
https://doi.org/10.1007/s10489-022-03599-w

An effective parallel evolutionary metaheuristic with its application
to three optimization problems

Mehrdad Amirghasemi1

Accepted: 7 April 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
This paper presents a parallel evolutionary metaheuristic which includes different threads aimed at balancing exploration
versus exploitation. Exploring different areas of the search space independently, each thread also communicates with other
threads, and exploits the search space by improving a common high quality solution. The presented metaheuristic has been
applied to three famous and hard-to-solve optimization problems, namely the job shop scheduling, the permutation flowshop
scheduling, and the quadratic assignment problems. The results of computational experiments indicate that it is effective,
versatile and robust, competing with the-state-of-art procedures presented for these three problems. In effect, in terms of
solution quality, and average required running time to reach a high quality solution, the procedure outperforms several
state-of-the-art procedures on multiple benchmark instances.

Keywords Parallel processing · Metaheuristics · Evolutionary computation · Flowshop scheduling · Job shop scheduling ·
Quadratic assignment · Facility layout

1 Introduction

Nature-inspired and evolutionary models have been
exploited for solving a variety of hard-to-solve computa-
tional problems. One of the central benefits of these models
is the facilitation of using parallel processing, which is the
simultaneous usage of more than one processor cores in exe-
cuting different parts of the same program. The key point
with designing parallel processing in evolutionary compu-
tation is twofold. On the one hand, a program needs to be
divided so that separate cores, without interfering with each
other, can work together. On the other hand, the cores should
communicate the best results they produce so that each
core can use the experience of the other cores in evolving
solutions.

With respect to this twofold consideration, this paper
presents an evolutionary metaheuristic, in which different
semi-independent threads, each running on a separate CPU

� Mehrdad Amirghasemi
mehrdad@uow.edu.au

1 SMART Infrastructure Facility, Faculty of Engineering
and Information Sciences, University of Wollongong,
Wollongong, New South Wales, Australia

core, work separately and interact occasionally with one
another to inform each other about the best overall solution
obtained. It is this best overall solution that becomes the
focus of the extra search and its vicinity is searched by
all the threads. According to the classification made by
[24], the proposed parallel strategy can be considered as a
co-operative multi-search.

A thread operates in three separate layers including (i) a
heuristic construction module to generate initial solutions,
(ii) a genetic algorithm module to combine high quality
solutions, and (iii) an enhancing module to further improve
the solutions. The enhancing module not only improves
the best solution obtained by the corresponding thread,
but enhances the best overall solution obtained by all
other threads as well. The presented procedure, called the
Parallel 3-layer Hybrid (P3H), considers each thread as
the combination of six synergetic components, namely (i)
an initial solution construction method, (ii) a crossover
operation, (iii) a mutation operation, (iv) a restrictedTabu
component, (v) a large neighborhood scheme, and (vi) a
perturb mechanism.

To explore the search space independently and effec-
tively, a thread uses its components in a randomized manner.
The benefit of such randomization is twofold. First, it cir-
cumvents the possible search redundancy which could occur
because all the threads are aimed at improving the same high

/ Published online: 5 July 2022

Applied Intelligence (2023) 53:5887–5909

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-022-03599-w&domain=pdf
http://orcid.org/0000-0001-8466-1380
mailto: mehrdad@uow.edu.au

quality solution. Second, even for a single thread, the ran-
domization prevents it from doing the same set of operations
if a solution has been encountered more than once.

The key contribution of this study is to show the
effectiveness of this metaheuristic through synergetic
integration of these six modules for three famous and
hard-to-solve optimization problems, namely the job shop
scheduling, the permutation flowshop scheduling, and the
quadratic assignment problems. The rest of this paper is
organized as follows. Section 2 discusses the related work
for each of the problems. Section 3 presents the formulation
of these three problems. The stepwise description of
the P3H is outlined in Section 4, and the results of
computational experiments are in Section 5. In Section 5,
also the setting of parameters for the P3H with respect to
each of the three problems is discussed. Concluding remarks
and some suggestions for future work are described in
Section 6.

