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Abstract
In order to improve the accuracy of cross-modal retrieval tasks and achieve flexible retrieval between different modalities,
we propose a Dual Discriminant Adversarial cross-modal Retrieval (DDAC) method in this paper. First, DDAC integrates
adversarial learning and minimization of feature projection distances and introduces label information in it. It can eliminate
the same semantic heterogeneity between modalities while maintaining the distinguishability of different semantic features
between modalities. Then, cosine distance is used to minimize and maximize the inter-modal distance of features with
the same and different labels respectively to solve the inter-modal discrimination problem. Different from the general
method, DDAC performs dual discrimination in the label space and solves the intra-modal discrimination problem from two
perspectives of probability distribution and distance. Extensive experiments carried out on three public datasets validate that
the proposed DDAC outperforms the state-of-the-art methods.

Keywords Dual discriminant · Inter-modal consistency · Cross-modal retrieval · Adversarial learning

1 Introduction

In recent decades, with the development of advanced
technology, multimedia data on various search engines and
social media shows the trend of explosive growth. Among
them, the growth of different types of media data, such as
text, image, audio, and video, makes cross-modal retrieval
more and more important in practical applications [1].
Different from single-modal retrieval [6, 12], the purpose
of cross-modal retrieval is to search for related samples
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in another modality based on the query samples in one
modality. For example, given an image, to retrieve a text
description containing the same object or topic. However,
because each modality has different data representation
forms, the similarity comparison between different types of
data cannot be conducted directly.

The core of cross-modal retrieval is to find a subspace
where the similarity of different modal data can be
directly compared. For example, Canonical Correlation
Analysis(CCA) [2] is one of the representative subspace
learning methods, which reflects the linear correlation
between two sets of heterogeneous variables. However, in
general, shallow methods tend to ignore the underlying
features, and due to the complexity of data, the retrieval
effect of linear projection modeling is not ideal. The
development of deep learning has also had a great impact
on cross-modal retrieval, its powerful automatic feature
extraction capability has been widely used in cross-
modal retrieval tasks [7, 9, 10]. Andrew et al. introduced
deep learning into CCA and proposed Deep Canonical
Correlation Analysis (DCCA) [7], which builds two multi-
layer Deep networks to learn complex nonlinear projections
and maximize the Correlation of common representations
after projections. Wei et al. fine-tuned the pre-trained CNN
model and proposed deep Semantic Matching [34]. Deep-
SM uses different loss functions for different target datasets,
and uses fine-tuned CNN and trained fully connected neural
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networks to project images and texts into high-dimensional
homogeneous semantic Spaces.

Motivation. In the use of label information, ACMR
[13] uses a label classifier to minimize the probability
distribution of the real label and the predicted label to
ensure the discriminability between modalities. DSCMR
[14] uses the F norm to minimize the distance between
the real label and the predicted label. We believe that
combining these two methods in an appropriate way can
better ensure the discriminativeness between modalities.
In addition, although adversarial learning is widely used,
it usually confuses the discriminant by the projection
of unknown features to eliminate the heterogeneity of
all features between the modalities. In fact, because
the ultimate purpose of cross-modal retrieval is to
make inter-modal feature projection under the same
semantics closest, we believe that the difference of inter-
modal feature projection with different semantics can be
retained, and only the heterogeneity of feature projection
under the same semantics can be eliminated.

Our Method. In this paper, we proposes a Dual Discrim-
inant Adversarial cross-modal Retrieval (DDAC) method
for cross-modal Retrieval. DDAC combines adversar-
ial learning with the minimization of feature projection
distance and can eliminate the heterogeneity between
modalities. In the adversarial learning part, we add a
rejector R to the discriminator D. Its function is to
restrain the projection of unknown features to confuse the
discriminator D, so as to achieve the purpose of maintain-
ing the distinguishability of the same semantic features
among the modalities. At the same time, in order to
maintain consistency with adversarial learning, we only
minimize the feature projection distances that have the
same semantics between modalities. Then, DDAC uses
cosine distance to expand and shrink the feature rep-
resentation distance between modalities with the same
semantics and different semantics, to ensure the min-
imum discriminant loss between modalities. Finally, a
label classifier with branching is used to dual predict the
semantic tags of the projected items from the perspec-
tive of probability distribution and distance, to ensure the
intra-modal invariance of the classification information.
The main work of this paper is as follows:

• We propose a cross-modal retrieval approach to
eliminate the inter-modal heterogeneity and ensure
semantic consistency by making full use of label
information.

