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Abstract
Despite the impressive achievement in supervised person re-identification (re-id), existing supervised approaches mainly
focus on exhaustive identity annotations of each image. Their performance will degrade significantly when the test dataset’s
angles, specifications, and illumination degrees are different from that of the training dataset. In this paper, we propose a
novel domain adaptive re-id deep learning method with Memory-Based Circular Ranking (MBCR) to assign labels to each
sample in the target domain adaptively. We put forward a reciprocal neighbors label smoothing loss calculated from the
generated pseudo-labels to optimize the target domain in a supervised learning manner. Since most person re-id datasets
have multiple camera perspectives, the cross-camera invariance loss is proposed to make the model adapt to the variations of
images. Massive experiments are enforced to prove the superiority of the proposed model over the baseline. It increases the
R@1 of 13.5%, 11.0%, and 5.0% in Market-1501, DukeMTMC-reID, and MSMT17 than baseline separately and reaches
State-Of-The-Art (SOTA).

Keywords Person Re-identification · Reciprocal neighbors · Cross-Camera · Domain adaptation

1 Introduction

Person re-identification, also named re-id, [1–10] can be
considered as a single-modal retrieval task, which requires
to search the underlying suspect of the query person from
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the gallery filmed from multi-view cameras. It is a tech-
nology that employs computer vision to determine whether
a particular suspect is in a video. Because of the broad
distribution of the cameras, their angles, specifications,
and illumination degrees of the scene where the camera is
located are entirely different, which may lead to the appear-
ance characteristics of the same pedestrian vary a lot under
different cameras [11]. In addition, the researchers also
encounter many other challenges such as low image reso-
lution, pedestrian posture change, and occlusion. In detail,
present difficulties can be concluded as:

• In most cases, images from surveillance cameras are
fuzzy. There may be only part of the pedestrian shown
in an image. Even with advanced object detection
algorithms, it is still at low resolution, so it is impossible
to compare the embedding of extracted face features.
The only solution is to judge from the aspects of clothes
and postures.

• Pedestrian re-id images may be filmed in different
periods, and pedestrians’ posture and appearance may
change to a certain extent. For instance, the images
taken in the day and at night will be quite different.
Moreover, in many monitoring environments, there is
a large flow of people, which is prone to overlap and
occlusion of pedestrians.
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• The acquisition of pedestrian re-identification dataset
involves the issue of personal privacy and security.
Pedestrian detection should be conducted among the
whole video frame sequence, which is time-consuming.
It is crucial to judge whether pedestrians detected in
frames are the same identities and then mark them.
The whole process is tedious and inefficient. However,
the existent supervised re-id models need to be sup-
ported by large-scale datasets, which results in the
contradiction between model performance and model
training cost.

In a word, the above situations have brought significant
challenges to the re-id task. Researchers still need to focus
practical issues and make long-term efforts.

1.1 Motivation

Due to its important application in security monitoring, per-
son re-id has been widely concerned by academia. However,
present algorithms commonly depend on enormous labeled
datasets, limiting their availability in practical applications.
Even though many traditional supervised algorithms show
excellent performance on the benchmarks, they perform
poorly on real-world datasets [12–15]. This is because when
there is a slight gap between data distributions, the perfor-
mance of the supervised model will decrease significantly.
As the specification of different cameras varies greatly,
the appearance of pedestrians is easily affected by fac-
tors such as clothing, shelter, posture, and lighting. All the
factors mentioned above make pedestrian re-id a hot and
challenging task.

This paper solves person re-id in an unsupervised way.
It needs to train the neural network on labeled source
domain in a supervised way and unlabeled target domain
in a unsupervised way. The object is to optimize the per-
formance in the unlabeled domain. The self-adaptive pedes-
trian re-id algorithm aims to improve the generalization
capability and reduce the cost of manual labeling. The reg-
ular unsupervised domain adaptation (UDA) bases on the
assumption that both the two domains share a identical cate-
gory distribution [12, 16]. However, it is not correct given to
the inherent open set peculiarity [17]. Recently, most UDA
methods [18–20] are intending to decrease the distributional
discrepancy between the two domains. In addition, some
UDA methods leverage generative adversarial networks
(GAN) [21] to realize image-to-image domain adaptation,
which is essential to augment the pedestrian dataset. Nev-
ertheless, these methods do not focus on the potential label
information in the target domain, nor do they address the
diversity of camera styles.

In this work, a reciprocal neighbors label is formulated
smoothing loss (RNLSL), which is based on the observation

that when the model is trained on the labeled dataset,
the highest-ranked returns are more likely to be the same
identity as the query. In a word, the matching image of a
pedestrian’s similar image is more likely to be the person’s
similar image. Therefore, we can guide the model to be
aware of the potential invariance in the target domain by
decreasing the discrepancy among each sample and its
neighbors. This situation is likely to deviate from the best
case: the mismatch is contained in k-nearest neighbors
and even has a high ranking [3]. RNLSL is designed to
solve the aforesaid problem by pulling the true matches
in the k-nearest neighbors and pushing the hard negative
samples.