2 Related work

The three problems on which the P3H is applied are
Permutation Flowshop Scheduling Problem (PFSP), Job
shop Scheduling Problem (JSP), and Quadratic Assignment
Problem (QAP). While theses problem formulations are
explained in detail in the next section, the related work
is outlined here. In effect, this section is divided into two
subsections. The first subsection describes related work to
the components of the P3H, and the second subsection
presents the related work to parallel methods for the PFSP,
JSP, and the QAP.

2.1 Related work to the components
of the presentedmethod

The most effective strategies for hard-to-solve combinato-
rial optimization problems are categorized into the three
groups of (i) constructive methods, (ii) local search tech-
niques, and (iii) population-based methods. Constructive
methods build a solution by sequentially deciding the values
of solution components, i.e. decision variables. Imitating
the survival of living creatures is the key idea used in the
design of a popular constructive method called Ant Colony
Optimization (ACO) [27]. The Rollout algorithm [15] is
another popular constructive method capable of producing
high quality solutions.

Unlike construction methods, local searches take a
complete solution to a problem and by checking its
immediate neighbors, which are similar solutions with one
or two minor difference, aim to find an improved solution

[71]. Getting stuck in local optima is the main problem with
local search techniques and has been depicted in Fig. 1.

The problem with local optimality has been tried to be
addressed in different ways. Whereas in the Iterated Local
Search (ILS), the starting solution of the local search is
derived by a perturbation of the previous local optimum
found [44], in the Variable Neighborhood Search (VNS) a
set of neighborhoods of different orders are employed [35].
On the other hand, Tabu Search (TS) explicitly exploits
short-term and long-term memory to guide the search [33],
with short-term memory being used to keep track of recently
visited solutions and long-term memory to monitor the
search progress.

Genetic Algorithms [36], Particle Swarm Optimiza-
tion [22], and scatter search [33] are prime examples of
population-based methods. Population based methods are
composed of five main components, namely (i) an encod-
ing/decoding scheme that maps every solution (phenotype)
to a chromosome(genotype), (ii) a fitness function that
assigns a goodness to each individual, (iii) a parent selection
strategy which determines which individuals are nominated
as parents to produce offspring, (iv) a survival selection
strategy in which a rule is defined for deciding which indi-
viduals will be survived to the next generation, and (v)
reproduction operators, which specify the way two or more
encodings are combined to produce an offspring encoding.

Towards making population-based methods more effec-
tive, “go with the winners” strategy [5], population based
incremental Learning (PBIL) [14], and path relinking and
scatter search [34] concepts are instrumental. In effect, path
relinking has been successfully applied to the QAP [2] and
the PFSP [53].

Fig. 1 A situation in which a local optimal solution has been
surrounded by many other local optimal solutions

5888 M. Amirghasemi

2.2 Parallel methods for the PFSP, JSP, and QAP

Since the early development of parallel processing technol-
ogy in mainframes, many researchers have concentrated on
solving hard-to-solve problems through integrating paral-
lelization techniques with metaheuristics. In [23], a recent
overview of parallel metahueristics was presented, and
the promising performance of parallel cooperative strate-
gies has been emphasized. In cooperative strategies, semi-
independent procedures occasionally synchronize by shar-
ing some information during the search progress. These
methods are typically referred to as cooperative multi-
search in the literature, and their success in tackling hard,
NP-complete optimisation problems are further stressed in
[4, 65, 67], and [24]. More recently, new techniques on
adopting parallelization using Graphical Processing Units
(GPUs) for well known metahuristics such as ACO and GA
has been proposed [20, 50].

Single Program Multiple Data (SPMD) and Threads
models could be seen as two commonly used parallel
programming models employed in metaheursitcs. SPMD
is a high-level parallel programming model in which all
independent tasks run their copy of the same program
simultaneously, with different input data or initial points. In
the case of metaheuristics, this initial starting point could
simply be a different seed value for the pseudorandom
number generators. The threads model, on the other hand,
is a type of shared memory programming, in which a
single process can have several concurrent execution paths.
Independent threads can also communicate with one another
through a global (shared) memory. This is in line with
parallel cooperative strategies, as the knowledge of search
space can be shared and utilized by all threads.