• The improved adversarial learning was applied to
DDAC, and the label information was introduced
into the discriminant, which could eliminate the

same semantic feature heterogeneity between modal-
ities while preserving the feature distinguishability
between different semantics. At the same time, the
inter-modal projection loss is minimized to further
break the modal gap.

• DDAC uses a linear classifier with branches to
classify samples in two different forms in the
label space. In this way, DDAC makes the learned
common representation more distinguishable.

• Extensive experiments on three public datasets show
that DDAC is superior to current state-of-the-art
methods

2 Related work

2.1 Supervised learning

In general, the supervised methods [5, 9, 20] use
label information to distinguish different categories of
representations in the common space, or use semantic
correlation of tags to mine associations between multi-
modal data. Li et al. [16] uses label information to train
label semantic network as the supervision network of
other sub-networks. He et al. [8] proposed a fine-grained
cross-media learning method. In order to obtain better
representation, it ensures the discriminance of subcategories
features, compactness of the same subcategory features and
sparsity of different subcategories through three constraints.
In [14], Zhen et al. proposed Deep Supervised Cross-modal
Retrieval (DSCMR), which minimizes the discrimination
loss of samples in label space and public representation
space and maintains the differences between samples
of different semantic categories. At the same time, the
weight-sharing strategy is used to deepen the correlation
between the inter-modal features. However, the general
supervised methods [26–28] including the above methods
only use label information from one perspective, which may
cause omissions. Therefore, we consider comprehensively
utilizing the label information from different perspectives to
improve the intra-modal differentiability of features.

2.2 Adversarial learning

In addition, how to bridge the semantic gap between
modalities has been a problem to be solved in recent
years, and adversarial learning is one of the more effective
methods [13, 15]. In [13], Wang et al. proposed the
Adversarial Cross-Modal Retrieval (ACMR) for the first
time based on the idea of Adversarial learning. The modality
classifier is constructed by ACMR to distinguish different
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modalities, and then the modality classifier is confused by
the feature projection. The modal consistency problem is
tried to be solved by the process of adversarial learning.
Peng et al. constructed a cross-modal GAN system called
cross-modal Generative Adversarial Networks (CM-GANS)
[15]. The process of adversarial learning is realized by
constructing the cross-mode convolution autoencoder as
the generator, and then using the two discriminant models
to discriminate between the modes within the modes
simultaneously. Chen et al. also solved the semantic gap
between modalities by introducing adversarial learning
and combining it with Shannon Information Theory [4].
When modality classification is carried out, the information
entropy is maximized. The SCH-GAN model proposed by
Zhang et al. [32] is a semi-supervised cross-modal hashing
learning method based on generative adversarial network
and uses a reinforcement learning-based algorithm to drive
the training of model. Adversarial learning has been widely
used in current approaches [16, 17, 31, 33] because of its
effectiveness.

DDAC double discriminates labels in the label space
from the perspectives of probability distribution and dis-
tance, which can make full use of the label information to
guide the model to effectively distinguish different cate-
gories of features. In addition, we improved the discrimina-
tor in adversarial learning by adding a rejector. While using
adversarial learning to eliminate the heterogeneity gap, we
could further solve the problem of inter-modal discriminant,
thus improving the accuracy and stability of cross-modal
retrieval.

3 The proposed DDAC

3.1 Problem formulation

In this section, we define a number of symbols. Without
losing generality, We assume that there are n image-
text pairs. The input of image modality is denoted as
X = {xi}ni=1, Where, xi is the feature vector of the ith
image. Again, the input of image modality is denoted as
Y = {yi}ni=1, Where, yi is the feature vector of the text
description of the ith image. In addition, the lables of these
n image and text pairs are denoted as L = {li}ni=1, where ,
li = {li1, li2, . . . , lic} ∈ Rc, c is the number of categories.

Since image feature X and text feature Y are different
types of statistics and follow unknown distributions, they
cannot be directly compared in cross-modal retrieval.
Therefore, we need to find a common space S, so that the
features of images and texts can be directly compared. The
feature projection of the image is f X = fX (X; θX) ∈
Rd ,and the feature projection of the text is f Y =
fY (Y ; θY ) ∈ Rd , where d is the dimension of the common
space S. θX and θY are the parameters of the two functions.

