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Abstract
Abnormal behaviour can be an indicator for a medical condition in older adults. Our novel unsupervised statistical concept
drift detection approach uses variational autoencoders for estimating the parameters for a statistical hypothesis test for
abnormal days. As feature, the Kullback–Leibler divergence of activity probability maps derived from power and motion
sensors were used. We showed the general feasibility (min. F1-Score of 91 %) on an artificial dataset of four concept drift
types. Then we applied our new method to our real–world dataset collected from the homes of 20 (pre–)frail older adults
(avg. age 84.75 y). Our method was able to find abnormal days when a participant suffered from severe medical condition.

Keywords Healthcare · Behaviour analysis · Unsupervised concept drift detection · Older adults · Ubiquitous computing

1 Introduction

Behaviour monitoring for healthcare purposes is an impor-
tant task and a change in behaviour may indicate a medical
condition. This includes physical diseases as well as cogni-
tive diseases like dementia [1–4]. To get a holistic view of
the behaviour, unobtrusive privacy preserving sensors can
be installed in domestic environments. Human behaviour
is very volatile and difficult to analyse, but machine learn-
ing approaches showed some promising results in this
domain [5]. One disadvantage is that a vast amount of data
is needed for training, thus in some cases, collecting large
datasets is expensive or even impossible. Moreover, label-
ing the data is time consuming and labels can be unreliable.
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Unsupervised machine learning algorithms are not rely-
ing on labels but need more training data. Our real–world
dataset, collected during the 10–months observational OTAGO
study, suffers from both limitations. Smart home sensors
were installed in the domestic environments of 20 (pre–)
frail older adults aged 85.75 y (SD: 5.19 y) and diaries were
written for each participant. The dataset is both small and
has unreliable labels, that is why we noticed that the most
promising approach was to use unsupervised machine learn-
ing. Our goal was to detect changing or drifting behaviour
and abnormal behaviour. Concept drift detection is one
approach for reaching our goal. considering the limita-
tions of our dataset the unsupervised concept drift detection
seemed to be a reasonable approach. We extended the com-
mon approach by a novel method to deal with small datasets.
We used the Central Limit Theorem (CLT) and the gen-
eralisation abilities of Variational Autoencoders (VAE) to
get an accurate estimation of the underlying random dis-
tribution of our feature set. The feature set contains the
Kullback–Leibler Divergence (DKL) of daily activity prob-
ability maps and a 7 d baseline activity probability map [6].
If a new day was normal the baseline was updated with the
new day. Our new method can be applied to all features
that are satisfying the CLT assumptions. Our aim was to
detect abnormal behaviour as indication for medical con-
dition in older adults. Before applying our new method to
our real–world dataset we validated it in two steps on an
artificial datasets. The first step was to validate whether
the VAE can approximate the underlying distribution more
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accurately than common approach using the sample mean
and the sample variance. In the second step we show that
our approach can detect the four basic concept drift detec-
tion types. After our method passed both validation steps
we applied it to our real–world dataset to detect abnor-
mal behaviour of older adults. In the next section we are
giving an overview of unsupervised concept drift detection
methods and machine learning approaches for behaviour
anomaly detection. In Section 3 we establish the theoretical
foundations of our approach and we describe the data acqui-
sition process, the preprocessing steps, feature engineering,
and our validation process in detail. In the results Section 4
we present our results and we discuss them in the follow-
ing section. In the last Section 6 we draw conclusions and
provide an outlook for future work.