It should be noted that multithreading is not necessarily
equivalent to parallel computing. In this study, however, a
threads model is used, and implemented using OpenMP API
[21]. Provided that the number of threads is less than or
equal to the number of CPU cores, OpenMP API typically
ensures that each thread is run on a separate CPU core [21].

From the early beginning of parallel processing tech-
nology, interested researchers have focused on solving the
PFSP, JSP, and QAP, as three highly-applicable and chal-
lenging problems through multithreaded and multi-core-
based procedures. In the following subsections, these par-
allel procedures are surveyed for each of these problems,
separately.

2.2.1 Parallel methods for the PFSP

As a source of parallelism, islands models in evolutionary
searches can exchange individuals through the entire run
of the algorithm, with this exchange of individuals being

generally termed as “migration” [25, 73, 74]. Among
several island model GAs proposed for the PFSP, we
can mention the one presented in [59], where the authors
conducted experiments on randomly generated instances
with 40–100 jobs and 4–10 machines. Another island
model is in [17], and has been presented for the FSP
with total completion time criterion. In this island model,
crossover operator is performed on individuals from
different islands. The authors conducted experiments on
Taillard’s benchmarks [63].

The parallel simulated annealing of [75] is another
related work. The authors suggest an island model parallel
strategy in which cooperation occurs when the global
best solution is being updated. The authors compared
the independent and cooperative variant of the proposed
procedure with NEH heuristic of [46] and concluded that
the cooperative variant with four processors yields better
results.

A parallel Tabu search has also been presented by the
same authors [16] where the search threads cooperate by
broadcasting the global best solution, wherein a specific
thread is responsible for managing the exchange of global
best solutions. The authors experimented on a selection
of Taillard’s benchmark instances [63] as well as some
randomly generated instances.

Among the more recent parallel approaches are that of
[70] and [52]. In [70] a cooperative island model has been
proposed wherein, similar to our approach, same algorithm
is run on different islands and occasional cooperation
occurs at different stages in the algorithm. In the parallel
hybrid proposed by [52], different allocations of Memetic
Algorithms and the Iterated Greedy (IG) procedure [56], to
multiple threads, have been studied.

2.2.2 Parallel methods for the JSP

Among the earliest parallel strategies, we can mention the
parallel tabu search presented in [64], where the author
presents a tabu search method and describes why it is
more efficient than the shifting-bottle-neck procedure. In
the same paper, a parallel variant of the tabu search has
also been presented that divides a problem into k sub-
problems, each containing a sub-set of jobs. Each of these
sub-problems is then solved independently and, in the final
stage, the sub-problems are aggregated to form a solution to
the original problem.

Aiex et al. [3] present a hybrid of GRASP and path-
relinking which operates on a pool of elite solutions.
In effect, GRASP is used to generate a pool of elite
solutions and path-relinking is applied to (i) a solution
produced by GRASP and (ii) an elite solution chosen from
the pool. The path-relinking result is used to update the

5889An effective parallel evolutionary metaheuristic with its application...

pool of elite solutions. Also, two similar parallel variants
have been proposed by [3], namely collaborative and non-
collaborative. While the non-collaborative version is a
SPMD approach in which each thread executes a copy of
the algorithm, in the collaborative version the pool of elite-
solutions is shared among threads. The authors also describe
why their collaborative scheme presents a better speed-up
factor than their non-collaborative scheme.

Another related work is that of [58] in which a
parallel Variable Neighborhood Search (VNS) is proposed
for the JSP. The authors’ proposed VNS consists of
two main components, namely shake and LocalSearch
procedures. Whereas shake procedure has the role of
perturbing a given solution, the employed LocalSearch
procedure improves the given solution based on SWAP or
INSERTION neighborhoods. Therefore, the proposed VNS
of [58] consists of three main steps in each iteration: (i)
constructing an initial solution, x, (ii) performing the shake
procedure on x, and storing the result as x′ (iii) performing
the LocalSearch on x′.