Simultaneously, this paper regards the camera in the
unlabeled dataset as a domain and employ style transfer
GAN to train a domain adaptive transfer model. Then,
MBCR augment the unlabeled domain images with the pre-
trained model, which is illustrated in Fig. 1. These generated
images can help the model grasp the variations in the
appearance of persons due to differences in camera styles.
Finally, a cross-camera invariance loss (CCIL) is proposed
to further eliminate the interference of camera style on
personal identities.

1.2 Contributions

The contributions can be concluded as:

• We demonstrate how to employ the memory-based cir-
cular ranking mechanism to generate reliable smooth
labels in an unsupervised way and optimize the object
with RNLSL. The proposed method is named as
MBCR. It does not label the total dataset by clustering
the entire target domain, but label the individual sam-
ples with the guidance of neighborhood information.
MBCR boosts the performance by improving the effi-
ciency of model optimization and avoiding the noise
generated by a clustering algorithm.

• A loss optimization named CCIL is proposed to direct
the model to focus on cross-camera invariance in the
target domain, which increases the model’s robustness.

• We have verified the method on three benchmarks,
including Market-1501 [22], DukeMTMC-reID [23]
and MSMT17 [20]. Experiments on these datasets
demonstrate that the proposed approach surpasses the
SOTA method.

• It is simple to implement the proposed method and
it brings no massive extra parameters and calculation
overhead to the training process, so it is suitable for
practical application. There is still a long way on how to
design appropriate loss based on training samples and
their adjacent images. The proposed method provides a
wonderful reference for future work.
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Fig. 1 Examples of style-transferred images in Market-1501. The Market-1501 benchmark contains six cameras. Every pedestrian filmed by one
camera will also be captured by other five cameras

2 Related work

Over the past few decades, most existing supervised re-
id works have focused on learning distance metric or
subspace [24–28]. With the rise of neural networks, deep
learning methods [29–32] are fully applied in person re-id.
In this section, we primarily introduce the traditional metric
learning methods and the deep learning methods.

2.1 Metric learning Person Re-identifification

LMNN [33] constructs a triplet in terms of anchor sample,
positive sample, and negative sample. It requires the dis-
tance among the embedding of the same category be close
enough, and the ones of distinct categories should be dis-
tant enough, where the distance is measured by Euclidean
distance or Cosine distance. Hinge loss is employed to
optimize the objective function, which is a classical convex
optimization problem with low complexity, and many schol-
ars later improve on this basis. Chen et al. [34] apply the

quaternion loss for pedestrian re-id for the first time, where
the distance among the negative samples is constrained.

KISSME [35] judges whether two pedestrians are iden-
tical or not according to the logarithmic probability value.
It hypothesizes that the image features of the same pedes-
trian follow a Gaussian distribution, which means that the
mean of the same pedestrian’s image features should be 0,
and the covariance should be of gaussian distribution. Hao et
al. [36] proposed a local similarity metric method based on
KISSME to discriminate local regional similarity of pedes-
trian images, avoiding the similarity conflicts between pos-
itive and negative samples, which exist in previous distance
measurement.

2.2 Supervised Person Re-identifification

He et al. [37] proposed SPP-Net. The traditional neural
network utilizes a single-size convolution kernel, which is
not capable of capturing the information of different scales
in images. The author employs spatial pyramid structure to
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extract samples’ features, and pyramid pooling structure to
make the extracted feature dimensions no longer rely on the
size of input images.

Subsequently, a deeper convolutional neural network,
VGG-NET, was proposed by Simonyan et al. [38]. Con-
sidering that deepening the neural network can boost the
fitting capacity of the model. The author proposes to replace
the previous 5 × 5 convolutional kernels with multiple
3 × 3 convolutional kernels, which increases the depth and
improves the performance while maintaining the feature
map’s receptive field.

However, the methods mentioned above are universal
feature extractors of images. Re-id owns its particularity,
the challenge described in Section 1 prevents these models
from being better at generalization. So OSNet [39] is
proposed to attention to the full-scaled feature and advance
the re-id to a new level. It designs a convolution block
by introducing multiple features flows of different scales,
and the feature scale concerned by each feature flow can
be adjusted through hyperparameters. Moreover, features of
different scales will be uniformly fed into the aggregation
module to generate dynamic weights for feature flows
of different scales through the full connection layer and
conduct the multi-scale feature fusion. For the input images,
the feature aggregation module can adaptively focus on
an appropriate scale or choose to mix with features from
different scales to produce heterogeneous feature scales.
In addition to realizing multi-scale feature fusion learning,
OSNet is designed with the principle of lightweight and
employs deep separable convolution to replace the original
3 × 3 convolution.

In [32], image pairs are divided into three overlapped
image pairs. The cosine measuring function is utilized
to jointly perform feature extraction and metric learning
through a siamese CNN network. Recently, deep attention
mechanisms [40, 41] has been proposed to solve the prob-
lems of lighting, occlusions, and back-ground variations.
In [40], a dual attention matching network is designed to
search the implicit context representations and then com-
pares them simultaneously. [41] adopts the pose-guided
part attention mechanism to reduce noise interference. In
addition, [42] uses full convolutional siamese networks to
calculate visual similarity at different levels and combines
multiple levels of information to improve the robustness of
matching. However, these methods lack effective guidance
for unlabeled datasets, which leads to poor scalability model
in realistic deployment.

