigh 0.97 0.01

gauss-nb 0.97 0.01

gauss-pc 0.96 0.01

log-reg 0.96 0.01

ridge-cl 0.96 0.01

sgdc-cl 0.96 0.01

pass-agre 0.96 0.01

linear-dis 0.97 0.01

quad-dis 0.97 0.01
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Table 5 Same as Table 3 but for the wine data sample and the AUC metric

rbf-svm 0.84 0.05

poly-svm 0.79 0.06

sigmoid-svm 0.48 0.07

linear-svm 0.78 0.05

bag-svm 0.85 0.04

rand-forest 0.89 0.04

bdt-forest 0.82 0.05

bag-forest 0.89 0.03

grad-forest 0.49 0.13

neural-net 0.57 0.06

k-neigh 0.71 0.04

gauss-nb 0.8 0.04

gauss-pc 0.8 0.05

log-reg 0.78 0.05

ridge-cl 0.78 0.05

sgdc-cl 0.77 0.06

pass-agre 0.77 0.05

linear-dis 0.78 0.05

quad-dis 0.79 0.05

samples, does not significantly improve the ensembles’
ability to describe the data.

A more interesting behavior is when the values of the
ACC, PRC, and AUC drastically change across different
ensembles. There are ensembles which fail to model
specific data samples as they perform worse than random
guess. A clear example of the changing pattern arises
for the PRC for ecoli, abalone and adult data
samples, since some ensembles achieve metrics well above
0.5. This indicates that these ensembles are capable to
model correctly these data samples, whilst other ensembles
yield metrics close to 0 failing to describe the data
samples. For these samples, we note that the PRC yielded

by ensembles which use the SVM polynomial kernel
(pol) is near zero regardless of the genetic selection
or the inclusion of diversity criteria. Ensembles that use
any other SVM kernel have an increased PRC. These
changes of performance, along with the determination
that the ensemble genHLACC-pol-YESdiv as one of
our best ensembles (see Section 5.2), indicates that for
some samples, the use of the SVM polynomial kernel
should be avoided, whilst for other samples it is the most
appropriate choice. Another interesting feature observed
in Fig. 2, is that the AUC value reduces to zero for
the ensembles that use the SVM RBF kernel and the
diversity criteria is not included (rbf-NOTdiv) in the

Table 6 Summary table for
ACC and all data sets of Table 2 ACC E1 E2 E3 E4

Sample N+
rej N−

rej N+
rej N−

rej N+
rej N−

rej N+
rej N−

rej

titanic 7 1 6 1 1 18 1 18

cancer 0 18 19 0 2 0 19 0

german 3 10 0 14 19 0 19 0

heart 3 11 3 14 0 16 0 16

solar 3 7 3 2 19 0 19 0

car 15 2 17 2 3 15 3 16

ecoli 6 0 6 6 2 16 0 16

wine 2 10 0 19 19 0 19 0

abalone 10 5 6 0 19 0 19 0

adult 6 12 2 17 2 17 2 17

Total 55 76 62 75 86 82 101 83
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Table 7 Summary table for
PRC and all data sets of Table 2 PRC E1 E2 E3 E4

Sample N+
rej N−

rej N+
rej N−

rej N+
rej N−

rej N+
rej N−

rej

titanic 10 0 1 18 1 18 1 3

cancer 16 0 19 0 19 0 19 0

german 5 1 19 0 16 0 4 3

heart 3 0 3 6 3 16 3 16

solar 5 6 19 0 19 0 19 0

car 11 3 11 4 3 13 3 11

ecoli 4 0 4 15 1 15 1 18

wine 6 7 19 0 19 0 19 0

abalone 6 8 1 18 0 17 0 19

adult 3 16 2 17 19 0 0 19

Total 69 41 98 78 100 79 69 89

ecoli, car and heart samples. This issue is fixed when
diversity is included, demonstrating its importance in some
ensembles (rbf-YESdiv), even when in some samples the
diversity effect may appear negligible. This is in agreement
with our selected classifiers in Section 5.2, where three
out four of the selected ensembles are constrained by the
diversity criteria.

The number of classifiers plotted in Fig. 2 shows that
some ensembles contain up-to 102 base classifiers, whilst
other ensembles contain only contain a few of them.
For the ecoli, abalone, and adult data samples the
ensembles constructed with the SVM polynomial kernel
contain only a few base classifiers. The latter should be
related with the poor performance above mentioned for
these samples, in which case the ensemble construction
has failed. On the other hand, note that for the ensembles
which include the diversity criteria, the number of base
classifiers is around 102 and the performance for ensembles
of the type rbf-NOTdiv is increased, meaning that
constructing ensembles including diversity is advantageous.
Another pattern seen in the number of classifiers plot for
the titanic, solar, german, and heart, is that the
number of base classifiers changes as a function of the
SVM kernel used: the number of base classifiers increases
for the RBF, slightly increases for the sigmoid kernel,
and finally it diminishes for the linear kernel. This has
impact on the ACC since for the solar and german
samples, the more classifiers in the ensembles, the higher
the ACC values are, and for the titanic and heart the
opposite behaviour is found. We conclude that the number
of classifiers conforming the ensembles highly depends on
the SVM kernel and that our early stop criteria have proven
to be profitable.