3.2 Framework of DDAC

Figure 1 shows the total framework of the DDAC method.
The first step is feature extraction. Image modality features
is extracted with VGG-19 [18] which is pre-trained
on ImageNet. We obtain the 4096-dimensional original
high-dimensional semantic feature representation of the

Fig. 1 The total framework of the DDAC method
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image modality from the fc-7 layer; At the same time,
Word2Vec [19] model pre-trained on Google News was
used to extract each text into a matrix composed of k-
dimensional feature vectors, and then the original high-
level semantic representation was extracted from the text
feature matrix through Sentence CNN; Finally, through
a set of fully-connected layer, the final image and text
common representations are generated, denoted as f X and
f Y respectively.

Next, DDAC implements cross-modal retrieval through
three parts: The first part is to reduce the inter-modal
heterogeneity, that is, to ensure inter-modal consistency.
While minimizing the feature projection loss Ld with
the same semantics, a discriminator D composed of a
three-layer feedforward neural network distinguishes the
unknown projection from being an image modality or a
text modality. For the unknown projection, try to confuse
the discriminator D. Among them, the role of the rejector
R is to enable the discriminator D to better distinguish
different modalities and have different semantic features.
In general, in this part, we can achieve the goal of only
eliminating the heterogeneity between modalities that have
the same semantic features. At the same time, improve the
differentiation of features by preserving the heterogeneity
of different semantic features.

The second part is to use the cosine distance to scale the
distance of feature projections with the same semantics and
different semantics. The purpose is to minimize inter-modal
discriminant loss.

The third part is to minimize the intra-modal discrimina-
tion loss in the label space. The linear classifier with branch-
ing used by DDAC can measure the similarity between the
predicted label and the real label of each sample from the
perspectives of probability distribution and distance, and
supervise the mapping function of the sub-network so that
the label information in the intra-modal data after the feature
projection can be better retained. (Specific objective func-
tion construction in the three parts will be shown in detail in
Section 3.3)

3.3 Objective function

3.3.1 Inter-modal consistency loss

We plan to eliminate the cross-modal gap in two ways to
ensure inter-modal consistency. For samples from different
modalities, we only minimize the distance between images
and text features with the same label. Therefore, the
following loss function is constructed as the projected loss:

Ld = 1

n
‖Xl − Yl‖F (1)

Xl and Yl represent image and text modality with the
same label, respectively.

Next, we chose to introduce adversarial learning to
further eliminate the inter-modal heterogeneous differences.
DDAC constructs a discriminator D, which is composed
of three layers of the feed-forward neural network and
adds a rejector R. Its function is merely to eliminate the
heterogeneity of feature projection with the same semantic
between modalities.

In this process, unknown feature projections from differ-
ent modalities try their best to confuse the discriminator so
that it cannot distinguish whether the input feature is a text
or an image, and the rejector inhibits the feature projection
between different semantics to confuse the discriminator, to
preserve the heterogeneity of inter-modal different semantic
features. We’ll define the adversarial loss as Ladv:

Ladv = −1

n

n∑

i=1

(
log

(
D

(
σf X

i ; θD

))

+log
(
1 − D

(
σf Y

i ; θD

)))
(2)

Where, Ladv can be regarded as the cross entropy loss
of all sample modal discrimination, D

(
f X

i

)
and D

(
f Y

i

)

represent the discriminant scores of the input image and text
features, θD is the discriminator parameters, the rejector σ

is expressed as:

σ =
{
1, lX = lY .
n, otherwise.

(3)

Where lX and lY are labels of different modalities, and n is
a sufficiently large and appropriate real number. At the end
of the discriminator is a sigmoid function, which does not
change when the labels are the same. when the labels are
different, φ (f ∗) = 1

1+e
−nf ∗

i
.

An appropriate n can make it easier for discriminator D
to distinguish unknown feature projections with different
labels. To ensure the distinguishability of features with
different labels between modalities. Under the same label,
the higher the discriminant score is, the more likely the input
feature is to come from the image modality; the smaller the
discriminant score is, the more likely it is to come from the
text modality.

3.3.2 Inter-modal discrimination loss

When feature projections of different modalities belong to
the same semantic category, the distance between them
should be as close as possible. For feature projections
of different categories among modes, the distance should
be as far as possible. The above purpose is achieved by
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constructing the following loss function:

Limd =
n∑

i,j=1

�ij cos
(
f X

i , f Y
i

)
(4)

Where, � is the signal function. If f X
i and f Y

i belong to the
same category , �ij = 1,otherwise,�ij = 0. cos (·) is the
cosine distance of the two feature projections.