2.3 Unsupervised domain adaptation

UDA can effectively solve the learning problem of the
distribution inconsistency between the two domains. When
their categories are the same, an alignment operation is

realized by reducing the maximummean difference (MMD)
[43] in Reproductive Kernel Hilbert Space (RKHS) [44, 45].
However, in most scenarios, unknown categories exist in the
target domain. Aiming to solve this, Busto and Grall [17]
propose the open set domain adaptation. They project the
estimate feature from the source labeled domain to target
unlabeled domain by assigning images within the target
domain to certain categories in the source domain. Recently
an adversarial learning framework [46] is proposed to
achieve the style transformation of the source domain by
use of cycle-consistency loss. This paper also utilizes the
domain style transfer GAN to bridge the gap between
domains.

2.4 Domain adaptive person re-identification

Several unsupervised approaches utilize source domain to
initialize a pre-trained model and mine the potential label
information by unsupervised clustering on the unlabeled
target domain [12–15]. Nevertheless, they do not use
labeled source images to continue to refine the pre-trained
model. Recently, unsupervised methods [6, 18, 20, 47]
is proposed to leverage inter-domain style conversion.
SPGAN [18] and PTGAN [20] utilize an image-to-image
conversion network to preprocess the source dataset and
then conduct the sepervised learning. An iterative pseudo-
label framework is proposed in [47], which significantly
boosts the accuracy. However, this framework is very
sensitive to initialization. Tzeng et al. [16] utilizes the style
transfer GAN to acquire initialization and then generate
pseudo-labels by unsupervised clustering for all target
images. Nevertheless, the algorithms based on clustering
works poorly on similar images. The pseudo-labels they
assigned to similar images from different categories can be
the same, which indicates their weakness in distinguishing
confusing samples [45]. ECN [11] constructs a continuously
updated feature memory to estimate the similarity between
the entire target images. Compared with ECN, the proposed
method does not treat every neighbor of the training sample
equally because there is often contamination of mismatches
in one-way ranking. In contrast, the proposed method adopts
RNLSL to effectively distinguish true matches from hard
negative samples, which greatly improves the reliability
of similarity estimation. Meanwhile, CCRL is adopted to
brings a new idea for solving camera style variations.

2.5 K-Reciprocal encoding

K-Reciprocal Encoding [3], which applies the novelty
of set intersection to re-rank sample similarity for the
first time, bases on the hypothesis that for an optimal
match, they should each other’s top-k nearest neighbors.
Specifically, Mahalanobis distance is firstly employed to
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obtain the query’s primary k-nearest gallery lists, and then
Jaccard distance is used to get the k-reciprocal nearest
list. The method sequentially calculates the k-reciprocal
nearest list for each sample in the query’s k-reciprocal
nearest list. Then some positive samples, which are ignored
because of illumination and perspective variances, can be
recalled according to some restricted conditions. Jaccard
distance represents the distance between the query and the
recalled image. The author encodes the k-reciprocal nearest
information into an equal but more simple vector to reduce
the complexity with a higher weight for nearer samples.

2.6 Regular loss functions

In the field of re-id, the commonly used loss function mainly
follows the one in classification and retrieval tasks.

cross-entropy loss [48] is mainly adopted in classifi-
cation. It firstly converts the model output into predicted
probability by softmax function and then calculate the log

value to obtain each sample’s corresponding loss, which can
be expressed as:

LCE = − 1

B

B∑

i=1

log
esi

∑n
j=1 esj

(1)

where B denotes the sample amount in the mini-batch, n
denotes the category number.

Center loss [49] is an improvement on cross-entropy
loss. It assumes a centroid for each category and realizes the
convergence by narrowing the gap of the input sample and
its corresponding category centroid.

LCL = − 1

B

B∑

i=1

log
esi

∑n
j=1 esj

+ λ

2

B∑

i=1

‖xi − ci‖2 (2)

where xi denotes the embedding of sample i, ci represents
its category.

Triplet Loss, which is put forward in FaceNet [50],
bases on the most crucial idea that the samples in the
same category should be nearer in the embedding space.
Considering such one simple regulation will result in that
the cluster centroids of different categories get closer, too, a
margin constant m is added:

Ltriplet = ‖xa
i − x

p
i ‖2 − ‖xa

i − xn
i ‖2 + m (3)

where xa
i , x

p
i , and xn

i denote the anchor sample, positive
sample, and negative sample separately.