Sevkli and Aydin [58] compared four different paral-
lelization of their proposed VNS algorithm. In the first
scheme, a copy of VNS is run by all processors, starting
with a single initial solution. After the completion of VNS
by all processors, the best solution found among all pro-
cessors acts as the initial solution for the next iteration.
While the first scheme waits for all threads to complete
their VNS before starting the next generation, in the sec-
ond scheme the parallelization strategy is asynchronous and
as soon as a processor finishes its VNS run, its next iter-
ation will start with the incumbent overall best solution at
that time. The two other parallel schemes proposed by the
authors are decentralized in the sense that the search threads
communicate through a network of processors and no cen-
tral synchronization is occurred. Two network structures
proposed are: unidirectional-ring, and mesh. The authors
argued that the ring topology has the best performance over
all other schemes.

2.2.3 Parallel methods for the QAP

One of the earliest and famous procedures for the QAP is the
Robust Tabu Search (RTS) developed in [62]. In that paper, the
author presents two parallelization schemes for the proposed
RTS: In the first scheme, the process of evaluating all potential
neighbor solutions is divided among different processors for
the purpose of reducing the computation time. In effect,
after each processor evaluates its portion of neighborhood,
all threads synchronize at a single point to identify the
best possible neighbor. The other proposed parallel strategy

of [62] is the SPMD approach of running RTS instances
independently from different initial solutions.

Another related parallel procedure to our proposed
algorithm is the Cooperative Parallel Tabu Search (CPTS)
of [38], which incorporates the RTS of [62]. The CPTS is
essentially an SPMD parallel algorithm in which a copy
of RTS is run in each thread, and each thread stops and
synchronizes before and after running the RTS procedure.
In particular, the cooperation between processors occurs by
maintaining a small set of elite solutions, named reference
set. Basically, the number of solutions in the reference set
is equal to the number of processors and the reference set is
shared among all processors.

Among the other parallel strategies for the QAP, we can
mention the parallel hybrid of ant-colony and tabu search
[66], and the island model parallel genetic algorithm of
[69]. In both methods, a master-slave paradigm is used and
the global information regarding best solutions in islands
and/or pheromone trail matrix is communicated among the
processors.

The other related work is the single instruction multiple
data tabu search (SIMD-TS) of [79], in which tabu search
procedures are run on each thread, and probabilistically,
certain diversification and intensification actions are per-
formed in each thread. It is worth noting that the SIMD-TS
has specifically been designed to be run on GPUs instead
of ordinary CPUs. An extensive review of recent exact and
heuristic methods for the QAP can be found in [29]

3 Problem formulation

The PFSP, JSP, and QAP can be successively described as
follows. Since the PFSP is a special case of the Flowshop
Scheduling Problem (FSP), the FSP needs to be discussed
first.

The FSP is a subclass of scheduling problems in which
n Jobs have to be processed on m machines, with the
goal of finding an optimal processing sequence of jobs on
machines. The optimality criterion is mainly the completion
time of the last operation on the last machine (makespan).
In the FSP, each job should be processed on the same
sequence of machines. For instance, if job 1 should be done
on machine 4, 2, 3, and 1, one after another, then all other
jobs have the same order. The PFSP is a special case of
the FSP in the sense that all machines have to process all
the jobs in the same order. In the PFSP, assuming that the
jobs are numbered 1, 2, . . . , n, the goal is to find an optimal
permutation of jobs π1, π2, . . . , πn so that the completion
time of the last job on the last machine is minimized. The

5890 M. Amirghasemi

completion time of job πi on machine j , C(πi, j), can be
calculated as follows.

C(πi, j) = max {C(πi−1, j), C(πi, j − 1)} + T (πi, j) (1)

where C(π0, j) = C(πi, 0) = 0 and T (i, j) is the
processing time of job i on machine j .