2 State of the art

In the field of machine learning several approaches using dif-
ferent algorithms have been introduced. Common approaches
with good results for abnormality detection and activity
recognition in smart homes were using Long Short–Term
Memory networks, which take the time domain into account
[7–9]. However, these supervised approaches are depen-
dent on labeled data. In contrast, the approaches developed
in [10–12] were probability density based. A statistical
hypothesis test was used to determine if a new sample
or set of samples was drawn from the same distribution.
The authors in [13] combined a statistical significance test
with the k–Nearest–Neighbour (kNN) algorithm. The kNN
algorithm was used to partition the samples in the sample
space. The significance test was used to check if a drift
was present. A Student–Teacher approach for unsupervised
concept drift detection was introduced in [14]. The stu-
dent model was trained to mimic the loss of the teacher
model. When new unlabeled samples arrived the discrep-
ancy between the student and teacher models were used as
surrogate signal for the concept drift detection. A common
unsupervised concept drift detection method was used for
the final detection step. With time series data in mind [15]
developed an algorithm which was a composition of three
different steps, dimensionality reduction, random partition-
ing, and anomaly detection. The anomalies were detected
based on frequency statistics and the proportion of current
anomalies and the average of previously occurred anoma-
lies. The average is updated over time and leads to an
adoption of the algorithm. The afore mentioned research
was not focused on medical and healthcare applications. In
healthcare, particularly for the task of abnormal behaviour
detection, unsupervised concept drift detection had been
used. Using motion sensor data, a graph of the flat, and a
transition matrix of an unsupervised behaviour monitoring

system was developed in [16]. The features were the prob-
ability of room–to–room transitions and detention time in a
room. If a person made a transition or stayed in a room with
a low probability an anomaly was detected. The probabili-
ties were updated over time and able to adapt to the person’s
behaviour. The method introduced in [17] focused on the
drift in performing activities of daily living. A similarity
matrix between all time windows consisting of a sequence
of raw sensor events were computed. The similarity was
defined as the intersection of two histograms derived from
the time windows. Afterwards the results were clustered
using Markov Clustering. For detecting if a new time win-
dow is a drift they used the Silhouette Index in combination
with a threshold. In [18] the aim was to assess the risk of
abnormalities, that is why rule–mining was used to iden-
tify the causes of abnormalities. The resultant rules were
used in combination with a Markov Logic network to detect
the risk of abnormalities. Temporal information for abnor-
mality detection were used in [19]. Based on sensor events
and activities logs the probabilities of the temporal rela-
tion of activities were identified, e.g. the probability of one
activity happens after a certain other activity. If a combina-
tion with a low probability occurred a drift was detected.
The approach introduced in [20] was based on an unsu-
pervised Long–Short–Term–Memory (LSTM) autoencoder.
The encoder was trained on a baseline dataset containing
motion sensor data, then the trained autoencoder was used
to identify abnormalities by evaluating the deviation from
the learned regular model. The authors in [21] tried to detect
abnormal days by comparing the activities performed on
the day to the previous days. In the first step they used a
machine learning approach to classify the activities based
on smart home sensor data and in the second step they com-
puted the boundary between normal and abnormal days by
expanding the set of normal days. When the expansion stops
the model was used for further classification. A more gen-
eral review in [22] found that unsupervised deep learning
methods outperform the (semi–) supervised methods in the
task of abnormality detection in human behaviour.

We contribute an approach using a VAE as basis for a sta-
tistical test for concept drift and accurately estimating the
parameters for a probability distribution for small datasets
to the field of machine learning. We contribute to the health-
care domain by applying our method to unstructured smart
home data of 20 (pre–)frail older adults for anomaly detection.