3.3.3 Intra-modal discrimination loss

To distinguish the intra-modal categories, we connect a
linear classifier at the top of the subnetworks of image
modality and text modality, which generates a c dimensional
predictive label vector for each sample in the label space.

The first part of the label loss is as follows:

Ll1 (P ) = 1

n

(∥∥∥P T X − L

∥∥∥
F

+
∥∥∥P T Y − L

∥∥∥
F

)
(5)

Where, ‖·‖F is the Frobenius norm and P is the parameter of
the linear classifier. This part of the loss function calculates
the distance between the predicted label and the true label.

DDAC attempts to enhance the use of label information
by adding a Softmax activation function at the end
of the linear classifier described above to output the
probability distribution of each semantic category. We use
the probability distribution p̂ to represent the second part of
the Intra-modal discrimination loss:

Ll2 (P ) = −1

n

(
li · (

logp̂i (xi) + logp̂i (yi)
))

(6)

Where, Ll2 represents the cross-entropy loss of semantic
classification of all instances, P is the parameter of the linear
classifier, li represents the true label of each sample, and
p̂i represents the probability distribution of each sample
category.

3.4 Optimization

The total loss function is:

LlT = λLl1 + ηLl2 (7)

Limc = βLd + γLadv (8)

LT otal = LlT + Limc + αLimd (9)

Where, LlT is the total intra-modal discriminant loss; Limc

is the total loss of inter-modal consistency,λ and η are hyper-
parameters, which control the weight of different label
discrimination angles; β and γ are the hyper-parameters that
can control the weight of the projection loss and adversarial
loss; is the hyper-parameter controlling the weight of inter-
modal discrimination loss.

In this paper, the stochastic gradient descent method [21]
was adopted to optimize the overall objective function, and

the details of the optimization process were summarized in
Algorithm 1.

4 Experiments

4.1 Datasets and evaluationmetric

Datasets: In this section, we will experiment on several
datasets that are widely used for cross-modal retrieval.
For a fair comparison, we exactly follow the dataset
partition and feature extraction strategies from [14].

The Pascal Sentence datasets [22] includes 1000 images of
20 categories. Each image is accompanied by a document,
which contains 5 sentences describing the picture. We took
800 image-text pairs from the data set as the training set,
and 100 image-text pairs as the test set.

The Wikipedia datasets [29] consist of 2866 image-text
pairs containing 10 semantic classes in total. We took out
2176 image-text pairs from the dataset as the training set,
and 462 image-text pairs as the test set.

NUS-WIDE-TC21 datasets [3] contains 195,834 image
and text pairs in 21 categories. We selected the 10 categories
with the most samples, and randomly selected 8481 image-
text pairs as training set and 2709 image-text pairs as test set.
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Among them, the text is represented by a 1000-dimensional
BOW vector.

Evaluation Metric: In this paper, we use the commonly
used evaluation metrics mAP, pr-curve, and Recall@K
(K=1, 3, 5) in cross-modal retrieval for evaluation. In our
experiments, we compute three metrics on two different
tasks: retrieving text with query image(Image2Text)and
retrieving image with query text(Text2Image).

4.2 Comparison with State-of-the-art method

To prove the superiority of DDAC method, we compared
the method DDAC in this paper with the 11 methods. These
include two traditional methods: CCA [2], JRL [23], and
nine deep learning methods:DCCA [7], ACMR (2017) [13],
CCL(2018) [25], FGCrossNet(2019) [8], CM-GANs(2019)
[15], MHTN(2020) [30], DRSL(2021) [11], HCMSL(2021)
[24] and DSCMR(2019) [14]. The detailed results are
shown in Tables 1, 2 and 3. (The mAP scores obtained
experimentally or provided by the authors of DSCMR [14]
and DRSL [11]).

On Pascal Sentence Dataset, compared with the best
mAP of the optimal DSCMR, DDAC improved by 2.9%
on the Image2Text task and 1.3% on the Text2Image task,
with an average improvement of 2.1%. On the Wikipedia
Dataset, DDAC improved by 1.7% on the Image2Text
task and 3.0% on the Text2Image task, with an average
improvement of 2.35%, relative to the best mAP of the
above optimal method DSCMR. On the NUS-WIDE-TC21
dataset, DDAC performs slightly better than the state-of-
the-art DSCMR among other methods. In Table 4, it can
be seen that the R@K (K=1, 3, 5) score of the DDAC
method is better than the other methods in the three public
datasets.The P-R curves also show that the DDAC method

performs the best on all three datasets. See Figs. 2, 3 and 4
for details.