Furthermore, in Fig. 2, the training time and number
of training vectors plots show interesting features. First,
the number of training vectors is stable for most of the

samples (except for the abalone and adult samples).
Naively, one may think that the training time should also
display this stability. Nevertheless, the training time is more
closely related to the number of classifiers acquired by the
ensemble, that is, the more base classifiers in the ensemble,
the longer the training times. The relation of the training
time with the ACC, PRC and AUC is more complex: As
mentioned above some samples are stable for a specific
metric across all the constructed ensembles. Contrastingly,
it is observed that for samples where the ACC, PRC and
AUC metrics values change, the relation of these metrics
with the training time should follow the above mentioned
performance pattern dictated by the number of classifiers.
For the adult data sample, several ensembles constructed
using genetic selections see a reduction of the total training
time. It is important to mention that the training times
displayed in the plot, are the total times to complete
Algorithm 2, where the genetic selection to find {x′, y′}
stage is the lengthiest one. If the model training starts with
{x′, y′} (already pre-selected training vectors), the training
time for the ensembles that use this genetic selection is
reduced to a few seconds as the number of training vectors
is below 103 for most of the samples.

5.4.2 Performance comparison with popular classifiers

The results in Tables 6–8 provide information of how
competitive are our ensembles compared with out-of-the-
box PCs of Appendix B. The following contains comments
regarding the N

+,−
rej found for each studied data sample:

• titanic. Our selected ensembles make marginal
improvements.

• cancer. E2 and E4 perform better than all the PCs
for the ACC metric. For PRC our selected ensembles
outperform the PCs.
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Table 8 Summary table for AUC and all data sets of Table 2

AUC E1 E2 E3 E4

Sample N+
rej N−

rej N+
rej N−

rej N+
rej N−

rej N+
rej N−

rej

titanic 4 3 3 8 2 13 2 15

cancer 3 8 3 12 7 0 4 9

german 6 2 3 14 4 14 3 14

heart 5 0 0 19 5 4 4 8

solar 9 9 5 9 9 9 7 9

car 10 8 0 17 2 17 2 17

ecoli 1 14 0 19 2 14 0 19

wine 13 4 6 5 0 17 0 17

abalone 9 3 8 7 1 18 0 19

adult 5 11 6 11 2 17 1 18

Total 65 62 34 121 34 123 23 145

• german. E3 and E4 perform better than all the PCs
for the ACC metric, while the opposite appears for E1
and E2. For PRC, E1 outperforms few PCs and on
average the difference of our ensembles and the PCs
is negligible; E2 and E3 exhibit the same or better
performance than the PCs.

• heart. Our selected ensembles perform worse than
most of the PCs for the ACC metric. A small number
of PCs are outperformed by our ensembles for the PRC
and AUC metrics.

• solar. E1 and E2 perform worse than the PCs for the
ACC metric, whilst E3 and E4 mainly outperform the
PCs. For PRC E2, E3, and E4 outperform all the PCs,
and E1 shows negligible improvement.

• car. E1 and E2 perform better than most of the PCs
for the ACC and PRC metrics, whilst E3 and E4 show
the opposite behaviour. For AUC, only E1 outperforms
a considerable amount of PCs.

• ecoli. E1 performs better against a few classifiers for
the ACC metric, while showing similar performance for
the remaining PCs. E2 outperforms some PCs, although
is outperformed by the same number of PCs. E3 and
E4 perform worse than most PCs. Only E1 shows a
favorable number of outperformed PCs.

• wine. E1 and E2 perform worse than the PCs for the
ACC metric, whilst E3 and E4 perform better than all
PCs. For PRC, E2, E3 and E4 perform better than all
the PCs.

• abalone. Our selected ensembles perform better than
the PCs for the ACC metric. The PRC and AUC
performance is worse in general than PC.

• adult. E3 outperforms all the PCs for the ACC metric.
For the remaining ensembles and metrics, the PCs
perform better than our ensembles.

Note that for the highly imbalanced wine and solar
data samples, E3 and E4 fully outperform all the PCs for
the ACC and PRC metrics. This enhanced performance may
be achieved as our genetic selection effectively addresses
the class imbalance challenge. Hence, our algorithm is
appropriate to describe imbalanced data. Furthermore, for
the high dimension german data sample, our algorithms
yield a superior performance for some metrics when
compared with the PCs. This may be achieved as the SVM
are effective for treating high dimensional data. A comment
about the AUC is that in our ensembles the AUC is worse
than most of the PCs. The reason is that the definition of
AUC in our ensembles is somewhat arbitrary and may need
further studies to improve the treatment of our ensembles.

The global performance of our selected ensembles can
be analyzed with the total N

+,−
rej , found at the bottom of

Tables 6–8:

• In E1 ensemble trad-rbf-YESdiv the total counts
for ACC is N

+,tot
rej < N

−,tot
rej ; for PRC is N

+,tot
rej >

N
−,tot
rej ; and for AUC is N

+,tot
rej >N

−,tot
rej .