3Materials andmethods

3.1 Data acquisition

The data of 20 participants (17 female, 3 male) was col-
lected during the observational OTAGO study conducted
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by the University of Oldenburg in 2014 and 2015 over a
period of 10–months [23]. Due to dropouts the average
participation time became 36.5 weeks. The average age of
the participants was 84.75 y (SD: 5.19 y) and they were
pre–frail or frail by the definition of Fried [24, 25]. The par-
ticipants lived alone in their own flats, but there might be
a possibility that they were assisted by a care giver. Every
four weeks the staff from the University of Oldenburg vis-
ited the participants for supervising geriatric assessments,
completing questionaries, and a diary. Holidays and time
conflicts led to an average of 31.3 d (SD: 5.3 d) between
two the visits. The following assessments for assessing the
mobility and physical function were performed Tinetti [26],
Short Physical Performance Battery (SPPB) [27], Timed Up
& Go (TUG) [28], and Hand Grip Strength (HGS) [29]. For
assessing the independence, quality of life, and nutritional
status the questionaries Instrumental Activities of Daily
Living(IADL) [30], EQ–5D–5L [31], and Mini–Nutritional
Assessment (MNA) [32] were completed. The EQ–5D–5L
and the MNA were only completed twice, at the beginning
and the end of the study. Tables 1 and 2 show selected char-
acteristics of the cohort at the beginning of the study (T0)
and the end of the study (T10). In addition to the regular
visits and assessments, a variety of sensors were installed in
the flats of the participants.

The sensor set contained home automation and power
consumption sensors. Additionally, two wearable sensors,
Shimmer3r (Inertial Measurement Unit) [33] and Columbus
V990 (GPS) [34], were given to the participants. A four key
switch was installed next to the main entrance door and the
participants were asked to turn it, when other people were
entering or leaving the flat. The power consumption sensors
were attached between the appliance and the power socket
and measured all energy consumption of the appliance
in W. The home automation sensors were comprised of
passive infrared motion (PIR) sensors, contact sensors, and
concussion sensors. The motion sensors were installed in
the rooms to detect motion in a certain area and they had
a scan–dead time of 8 s. Some sensors were installed to
measure specific walk paths inside the flats, e.g. the way
from the bedroom to the kitchen. One motion sensor was
placed right over the lavatory flush to detect toilet use. The
contact sensors were installed at all entrance doors of the
flats and at the fridge. All home automation sensors had a
wireless connection to a base station to transmit their data.
The sensor setup was dependent on the topology and the

wishes of the participants. A flat of a participant of the
OTAGO study is shown in Fig. 1.

3.2 Data preprocessing

Data preprocessing is an important step in machine learning
application. That holds especially for medical data, where
very often values are missing and samples are incomplete.
Extensive preprocessing using imputation methods showed
good results [35]. However, the concussion sensor was
identified as unreliable and faulty in a way that imputation
methods were not applicable. Therefore, we excluded it
from the further analysis. One participant reported a fallen
motion sensor and the sensor was fixed after. We did not
exclude the data, because we were also interested in how
the results were affected. The main preprocessing step was
filtering and resampling the power sensor consumption data.
The power consumption sensors were measuring standby
energy consumption as well. Since the standby state did
not contain any information about activity of a participant,
standby times were filtered. We assumed that the appliances
were in standby most of the time. To find the standby power
consumption of each appliance, we used a histogram to find
the dominating W consumption and considered all values
smaller or equal as standby power consumption. The motion
sensors were sampling at 1/8 Hz and slower than the power
consumption sensors. So, we resampled the filtered power
consumption sensor data to 1/8 Hz.

3.3 Activity probability maps

An activity probability map contains the probability of
having a sensor event for each hour of the day. The
probability an event of sensor i occurring in hour h was
computed by p(sh,i) = #sh,i/#si , where si was the sensor
of interest, #sh,i the number of events in hour h of sensor i,
and #si the total number of sensor events of sensor i for the
current day. The maps were created for each room of the flat
separately and using a subset of all sensors. Figure 2 shows
an activity probability map of a kitchen and Fig. 3 of a living
room. We established average activity probability maps for
each room as baseline for our analysis. The baseline map
was the average probability of the maps of 7 days to capture
each weekday once. We carefully checked the diaries and
none of the participants had any medical condition or health
related incidents in the first 7 days.