3Method

Preparatory Work To facilitate the following analysis, this
paper first defines the mathematical symbols to be used. The
domain adaptive person re-id task provides two datasets, a

source domain {Ps, Ls} with person identities and a target
domain {Pt , Ct } with camera identities. As many UDA
person re-id methods, we adopt the assumption that each
target image’s camera-id is obtained in advance, which
is easy to be known when gathering target images from
frame sequences in a video. The source domain contains
M pedestrian images and these pedestrians belong to X

categories. Each ps,i in the source domain belongs to a
label ls,i representing its identification. In addition, there are
N pedestrian images and Y cameras in the target domain.
Each target image pt,i corresponds to a camera identity
annotation ct,i .

3.1 Overview of network

The overall architecture of the proposed method is shown in
Fig. 2. In the first step, MBCR regard each single camera
as a unique domain and utilize Cycle GAN [46] to train a
camera-style transfer model. The specific implementation
can be found in [51]. The model trained by the first step is
then employed to augment the target images and gener-
ate the corresponding fake version for each original image.
These fake images are added to the original dataset to par-
ticipate in model training together. All images are fed
to the pre-trained CNN backbone network, followed by
an embedding module that consists of 512-dimensional
feed forward network (FFN), one-dimensional batch nor-
malization, and ReLU. The 512-dimensional features of
each image is extracted through the embedding module.
For source images, the extracted features are sent to an
X-dimensional FFN (named FC *P-id), followed by soft-
max. The cross-entropy function is employed for supervised
training. Simultaneously, MBCR maintain a feature mem-
ory module to save the latest output of the embedding
module for each target image. To more accurately estimate
the similarity between the target samples in the mini-batch
and the ones in the memory module, this paper pro-
poses a reciprocal neighbors label smoothing loss (RNLSL)
based on memory-based circular ranking. Since RNLSL
and memory-based circular ranking mechanisms are closely
related, they are introduced in Section 3.2.

In addition to RNLSL, we also add a Y-dimensional FC
layer (FC *C-id) after the embedding module and formulate
a cross-camera invariance loss function (CCIL) to guide
the model to discern the discrepancy of pedestrians in the
unlabeled domain. The factors of occlusion, illumination,
pose and background clustering all will result in such
variations among different domains.

3.2 Reciprocal neighbors label smoothing loss

In the view of supervised learning, we hope that the iden-
tifications of the same category are close enough in the
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Fig. 2 The overall architecture of MBCR. In the training process, style
transfer images, original target images, and source images are sent
to the deep re-id network to acquire updated features. For the source

domain, the cross-entropy loss function is utilized to optimize it. For
the target domain, the loss functions turn to RNLSL and CCIL

embedding space, while maintaining a certain distance from
other identities. With the help of feature memory module
T , reciprocal neighbors label smoothing loss can effectively
mine the potential identity information in the target domain.
In the beginning, each t in the target domain denotes a sep-
arate category, and assign an index to it. Each row of the
feature memory module is used to store the 512 dimensional
features corresponding to the index. During the iterative
training process, the feature T [i] corresponding to pt,i with
the L2 normalized feature f (pt,i) is updated by,

Tt [i] = (1 − λ)Tt−1[i] + λf (pt,i) (4)

where t denotes the epoch numbers and λ controls the
updating rate. The original k-nearest neighbors of pt,i

can be obtained by the pairwise cosine distance function
between f (pt,i) and the feature memory module. We define
the indexes of these neighbors as S(pt,i). It is fallacious
to directly pull pt,i and its neighbors because there are
often mismatches in one-way ranking. Thus, a memory-
based circular ranking mechanism is proposed to excavate
the confusing samples in a batch, as shown in Fig. 3.
We process the feature memory module with k-reciprocal
encoding [3] and obtain an aggregate similarity matrix
Drecode which contains the k-reciprocal encoding distance
among all the embeddings saved in the memory module.
It is worth noting that even though cosine function is
widely employed in similarity metric, k-reciprocal encoding
distance has recently exhibited better generalization.

For each image xt in the original k-nearest ranking list
S(pt,i), its k-nearest ranking list S(xt ) is obtained by sorting
the similarity matrix Drecode. If pt,i also exists in S(xt ), xt

denotes a positive sample of pt,i , otherwise xt is regarded

as a hard negative sample with a great probability. By
traversing S(pt,i), the original ranking list is divided into
Spos(pt,i) and Sneg(pt,i). Finally, we treat N unlabeled
pedestrians asN categories and assign the pseudo-labelWt,i

= {wi,1, wi,2, wi,3......wi,N } to pt,i as,

wi,j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 pi,j ∈ Spos(pt,i)

−1

k
pi,j ∈ Sneg(pt,i) , ∀pt,j ∈ {Pt }

0 otherwise

(5)

where, k denotes S(pt,i)’s size. The estimated probability
that pt,i belongs to i-th class is obtained through,

p(i|pt,i) = exp(αf (pt,i)) · T [i]
∑N

j=1 exp(αf (pt,i)) · T [j ] (6)

where α is the scaling number. nt denoted the amount of
unlabeled images in a training batch.Finally, the reciprocal
neighbors’ label smoothing loss is formulated as,

LRNLSL = − 1

nt

∑

i

N∑

j=1

wi,j logp(j |pt,i) (7)

During the progress of RNLSL calculating, an important
step is to assign pseudo-labels to target samples with
memory-based circular ranking mechanism, and there
are two principles of invariance. In (5), relatively large
weights are assigned to the sample itself and its reciprocal
neighbor samples. They are called sample invariance and
neighborhood invariance in this paper.