The PFSP has diverse applications in manufacturing and
has increasingly attracted the attention of researchers to
assess new algorithmic ideas. The PFSP is NP-hard [54, 55]
and even some instances with a moderate number of jobs
and machines have not been solved to optimality.

The second problem is the JSP. In the JSP, m jobs have
to be processed on n machines and, unlike in the FSP,
each job may have different processing order on machines.
However, the same as in the FSP, each machine can process
only one job at a time and each job can be processed
only on one machine at a time. The goal is to find a
schedule which minimizes the time required to process all
jobs on all machines, i.e. the makespan. The JSP is one of
the hardest combinatorial optimization problems [32]. An
standard, well-known mathematical formulation for the JSP
is disjunctive graph formulation, which can be found in [1].

The QAP is in the class of Facility-Location problems,
with diverse applications in different areas such as factory
layout design as well as the problem of placing electronic
components in a circuit or microchip. In the QAP, we are
given a set of locations and a set of facilities, both having
the same size, n. In addition, two n × n matrices, D and
F are given as input, with dkl indicating pair-wise distance
between locations k and l, and fij specifying pair-wise
flow between facilities i and j . The objective is to find a
one-to-one mapping between facilities and locations which
minimizes the cost of flow, C, calculated as a summation
of pair-wise flow between facilities multiplied by their
distance.

A solution to the QAP can be simply represented as
a permutation of facilities. For example, the permutation
π = (4, 3, 1, 2) represents the solution in which facilities 4,
3, 1, and 2, are placed in locations 1, 2, 3, and 4, respectively.
Belonging to the class of NP-hard problems, the QAP is
computationally demanding even with respect to finding a
solution with the guarantee of being in a given distance of
the optimal solution. With π representing the a solution and
Π denoting the set of all possible permutations, the QAP
objective function formulation is as follows.

min
π∈Π

C(π) =
n∑

i=1

n∑

i=1

fij dπ(i)π(j) (2)

It is worth noting that P3H could be applied as a general
purpose metaheuristics, and any fitness or cost function
and set of constraints could be adopted. Furthermore, any
constraint in the given problem, could be seen as defining
the feasible search space. In this paper, we identify a good

solution, as the one having lower cost, i.e. a minimization
problem, and the constraint are satisfied by considering only
valid permutations, as feasible solutions.

4 The P3H

The P3H employs multi-threading, and in each thread a
construction technique improves the quality of genomes in
a genetic algorithm, with effective exploration/exploitation
balance being achieved through an unrestricted and
egalitarian parent selection. Also, restricted and elitist
offspring selection contributes to the aforementioned
balance. The threads are not fully independent in the sense
that in each thread, the employed local search improves
the best overall solution obtained in all threads. The three
interacting layers of the P3H are depicted in Fig. 2, and the
detailed stepwise description of the P3H has been shown in
Fig. 3.

It should be noted that P3H can be simply reproduced
for similar optimisation problems by (i) implementing the
general, problem-independent modules, namely heuristic
construction, genetic algorithm, and enhancing module, and
(ii) incorporating six problem-specific modules. While the
general modules are described next, the problem-specific
components, outlined in Table 1, are explained in detail in
the following subsections.

As is seen in Fig. 3, line 2 starts the threads, with the
block of code instantiated for each thread being shown in
lines 3 through 50. It is worth noting that since the P3H is a
SPMD parallel approach, it is an identical copy of the same
routine which is run by each thread.

Each thread operates in three layers. In the first layer,
a number of high-quality solutions are constructed in the

Enhancing module

• High quality solu ons are
picked from the eliteHeap
and further fine-tuning
opera ons are performed.

Gene c
Algorithm

• The quality of solu ons in
the eliteHeap are further
improved through
applying problem-specific
crossover and muta ons
operators.

Heuris c
solu on

construc on

• A number of high-quality
solu ons are generated,
with the top highest
quality ones ini zing
the eliteHeap

Fig. 2 Three layers of the P3H procedure and their interactions

5891An effective parallel evolutionary metaheuristic with its application...