Table 1 The baseline
characteristics of the cohort n=20 (m=3,f=17) Age(y) Frailty Index(pts.) SPPB(pts.) TUG(s)

Mean 84.75 1.90 5.95 17.87

SD (±) 5.19 0.72 2.33 5.33

Range (min–max) 76.00–92.00 1.00–3.00 3.00–11.00 11.16–31.63
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Table 2 The characteristics of
the cohort at the end of the
study

n=18 (m=3,f=15) Age(y) Frailty Index(pts.) SPPB(pts.) TUG(s)

Mean 85.44 2.00 6.61 16.12

SD (±) 4.92 0.97 2.85 5.85

Range (min–max) 77.00–93.00 0.00–4.00 2.00–12.00 8.15–30.06

Fig. 1 A flat of a participant of
the OTAGO study

Fig. 2 One example of an
activity probability map of a
kitchen. Hours 5 and 6 show
high probabilities for using the
toaster, the hot plate and the
kettle
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Fig. 3 One example of an
activity probability map of a
living room. The power
consumption sensor was
attached to a multi socket where
a lamp and a radio were
connected to

3.4 Feature engineering

The feature that was used for training the VAE was the
statistical distance measure DKL. The DKL is defined as
follows

DKL(P ||Q) =
∑

x∈X

P (x) log

(
P(x)

Q(x)

)
(1)

where X is the probability space, and P and Q probability
distributions defined over X. Here P and Q were activity
probability maps. In case the quotient becomes 0, using

lim
x→0+ x log(x) = 0 (2)

results in a contribution of 0 to the sum, if P(x) = 0. We
computed the DKL for each sensor of the activity probabil-
ity map and the baseline. The final distance was the average
over all DKL of all rooms. The final feature set was scaled
to the interval [0, 1]. One benefit of the DKL is its robust-
ness against small probability changes. A small change in
the probability map leads to a small change of the DKL.

3.5 Unsupervised statistical concept drift detection

Concept drift detection is a method for detecting drifts and
abnormalities in data streams and time series data. The basic
idea is to compare new data to old data using a similarity
measure and train a classifier. Concept drift detection can
be used according to the supervised learning or the unsu-
pervised learning paradigm. In supervised concept drift
detection it is assumed that the label is available right after
the new data arrived and then based on the label the classi-
fier is updated. However, in case the label is not available,
unsupervised learning must be used. In the unsupervised
way the decision whether a drift was detected is usually
based on a user defined threshold. If the similarity mea-
sure exceeds the threshold a drift detection alert is raised.
We adapted the general process to our approach and call
it unsupervised statistical concept drift detection. Figure 4
illustrates the process of concept drift detection.

In the beginning we established a baseline activity prob-
ability map as described in Section 3.3 and computed the
corresponding features (Section 3.4) to generate the baseline
feature set. Then 100,000 samples for training and 50,000
samples for validation are drawn from a normal distribution

N (μ, σ 2) parameterised by the sample mean and sample
variance. The VAE is trained and validated on the sam-
pled data. The prior, the latent space and posterior were
normal distributions, because the CLT establishes that the
limiting distribution of a set of random samples is a nor-
mal distribution. In the next step, Concept Drift Detection,
the hypothesis H0: The new sample is not a drift is tested.
The cumulative distribution function of the posterior nor-
mal distribution given the new sample s is evaluated and
if P(X ≤ s) ≤ σ the hypothesis is accepted and rejected
otherwise. If H0 is accepted, the new sample s is added to
the baseline feature set and hence the baseline feature set
is updated and the process starts over for the next sample.
If the hypothesis is rejected an alarm for a detected drift is
raised.

3.6 Central limit theorem

The CLT establishes that the limiting random distribution
of a sequence of identical independent distributed (i.i.d.)
random variables is a standard normal distribution. The
samples must be drawn from a distribution with finite mean
and finite variance. The mathematical formulation of the
Lindeberg–Levy CLT is stated as follows: Let {X1, . . . , Xn}
be a sequence of i.i.d. random variables with E[Xi] = μ and
Var[Xi] = σ 2 < ∞, i = 1, . . . , n. Then limn→∞

√
n(Xn−

μ) = N (0, σ 2) In general, n must be a sufficient large
number, but the CLT itself does not make a statement about
the size of n. Since our sample size n is limited we used an
VAE to approximate the limiting distribution stated by the
CLT with a small n.