Sample invariance allows the characteristics of the
sample itself to be pulled in, which is a conservative
approach in the absence of labels. But this keeps the
different sample instances far from each other. However,
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Fig. 3 Illustration of the memory-based circular ranking mechanism.
First, we calculate the k-nearest neighbors list of pt,i . For each top-
k neighbor pt,j in this list, if pt,i also exists in the top-k nearest

neighbors of pt,j , pt,j are called the k-reciprocal nearest neighbors of
pt,i . Otherwise, pt,j represents a hard negative sample of pt,i

it widen the gap between instances of different categories.
However, in this paper, each target domain image is
regarded as a category, which will lead to the features of
images with the same identity is pulled far away, which
decreases the performance.

Neighborhood invariance can guide each pedestrian
image instance and its candidate nearest neighbor sample to
converge with each other. This helps to reduce the distance
of similar pedestrian images in the embedding space.
However, the pseudo-labels generated by circular sorting
are not accurate, and neighborhood invariance is likely to
shorten the embedding of two pedestrians with different
identities. Even after the circular sorting and filtering, it is
still not guaranteed that the query sample owns the same
label as the candidate samples in the screened positive set.

Considering the limitations of these two Invariances, the
cross-camera Invariance Loss is proposed as following.

3.3 Cross-camera invariance loss

Camera style variations might significantly change the
appearance of person, which makes it difficult for re-id

model to find persons of the same identity in different
cameras. Although we employ the camera style transfer
model to reduce the difference among the camera styles,
the inferred results from the network is still sensitive to
image transformations. To reduce such correlation between
features and camera styles, we propose a cross-camera
invariance loss as,

LCCIL = 1

nt

∑

i

logp(ct,i |pt,i) (8)

where, nt denotes the batch size and p(ct,i |pt,i) represents
the scores that the target image pt,i is filmed by its
true camera id ct,i , which can be obtaining by the
classification network. For each style transfer image, its
camera identity is annotated according to its transferred
style domain. Cross-camera invariance loss is a reverse
form of the original cross-entropy loss. The traditional
classification task strengthens the divergences between
different categories by reducing the cross-entropy loss for
the sake of obtain more discriminative features. When we
optimize the traditional cross-entropy loss in the opposite
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direction, videlicet, the value of loss is increased. In
this way, the camera style domains that were originally
relatively independent are disrupted and the inter-domain
distance would decrease. With the guidance of CCIL, the
extracted features would be more robust to various camera
styles.

3.4 Final loss for network

During training, we collaboratively optimize the source and
target domains. The traditional cross-entropy loss function
is leveraged to optimize the source domain as,

Ls = − 1

ns

∑

i

logp(ls,i |ps,i) (9)

where ns denotes the images numbers in a mini-batch and
ls,i is ps,i’s person identity. Finally, the source domain loss
and the target domain losses are added into the following
formula,

L = βLs + LRNLSL − log(−LCCIL) (10)

where β controls the proportion of Ls . It’s worth noting that
the value of LCCIL is always negative. In experiments, we
found that LCCIL rapidly decreased in the first epoch of
training, which caused the overall loss to be a negative value
and severely disrupted the optimization process. Therefore
a logarithmic function is added to limit the weight of LCCIL

in the overall loss, making the entire optimization process
smoother.

4 Experiments and analysis

We perform experiments on three popular academic bench-
marks, Market-1501 [22], DukeMTMC-reID [23] and
MSMT17 [20]. These three datasets include abundant varia-
tions in viewpoint, occlusion, illumination, pose, and back-
ground, which exactly conform to the investigated issues,

4.1 Datasets

Market-1501 training set contains about 13k images with
about 1.5k pedestrians, while the test set contains approx-
imate 20k images with 1.5k identities and the query set
contains about 3k images. Six cameras are used to capture
this dataset.

DukeMTMC-reID is obtained from a multi-camera
tracking dataset DukeMTMC by sampling manually bound-
ing boxes, which results in different sizes of images in the
dataset. There are 8 cameras and about 36k labeled pic-
tures with about 1.4k pedestrians in DukeMTMC-reID. The

training set and the test set each contain half the person
identities.

MSMT17 is released recently. It uses Faster RCNN [52]
as the pedestrian detector and screens out 126,441 bounding
boxes of 4,101 pedestrians from video sequences with
different weather conditions. MSMT17 is randomly divided
according to the training-test ratio of 1:3, rather than equally
divided like other datasets. The purpose is to encourage
efficient training strategies. Finally, the training set contains
10,421 pedestrians with 32,621 bounding boxes, while the
test contains 3,060 identities with 93,820 bounding boxes.

4.2 Metrics

As to the evaluation metric, we choose the following ones:

• Rank-n. It denotes the probability that positive samples
are shown in the recalled top-n results.