4.3 Impact of different components

In addition, we verify the effectiveness of each component
in DDAC method through comparative experiments in
the Pascal Sentence and Wikipedia datasets. In the
experiment,some modules were removed to serve as a
variant of DDAC:DDAC1 without projection loss Ld ,
DDAC2 without adversarial lossLadv , DDAC3 and DDAC4
without the intra-modal discriminant loss Ll1 and Ll2 ,
respectively. DDAC5 does not have a rejector R, and Ld is
to minimize the distance of all samples between modalities,
that is to say, no label information is introduced. DDAC6
without inter-modal discrimination loss Limd . DDAC7
replaces Limd with J2 from DSCMR [14]. Full-DDAC
stands for the complete DDAC method.(Detailed test results
are shown in Table 5)

It can be seen from the results that each module has a
certain effect on the improvement of the mAP score on the
Pascal Sentence and Wikipedia Datasets. Among them, the
results obtained from DDAC1 and DDAC2 show that the
projection loss has a slightly greater impact on DDAC than
the adversarial loss.

In the label space, the effect of solving the intra-
mode discrimination from the perspective of the probability
distribution is better than that of minimizing the distance
between the predicted label and the true label, which can be
verified by the results of DDAC3 and DDAC4. Whether it is
DDAC3 or DDAC4, its performance is significantly lower
than the complete DDAC method, which can illustrate the
effectiveness of the dual discrimination in this paper.

The experimental results of DDAC5 illustrate the
effectiveness of introducing label information (including

Table 1 Comparison of the best mAP between the proposed method and the other 11 methods on Pascal Sentence Datasets

Method Image2Text Text2Image Average

CCA [2] 0.225 0.227 0.226

JRL [23] 0.527 0.534 0.531

DCCA [7] 0.678 0.677 0.678

ACMR [13] 0.671 0.676 0.673

CCL [25] 0.576 0.561 0.569

CM-GANs [15] 0.603 0.604 0.604

FGCrossNet [8] 0.637 0.662 0.650

MHTN [32] 0.496 0.500 0.498

DRSL [11] 0.681 0.705 0.696

HCMSL [24] 0.699 0.712 0.710

DSCMR [14] 0.706 0.720 0.713

ourDDAC 0.735 0.733 0.734
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Table 2 Comparison of the best
mAP between the proposed
method and the other 11
methods on Wikipedia Datasets

Method Image2Text Text2Image Average

CCA [2] 0.134 0.133 0.134

JRL [23] 0.449 0.418 0.434

DCCA [7] 0.444 0.396 0.420

ACMR [13] 0.477 0.434 0.456

CCL [25] 0.504 0.457 0.481

CM-GANs [15] 0.521 0.466 0.494

FGCrossNet [8] 0.457 0.429 0.443

MHTN [32] 0.514 0.444 0.479

DRSL [11] 0.523 0.475 0.499

HCMSL [24] 0.524 0.476 0.500

DSCMR [14] 0.521 0.478 0.499

ourDDAC 0.538 0.508 0.523

Table 3 Comparison of the
best mAP between the
proposed method and the other
6 methods on
NUS-WIDE-TC21 Datasets

Method Image2Text Text2Image Average

CCA [2] 0.189 0.188 0.189

JRL [23] 0.429 0.376 0.401

DCCA [7] 0.448 0.465 0.457

ACMR [13] 0.544 0.538 0.541

DRSL [11] 0.540 0.552 0.546

DSCMR [14] 0.575 0.584 0.580

ourDDAC 0.582 0.592 0.587

Table 4 Comparing the retrieval results of R@K on the Wikipedia and pascal datasets

Dataset Method i2t-R@1 i2t-R@3 i2t-R@5 t2i-R@1 t2i-R@3 t2i-R@5

Pascal sentence DDAC 0.75 0.83 0.89 0.80 0.91 0.95

DSCMR 0.68 0.82 0.88 0.78 0.88 0.93

DRSL 0.61 0.74 0.81 0.71 0.82 0.90

ACMR 0.67 0.8 0.87 0.72 0.86 0.89

Wikipedia DDAC 0.516 0.592 0.623 0.676 0.806 0.860

DSCMR 0.500 0.554 0.588 0.707 0.783 0.872

DRSL 0.493 0.586 0.606 0.595 0.788 0.863

ACMR 0.462 0.591 0.615 0.616 0.785 0.837

NUS-WIDE-TC21 DDAC 0.696 0.804 0.842 0.650 0.742 0.769

DSCMR 0.682 0.803 0.833 0.594 0.737 0.754

DRSL 0.676 0.763 0.787 0.591 0.674 0.696

ACMR 0.632 0.756 0.794 0.622 0.713 0.767
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Fig. 2 P-R curves for Pascal Sentence Datasets

the rejector R) when reducing the heterogeneity difference
between modalities.