3.7 Variational autoencoder

An autoencoder is a special type of artificial neural network
that learns to efficiently encode data in a latent space. The
network is comprised of an encoder and a decoder. The
encoder is mapping the input data to a latent space and
the decoder is reconstructing the data. The autoencoder is
trained in an unsupervised manner by comparing the input
data and the corresponding decoded data using a similarity
measure. The autoencoder is learning a latent representation
of the data. A VAE is a special type of autoencoder and
learns the distribution of input data and hence encodes the
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Fig. 4 The illustration of our
unsupervised statistical concept
drift detection approach

data as distribution over the latent space. For achieving that
the latent space is regularised during the training process.
The training process has four steps. The first step is to
encode the input as a distribution over the latent space.
The second step is to draw a sample z from the latent
distribution. In the third step the sample is decoded and
the reconstruction error is computed. In the last step, the
network is updated by backpropagating the reconstruction
error. The latent space must be reparameterised to enable
the gradient updating the encoder [36]. Figure 5 illustrates
the used VAE architecture.

The encoder learns the latent distribution qφ(z|x) of the
posterior distribution pθ(z|x), where it is assumed that the
data is generated by a distribution pθ(x|z). Here, φ and θ

were the parameters of the encoder and the decoder respec-
tively. In our case the prior distribution was N (μe, σe),
where μe and σe were the sample mean and sample variance
of our data. The resultant distributions are

qφ(z|x) = N (μenc(x), σ 2
enc(x)) (3)

and

pθ(x|z) = N (μdec(z), σ
2
dec(z)) (4)

where μenc(x) and σ 2
enc(x) are encoder outputs and μdec(z)

and σ 2
dec(z) the decoder outputs. For evaluating H0 the

cumulative distribution function of N (μdec(z), σ
2
dec(z))

was evaluated for x. We trained the VAE using the Evidence
Lower Bound Objective (ELBO).

3.8 Method validation

We validated our methodology in two steps. The first step
was to validate whether the VAE is able to achieve a bet-
ter approximation of the mean and the variance of the
unknown underlying normal distribution than the sample
mean and the sample variance. In the second step we val-
idated whether our approach can capture the four common
concept drift types. In practical applications the random dis-
tribution of the measurements is mostly unknown and must
be approximated. The CLT shows that the limiting distri-
bution Z for random samples X1, . . . , Xn with mean μ

and finite σ 2 is the standard normal distribution. The more
measurements are available, the better the approximation.
We used a standard normal distribution N(0, 1) as ground
truth and drew two samples. Then we computed the differ-
ence between the approximated means and variances and
the ground truth 1,000 times. We took the sample mean and
the sample variance of all distances to judge the approxi-
mation quality of both approaches. To compute the mean
and the variance of the VAE approximation we evaluated the
VAE at a randomly sampled point from the approximated
distribution N(μ, σ 2). To validate whether our method is
able to detect concept drifts we created artificial datasets.

Fig. 5 The illustration of our
VAE. The used activation
function was the sigmoid
function and the used optimiser
was ADAM with an initial
learning rate of 1 × 10−4 and an
exponential decay after the 5th
epoch. The training was
automatically stopped, if no
improvement of the validation
loss larger than 0.001 was found
within 5 epochs
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We created one dataset for the four typical concept drift
types, sudden, gradual, incremental, and recurring described
in [37]. Figure 6 illustrates the four different drift types.