• Mean Average Precision (mAP). It is calculated from
the proportion under the PR curve, P refers to precision
and R refers to recall. In a robust re-id system, It is
hoped that the matched returns of the query one can
be recalled as much as possible, and the relatively
more convinced images should be positive ones. mAP
metric urges the model to balance the precision and
recall, which is a significant means when measuring the
performance.

4.3 Implementation details

ResNet-50 [53] is employed as the backbone to extract the
base features. MBCR only reserve the layers before the
last average pooling layer, and add an embedding module.
During training, the random transformations used for data
augmentation is the same as he2016deep. Finally, the input
images are resized to 256x128. Each batch contains 128
source domain samples and 128 target domain samples.
The target domain samples are randomly selected from the
original images and the camera-style transfer images. The
scaling number α is set to 20. The updating rate of feature
memory is set as λ = 0.1. The weight β of Ls is set to 4.
For the reciprocal neighbors label smoothing loss (RNLSL),
the size of neighbor candidates k is set to 14. SGD [54] is
employed as the optimizer and the learning rate is set to
0.01 for backbone and 0.1 for the others. During inference,
we utilize the L2 normalized output of the average pooling
layer as the features. The Euclidean distance is adopted to
measure the similarity between the query image and the
gallery images.

Baseline The proposed method is based on the mechanism
of ECN [11], so ECN is selected as the baseline for
experimental analysis.
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4.4 Comparisons with the previous SOTAmethod

We compare MBCR with hand-crafted ones (including
LOMO [31], BoW [22]), and the other excellent unsuper-
vised learning methods. Table 1 reports the experimental
comparisons on Market-1501 and DukeMTMC-reID. We
choose one of them as the source domain and the other as the
target domain. Concluding from the results, MBCR shows
superiority on these two large-scale datasets conspicuously.
As shown in the results, LOMO and BoW perform poorly
on both datasets. Even the mAP of these two methods is
less than 10% when tested on DukeMTMC-reID. The rea-
son is that these two hand-crafted methods neither utilize
the supervised information in the source domain nor mine
the potential invariance in the target domain. CAMEL [14]
significantly improve the rank-1 accuracy through unsu-
pervised clustering methods. However, the label pollution
generated by clustering limits their performance. Compared
with previous excellent methods in view of domain adap-
tation (including PTGAN [20], SPGAN [18], CamStyle
[51], HHL [55], OSNet-AIN [56], CCSE [57], PGS [6],
PREST [58], and MMCL [4]), MBCR outperforms these
methods significantly on these two datasets. Specifically,
MBCR attains rank-1 accuracy=81.3% and mAP=53%
when DukeMTMC-reID and Market-1501 are used as the
source dataset and test dataset, respectively. Simultaneously,
MBCR reaches rank-1 accuracy=69.2% and mAP=48.5%
when using Market-1501 as source dataset and tested on
DukeMTMC-reID. Compared to the baseline method ECN,

MBCR achieves rank-1 accuracy gain of 6.2% and 5.9%
when tested on Market-1501 and DukeMTMC-reID respec-
tively.

Finally, to verify the generalization performance, we also
adopt a novel dedicated backbone network OSnet [39] for
supplementary experiments. OSnet can dynamically capture
multi-scale features and aggregate them with flexible
weights. To effectively obtain the correlation among spatial
channels and alleviate overfitting, OSnet employs both
point convolution and depth convolution, which enables the
model to achieve better performance with fewer parameters.
It can be seen that with OSnet, the rank-1 accuracy and
mAP of MBCR are increased by 7.3% and 14.3% when
using DukeMTMC-reID as source dataset and tested on
Market 1501, while ECN has only improved 3.6% and 7.9%
on the two evaluation metrics. In MBCR, the performance
gains from the high-performance backbone network are
even more significant, as is the case when verified on
DukeMTMC reID. The proposed method can be better
integrated with the backbone network and give full play to
the backbone network performance. Meanwhile, comparing
with the previous SOTA PREST and MMCL, MBCR still
shows mighty competitiveness.

We also demonstrated the scalability of the proposed
method on a larger dataset MSMT17. Compared with
previous two datasets, MSMT17 consists of more pedestrian
images, bounding boxes, and cameras. Not only that,
MSMT17 also contains more complicated scenes and
backgrounds, with a longer period of time and intricate

Table 1 Performance (%) comparison with previous SOTA method on Market-1501 and DukeMTMC-reID