• In E2 ensemble genHLACC-rbf-NOTdiv the total
counts for ACC is N

+,tot
rej <N

−,tot
rej ; for PRC is N

+,tot
rej >

N
−,tot
rej ; and for AUC is N

+,tot
rej <N

−,tot
rej .

• In E3 ensemble genHLAUC-sig-YESdiv the total
counts for ACC is N

+,tot
rej >N

−,tot
rej , for PRC is N

+,tot
rej >

N
−,tot
rej ; and for AUC is N

+,tot
rej <N

−,tot
rej .

• In E4 ensemble genHLACC-pol-YESdiv the total
counts for ACC is N

+,tot
rej >N

−,tot
rej , for PRC is N

+,tot
rej <

N
−,tot
rej ; and for AUC is N

+,tot
rej <N

−,tot
rej .

In our selected ensembles there is a variety of SVM
kernels. This is interesting since usually the RBF kernel
is the most effective in the majority of cases. Thus,
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switching between kernels may significantly enhance the
description of a data sample without the need of a hyper-
parameter search. Furthermore, in our ensembles the high-
low genetic selection is preferred. This could be explained
given the simplicity of the parents Pa,b being selected with
the high-low method to yield the reduced set {x′, y′}. In
our study, the roulette wheel and tournament selections
show decent performances. Nevertheless, the high-low
genetic selection is superior. Including ensemble diversity
seems to be an important element that improves the final
performance of our models. E1, E2, E3, and E4 perform
better than the out-of-the-box PCs on average for the
ACC and PRC metrics. Moreover, we compare their ratios
N

+,tot
rej /N

−,tot
rej and conclude that the best ensemble is E3 or

genHLAUC-sig-YESdiv.

6 Conclusions

In this paper, we studied a methodology of how to con-
struct ensembles using the AdaBoost technique with SVMs
as base classifiers. We also explored the possibility of
pre-selecting a smaller subset of the training data with
genetic algorithms, which potentially contains the optimal
vectors. In this way, the performance was improved and
the training time of large samples was reduced in com-
parison with using a single support vector machine and
finding the optimal hyper-parameters. We found that our
ensemble genHLAUC-sig-YESdiv performs the best,
suggesting that a genetic selection and dedicated ensemble
construction help overcome the issues faced by single clas-
sifiers. Moreover, our best ensemble successfully describes
imbalanced data. In future studies, we will explore the dif-
ferent variables that we kept fixed during this study. Addi-
tionally, the extension to multi-class classification might be

explored for SVMs where the problem must be separated
into several binary classifications. In this case, different
hyper-surfaces are determined and hence an ensemble and
a genetic selection are needed for each pair of classes. The
latter poses the question of whether using the same kind of
genetic selection and ensemble is better than using a mix of
them in terms of performance and simplicity

Appendix A

Table A.1 Abbreviations of the elements used to construct the
ensembles

Element Description

trad Traditional test-train data spliting

genHL Data is pre-selected with the high-low genetic

selection method

genRLT Data is pre-selected with the roulette genetic

selection method

genTN Data is pre-selected with the tournament genetic

selection method

rbf The SVM base classifiers use an RBF kernel

sig The SVM base classifiers use a sigmoid kernel

pol The SVM base classifiers use a polynomial kernel

lin The SVM base classifiers use a linear kernel

YESdiv Ensemble diversity is included

NOTdiv Ensemble diversity is not included

The names follow selection-kernel-diversity scheme

Appendix B

Table B.2 Popular classifiers used to compare with our proposed ensembles

Classifier Description Parameters

rbf-svm Single SVM with RBF kernel γ = 1/Nf eat , C = 1

poly-svm Single SVM with polynomial kernel γ = 1/Nf eat , C = 1, d = 2, r = +1

sigmoid-svm Single SVM with sigmoid kernel γ = 1/Nf eat , C = 1, d = 2, r = −1

linear-svm Single SVM with linear kernel C = 10

bag-svm SVM with RBF kernel bagging ensemble γ = 100, C = 1

rand-forest Decision trees random forest ensemble NDT = 100

bdt-forest Decision trees AdaBoost ensemble NDT = 100

bag-forest Decision trees bagging ensemble NDT = 100, sampling w/replacement

grad-forest Decision trees gradient boosting ensemble NDT = 100, logistic regression classification

neural-net Stochastic gradient neural network perceptron HL = 1, Nn = 100, linear activation function

k-neigh k-nearest neighbors classifier Nneigh = 3
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Table B.2 Popular classifiers used to compare with our proposed ensembles

Classifier Description Parameters

gauss-nb Gaussian Naive Bayes No priors considered

gauss-pc Gaussian process with Laplace approximation RBF kernel, L-BFGS-B optimization

log-reg Logistic regression with L2 regularization C = 1, L-BFGS-B optimization

ridge-cl Ridge regression C = 1

sgdc-cl Linear stochastic gradient with L2 regularization Linear SVM kernel

pass-agre Passive aggressive C = 1, PA-I optimization

linear-dis Linear decision boundary NC = 1, priors from data

quad-dis Quadratic decision boundary Gaussian density, priors from data
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