Each set contained 300 samples on the domain [0, 1] where
0 denotes no drift and a value larger than 0 a drift. The
sudden concept drift data set contained 150 normal samples
and 150 drifted samples. The drift occurred in the middle of
the series after 150 samples. The gradual drift set contained
165 normal samples and 135 drifted samples. After 10 samples
n drifted samples were inserted; n counts from 1 to 9. The
incremental drift set contained 100 normal and 200 drifted
samples. The drift started after sample 100 and was linear
incremented until sample 200. The recurring set contained
200 normal samples and 100 drifted samples. The samples
between sample 100 and 200 were drifted samples.

4 Results

4.1 Underlying distribution approximation

Table 3 shows the results of the experiments for vali-
dating the VAE approximation of the underlying random
distribution.

The average difference of 1,000 runs using two samples
was 0.91 and the variance was 0.41, and the average difference
using the VAE approximation was 0.73 and the variance
0.33. The results show that the VAE approximates the
unknown underlying distribution more accurate than the
sample mean and the sample variance.

Table 3 The results of the distribution approximation. The mean and
variance rows show the mean and variance of the difference between
the baseline {0, 1} and the approximations

Sampled Approximation

Mean 0.91 0.73

Variance 0.41 0.33

4.2 Artificial dataset

The results of our second validation step are shown in Table 4.
The best scores were 1.0 on the sudden drift set and

the recurring drift set. The worst scores of 0.91, 0.89, and
0.83 of the F1-Score, accuracy, and recall were on the
incremental drift set. The results on the gradual drift set
were a F1-Score of 0.98, an accuracy of 0.99, and a recall of
0.97. All the scores are referring to the artificial dataset. The
lack of labels prevented calculating scores on our real–world
dataset.

4.3 Real–world dataset

Figures 7 and 8 show the distributions parameterised by the
sample mean and sample variance and parameterised by the
parameters estimated by the VAE. The red histogram is the
baseline distribution of 7 d and the blue histogram is the
final distribution after processing all data.

The sample mean and the sample variance at baseline for
participant 1 were 3.56 and 3.59. The mean and variance

Fig. 6 The four typical drift
types we used for validating our
method
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Table 4 The results of the concept drift validation

Sudden Gradual Incremental Recurring

F1–Score 1.0 0.98 0.91 1.0

Accuracy 1.0 0.99 0.89 1.0

Precision 1.0 1.0 1.0 1.0

Recall 1.0 0.97 0.83 1.0

estimated by the VAE were 3.52 and 1.04. At the end the
sample mean and the sample variance were 2.60 and 0.73.
The final estimated mean and variance were 1.85 and 0.40.

After the first 66 days of the study participant 16 started
a chemotherapy and afterwards no normal days were found
anymore. The sample mean and variance at the beginning
of the study were 2.06 and 0.47. The mean and variance
estimated by the VAE were 2.86 and 0.31. The sample mean
and variance at the end of the study were 1.81 and 0.46. The
VAE estimation of the mean and variance at the end were
1.51 and 0.21. Table 5 shows the number of normal and
abnormal days for different σ for each participant.

5 Discussion

The results on the artificial concept drift datasets and the
VAE approximation were easy to judge, because ground
truth values were available. Our real–world dataset did not
have reliable ground truth values. First of all, we could see
that the algorithm behaves as expected, when adjusting the

factor of σ . The larger the factor of σ , the more a value can
deviate from the mean without being considered as abnor-
mal. The results showed as well that our method is able to
adapt to the volatile behaviour of humans. A good indica-
tor for the suitability of our method was participant 16. The
participant got cancer during the study and had to undergo
chemotherapy. The participant deceased before the study
finished. Chemotherapy has severe side effects and is stress-
ful for body and mind. Choosing 1σ our method did not
detect any normal day after the first chemotherapy treat-
ment. Our approach was able to capture the change much
better than the common statistical approach, because the
shift of the mean was much larger. Another interesting case
was participant 11. After a fall incident the participant had
an injured ankle and wore an orthesis. The first 11 days were
abnormal according to our algorithm, but then after the 11th
day normal days were found again. Perhaps the participant
adjusted to wearing the orthesis and the behaviour nor-
malised again. Other participants were hospitalised during
the study and those days were abnormal as well. Participant
3 lend the flat to relatives while on vacation, so all 5 days
were recognised as abnormal. With 1σ our method consid-
ers all days where the participants had a medical condition
as abnormal, but days where visitors came or the partici-
pants went on trips were considered as abnormal as well.
One participant reported that a motion sensor fell off and
all days until it was fixed by staff of the university were
considered as abnormal. We found that all days participant
15 had an inflammation of the bladder and participant 16