Duke → Market Market → Duke

Method R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP

LOMO [31] 27.2 41.6 49.1 8.0 12.3 21.3. 26.6 4.8

BoW [22] 35.8 52.4 60.3 14.8 17.1 28,8 34,9 8.3

CAMEL [14] 54.5 - - 26.3 - - - -

PTGAN [20] 38.6 - 66.1 - 27.4 - 50.7 -

SPGAN [18] 51.5 70.1 76.8 22.8 41.1 56.6 63.0 22.3

CamStyle [51] 58.8 78.2 84.3 27.4 48.4 62.5 68.9 25.1

OSNet-AIN [56] 61.0 77.0 82.5 30.6 52.4 66.1 71.2 30.5

HHL [55] 62.2 78.8 84.0 31.4 46.9 61.0 66.7 27.2

CCSE [57] 73.7 84.0 87.9 38.0 56.1 66.7 71.5 30.6

UDAP [47] 80.9 - - 60.0 75.0 - - 57.1

PGS [6] 82.2 - - 58.6 75.7 - - 58.0

PREST [58] 82.5 92.1 94.9 62.4 74.4 83.7 85.9 56.1

MMCL [4] 84.4 92.8 95.0 60.4 72.4 82.9 85.0 51.4

ECN [11] (baseline) 75.1 87.6 91.6 43.0 63.3 75.8 80.4 40.4

MBCR (Ours) 81.3 81.3 91.0 53.0 69.2 79.9 83.3 48.5

ECN+OSnet [39] 78.7 89.9 93.3 50.9 65.6 77.4 81.5 44.2

MBCR (Ours) + OSnet 88.6 94.2 96.2 67.3 74.3 82.9 86.0 53.4
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lighting variations. Since MSMT17 is released recently, few
unsupervised methods have published experimental results
on it. Two unsupervised methods (PTGAN and ECN) are
selected for comparative experiments. As shown in Table 2,
the proposes approach significantly precedes PTGAN
and ECN, whether using Market-1501 or DukeMTMC-
reID as the source domain. Specifically, MBCR attains
rank-1 accuracy=35.2% and mAP=12.2% when using
DukeMTMC-reID as source dataset. Compared to the
baseline method ECN, MBCR boosts the performance of
rank-1 and mAP by 5% and 2% separately.

All in all, MBCR can utilize memory-based circular
ranking mechanism to produce smooth labels for the
unlabeled dataset. With the guidance of RNLSL and CCIL,
MBCR can mine the identity information hidden in the
neighborhood and make the model less sensitive to various
variations in the target domain.

4.5 Ablation study

To demonstrate that the performance improvement described
in this paper is due to the proposed components, mas-
sive ablation experiments are performed and reported in
Table 3.

First, RNLSL is added to the baseline network to demon-
strate its effectiveness. As shown in Table 3, RNLSL
improves the rank-1 accuracy from 75.1% to 78.7%
and 63.3% to 66.7% when regarding Market-1501 and
DukeMTMC-reID as the unlabeled domain. This proves
that RNLSL not only can effectively narrow the gap
between real matching images but also can mine hard
negative samples in the neighborhood.

Next we validate the performance improvements of
CCIL. In Table 3, CCIL achieves rank-1 accuracy incre-
ments of 3.2% on Market- 1501 and 3.1% on DukeMTMC-
reID. This demonstrates that CCIL can instruct the model
to extract camera-independent features, effectively alleviat-
ing the influence of the camera style diversity. Moreover,
the combination of RNLSL and CCIL further improves the
performance. This indivates that the two-loss functions can
coordinate with each other to guide the optimization of
the model from two different aspects. Specifically, CCIL
enables the network more robust to the image variations

in the unlabeled domain, narrowing the gap among images
of the same identity with different camera styles. This
allows us to use memory-based circular ranking mecha-
nism to accurately distinguish the positive samples from the
negative samples in the neighborhood and generate more
accurate smooth labels. With the guidance of smooth labels,
RNLSL prompts the model to extract more discriminative
features.

To further prove that the proposed RNLSL, which
is some kind of improvement based on k-Reciprocal
Encoding, performs better than k-Reciprocal Encoding. The
ablation study is conducted on then as Table 3. Pure k-
Reciprocal Encoding indeed brings increments of 1.9% and
2.8% towards R-1 and mAP, but they are still less than
the ones from RNLSL. And the combination of ECN, k-
Reciprocal Encoding, and CCIL performs more poorly than
that of ECN, k-Reciprocal Encoding, and RNLSL.

4.6 Further analysis

To further understand the effectiveness of the proposed
memory-based circular ranking mechanism, we demon-
strate how the model uses the memory-based circular rank-
ing mechanism to screen the candidates in the sample
neighborhood when training refering to Fig. 4. Simultane-
ously, we carry out experiments on two important hyper-
parameters of MBCR, including the weight of the source
domain loss β and the number of neighbor candidates k.

4.6.1 Analysis of memory-based circular ranking

As shown in Fig. 4, true positive samples (marked with
a green border) and true negative samples (marked with
a red border) are doped with each other in the initial
neighborhood. ECN mines neighborhood invariance by
directly reducing the gap between the sample and all
neighbors. MBCR uses feature memory to perform circular
ranking, which can further examine the similarity between
the two images and effectively reduce the noise in the
original neighborhood. In Fig. 4, four example results
are shown. As a result, most candidates in the sample
neighborhood are effectively distinguished, and only a few
are classified into the wrong set.