The results of DDAC6 show that the influence of inter-
modal discriminant loss on the retrieval effect is relatively
light, but it can not be ignored. As can be seen from the
results of DDAC7, the effect of loss function J2 in DSCMR
is almost the same as that of Limd in DDAC. However, Limd

is much simpler and can reduce the model’s complexity
slightly. J2 is defined as:

J2 = 1

n2

n∑

i,j=1

(
log

(
1 + e�ij

) − S
αβ
ij �ij

)
(10)

where, �ij is used to calculate the cosine distance of
samples between modalities. If the two samples have the
same inter-modal category, the value of S

αβ
ij is 1, otherwise

0.

4.4 Parameter analysis

In the previous experiment, we set the parameters of the
model in the objective function part. The parameters are
divided into three groups. β and γ are used to control the
contribution of projection loss and adversarial loss in the
inter-modal consistency loss, parameters λ and η control
the contribution of two label losses in the intra-modal

Fig. 3 P-R curves for Wikipedia Datasets
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Fig. 4 P-R curves for NUS-WIDE-TC21 Datasets

Table 5 The MAP score in the
DDAC comparison experiment Method Pascal Wikipedia

Image2Text Text2Image Image2Text Text2Image

DDCA1 0.691 0.706 0.515 0.477

DDCA2 0.704 0.716 0.524 0.492

DDCA3 0.709 0.716 0.522 0.491

DDCA4 0.614 0.640 0.523 0.488

DDCA5 0.726 0.725 0.530 0.497

DDCA6 0.713 0.719 0.522 0.493

DDCA7 0.734 0.733 0.536 0.507

Full-DDAC 0.735 0.733 0.538 0.508

Fig. 5 mAP changes when β and γ are different
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Fig. 6 mAP changes when λ and η are different

discriminant loss, and α control the contribution of inter-
modal discriminant loss to the overall objective function.
We selected Pascal Sentence datasets as experimental data
and analyzed the influence of these parameters on the model
results in the training process.

We divide the parameters into three groups
according to what the objective function does,
which are set as:λ, η ∈ {0.001, 0.01, 0.1, 1, 10},
β, γ ∈ {0.001, 0.05, 0.1, 0.5, 1, 5}, α ∈
{0.001, 0.05, 0.1, 0.5, 1, 5}.

The evaluation method for the first two groups of
parameters is to first fix the other two groups of parameters,
then fix a parameter of the group, and then change the size

of the other parameter. For the third group of parameters, fix
the other two groups of parameters and change the value of
α. Figures 5 to 7 show the corresponding results.

As can be seen from Figs. 5, 6, and 7, for the first group
of parameters,β can get a good mAP score when it is 0.05
and 0.1, while γ has no significant influence on the MAP
score. After repeated experiments, we finally determined
that β = 0.1, γ = 0.5;In the experimental results shown
in Fig. 3, a better mAP canbe obtained when the second
set of parameters λ = 0.01 and η = 0.1 are used; It
can be clearly seen from Fig. 4 that, for the third group
of parametersα, when, α = 0.001 the best mAP can be
obtained.

Fig. 7 mAP changes when α are
different
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5 Conclusion

In this paper, we presents a cross-modal retrieval method
based on adversarial learning with dual discrimination.
DDAC minimizes the projection loss and eliminates the
inter-modal heterogeneity through adversarial learning,
while the additional rejector prevents the bridging of
the inter-modal heterogeneity between the projections of
different semantic features in the adversarial learning
process. Then, we minimize the projection distances of
features with the same semantic labels between modalities
by cosine distance and maximize the projection distances
of different semantic features. Finally, in the label space,
DDAC double discriminates the semantic labels of feature
projection items from the perspectives of probability
distribution and distance respectively, which can effectively
ensure the classification information in the modality is
unchanged. Finally, the proposed method is tested on two
widely used datasets to verify the superiority of the DDAC
method in cross-modal retrieval performance.
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