Fig. 7 The drift of the
distributions of participant 1. All
severe incidents are captured
using 1σ for testing the H0. The
blue histograms show the
distributions at the beginning
and the red at the end of the
study
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Fig. 8 The drift of the
distributions of participant 16.
After beginning the
chemotherapy no normal day is
found using 1σ for testing the
H0. The blue histograms show
the distributions at the beginning
and the red at the end of the
study

had gastroenteritis were considered as abnormal. Even though
the diaries were an unreliable ground truth source, we con-
sidered severe medical conditions like falls, bone fractures,

Table 5 The results of our statistical concept drift detection algorithm
on the real–world dataset for different σ . normal days / abnormal days

ID 1σ 1.5σ 2σ

1 274/32 299/7 304/2

2 171/130 272/29 294/7

3 241/94 316/19 327/8

4 265/39 292/12 300/4

5 189/141 311/19 327/3

6 212/90 271/31 297/5

7 248/79 318/9 323/4

8 95/56 139/12 148/3

9 233/30 257/6 260/3

10 293/15 304/4 307/1

11 214/101 282/33 309/6

12 275/81 346/10 356/0

13 256/54 293/17 302/8

14 177/31 197/11 205/3

15 187/107 279/15 293/1

16 110/42 145/7 149/3

17 284/15 295/4 296/3

18 272/61 319/14 330/3

19 294/43 300/37 332/5

20 221/70 278/13 286/5

hospitalisation, gastroenteritis, inflammation of the bladder,
and chemotherapy as reliable. Other information like going
out for a walk, having visitors, and playing games were
not considered as reliable information. The algorithm con-
sidered days as abnormal where no reliable information is
available. That is an indicator that our method has false pos-
itives. However, in the medical context a false positive is
preferable over a false negative. Our system keeps a human
in the loop and in case of an alarm the reason can be found.
The combination our unsupervised concept drift detection
method with a high precision and an medical expert with
a high recall may lead to a high performance. There were
the factor of σ and the days of the baseline to choose. The
baseline of 7 days were chosen based on the assumption that
routines on day scale are dependent on the day of the week.
That may not be necessarily true. In clinical application the
initial baseline would be 2 days because at least 2 days are
needed to calculate the variance. Since the label would be
available only normal days can be considered for the base-
line. The factor of σ would be adapted in online learning
fashion. The parameter controls the sensitivity of the model.
In case of many false alarms the factor would be increased.

6 Conclusions

We introduced our novel unsupervised statistical concept
drift detection method, and the results on the artificial
dataset showed that our method was able to detect concept
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drifts using activity probability maps derived from home
automation data and the DKL. Moreover, we showed that
our new approach using VAE for estimating the probability
distribution is more accurate than the sample mean and
sample variance. We evaluated our method on a real–
world dataset of 20 (pre–)frail older adults and showed
that our method was successful in adapting to a change
in behaviour. Moreover, we showed that our method also
detects abnormal behaviour in case of medical condition.
Except for the medical conditions no reliable ground
truth labels were available and so there may be false
positives. Our approach was designed with humanised
and personalised care in mind and keeps a human in the
loop. In this context our approach is supposed to have
a high precision and a high recall. The next is to test
our approach on a similar dataset with reliable ground
truth values. Considering the medical perspective a clinical
study designed to evaluate our approach would be the most
sophisticated way of testing our method.
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