Table 2 Performance
evaluation when tested on
MSMT17

Market → MSMT17 Duke → MSMT17

Method R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP

PTGAN [20] 10.2 - 24.4 2.9 11.8 - 27.4 3.3

ECN [11] 25.3 36.3 42.1 8.5 30.2 41.5 46.8 10.2

MBCR (Ours) 30.2 41.9 47.6 10.7 35.2 46.4 51.5 12.2
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Table 3 Ablation study(%) on Market-1501 and DukeMTMC-reID

Market → MSMT17 Duke → MSMT17

Method R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP

ECN (baseline) [11] 75.1 87.6 91.6 43.0 63.3 75.8 80.4 40.4

ECN+k-Reciprocal Encoding [3] 77.0 88.6 92.0 45.8 64.6 76.4 80.8 43.1

ECN+RNLSL 78.7 89.5 92.4 47.2 66.7 77.4 81.2 44.8

ECN+CCIL 78.3 88.4 91.6 46.9 66.4 77.5 81.5 44.2

ECN+k-Reciprocal Encoding+CCIL 79.8 89.9 92.1 50.1 67.5 78.4 82.1 46.7

ECN+RNLSL+CCIL 81.3 91.0 93.3 53.0 69.2 79.9 83.3 48.5

Fig. 4 Example results of four images on the Market-1501 dataset. For each probe, its initial k-nearest neighbors are listed. The two rows after
the initial list correspond to the positive and negative sample sets divided by memory-based circular ranking, respectively

Fig. 5 Evaluation with different
values of β
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Fig. 6 Analysis of the number
of candidate neighbors together
with ECN

4.6.2 The weight of loss: β.

The analysis on the weight of the source domain loss β is
reported in Fig. 5. When β is fixed to 0, the network is
optimized only by unlabeled images of the target domain.
As the value of β increases, the source domain and the
target domain jointly guide the training process and improve
the experimental results. Combined with Fig. 5, MBCR
leverages the labels in the source domain as useful guidance
in model training. When setting β=4, the model achieves the
best results. As β continues to increase, the performance of
MBCR begins to degrade. When setting β=8, the proportion
of target domain losses is too small, so the re-id model
focuses on the distribution of the source domain and ignores
the invariance in the target domain.

4.6.3 The number of candidate neighbors: k .

In Fig. 6, we show the experimental results of comparison
with ECN when k takes different values. As the value of
k increases, the experimental results continue to improve,
eventually reaching an optimal value when k=14. Compared
with ECN, MBCR extends the size of the reliable
neighborhood from 6 to 14. The reason is that MBCR can
utilize a memory-based circular ranking mechanism to more
accurately distinguish between images that look similar but
have different identities. When k is assigned a large value,
the rank-1 accuracy of MBCR does not decay as quickly as
ECN. We want to point out that MBCR outperforms the best
results of ECN at all k values.

Table 4 Computational cost analysis of the exemplar memory

Duke → Market

Method R-1 mAP Time (min) Memory (MB)

Mini-batch 73.9 44 59.3 5000

Memory 81.3 53.0 60.9 5780

4.6.4 Computational cost analysis

In this paper, feature memory and mini-batch are utilized
to train and optimize the model with the proposed loss
function respectively. As for the method based on mini-
batch, the input samples are comprised of the target sample,
the corresponding camera style transfer sample, and the cor-
responding k-nearest neighbor candidate sample. Referring
to Table 4, memory-based approach is significantly superior
to the mini-batch based one. It is worth noting that memory-
based method will introduce limited additional training time
cost (+1.6 minutes) and GPU memory (+780 MB), though
they are negligible compared to the total cost.

Feature memory modules are frequently employed in
recent self-supervised training models. Most of the existing
unsupervised models are based on contrast learning.
Traditional neural network training is carried out in the form
of mini-batch. It is unscientific to compare positive and
negative samples within a small batch due to the limitation
of samples number. There may be no pedestrians with the
same identity as the target sample in the mini-batch, so it is
meaningless to conduct circular ordering in it. By adding a
feature memory module, the model can sort globally and the
performance can be improved significantly.

5 Conclusion

In this work, we present a novel unsupervised domain adap-
tation method for person re-identification using memory-
based circular ranking mechanism to adaptively assign
pseudo-labels for the target domain. It’s worth noting that
MBCR does not use clustering to generate pseudo-labels for
the entire target images like the existing unsupervised re-
id methods because the clustering algorithm involves heavy
CPU calculations and long training time. The memory-
based circular ranking mechanism can iteratively generate
smooth labels for samples in each mini-batch, which sig-
nificantly decreases the time cost and avoids the noise
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caused by clustering. Different from previous unsuper-
vised approaches, MBCR also has better scalability in the
large-scale pedestrian benchmark of the real world. The
labeled source images are employed to supervise the train-
ing process while realizing unsupervised optimization of
the target domain by training jointly both the reciprocal
neighbors’ label smoothing loss (RNLSL) and the cross-
camera invariance loss (CCIL). RNLSL aims to screen out
positive samples in the neighborhood and mine hard neg-
ative samples with a similar appearance. Simultaneously,
CCIL is designed to ensure that the deep re-id network is
robust to various variations of the camera styles. Abundant
experiments demonstrate the superiority of the elaborate
components proposed in this paper.
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