Fig. 3 The pseudocode of
parallel three-layer hybrid (P3H)

sense that among all of the constructed solutions, solutions
with lower quality are ignored and those with higher quality
are kept in a list called eliteHeap. Part of these kept solutions
which have the highest quality are used in the second layer,
and the rest can be used in the third layer.

In the second layer, an initial population of solutions
is formed by selecting top solutions among the eliteHeap,
with this population being evolved through the genetic

algorithm. For the purpose of evolving the solutions,
the algorithm works as follows. First, from the current
population, whose size is shown with populationSize,
randomly populationSize/2 pairs of parents are selected.
Then, a problem-specific crossover operator is applied to
each pair of parent genomes. This is followed by a mutation
operator, so that an offspring population with the same size
of the current population can be generated. Finally, from the

5892 M. Amirghasemi

Table 1 The selection of P3H problem-specific modules for the PFSP, JSP, and QAP

Module Adopted procedure

PFSP JSP QAP

solution construction Re-blocking [9] Randomized Giffler and Thompson [8] GREEDY [11]

crossover Longest Common Sub-sequence [37] Linear Order crossover (LOX) [30] Cohesive merge procedure [28]

mutation Single swap and insertion Single swap move on a random machine Simple locations swap and

random cyclic swaps

restrictedTabu Modified tabu search [47] Modified Limited Tabu Search (LTS) [8] Extended N* [77]

large neighborhood Iterative decomposition Forward-Backward Shifting
Bottleneck Procedure [7]

Neighborhood Decomposition-

procedure [6] based Search [11]

perturbation 3-replacement move, Random Swap based on N1 [72] Applying random cycles of size 3

and random insertion neighbourhood

combined population of parent and offspring genomes, only
a half with the highest quality enter the next generation and
the other half are ignored.

In the third layer, a fine-tuning procedure, which works
based on a point-based strategy, is run on the solutions in the
constructed pool, using the solutions left in the eliteHeap.
As line 27 of the pseudo-code presented in Fig. 3 shows,
this point-based strategy is a problem-specific restricted
tabu search, called restrictedTabu(). It is restricted in the
sense that after a maximum number of iterations with no
improvement, the procedure is halted and the best solution
encountered is returned. As mentioned, this restricted tabu
strategy is problem-specific and is described for each
problem in the next subsections.

Towards its fine-tuning process, the restricted tabu proce-
dure is aimed at performing a number of actions for keeping
a balance between intensification and diversification. As is
indicated in the switch-case starting at line 29 of the pseudo-
code in Fig. 3, this procedure randomly selects one of four
different actions. The selection is made based on given prob-
abilities as input parameters, and these four actions, from
which stochastically an action in the switch-case is serially
selected and performed, are as follows.

The first action is selected with the chance of intensifica-
tionProb and causes a problem-specific large neighborhood
search to be performed on the current solution. Also, when-
ever this large neighborhood search is unable to improve the
current solution, a perturbation is performed on the current
solution, and replaces it with one of its neighbors.

The second action is selected with the chance of
concentrationProb, and replaces the current solution with
the global best solution among all threads. Then, in order
to prevent the algorithm from revisiting the same solution,
this global best solution undergoes a perturbation. The third
action is chosen with the chance of perturbationProb and

only causes a perturbation to be applied to the current
solution. The main purpose of applying a perturbation is to
diversify the search and assist the algorithm to escape local
optima.

The fourth action is selected with the chance of
refreshProb. Based on this action, the current solution is
replaced with the unused highest quality solution from the
previous layers of the same thread. The selection of a
solution to replace the current solution is accomplished in
the following order. Initially, the best unused solution of the
final population constructed in second layer is considered
and removed from the pool for providing a new solution. If
there is no element left, however, the next highest quality
solution left in the eliteHeap of the first layer is considered
and removed from the eliteHeap for providing a new
solution. In the case where both the pool and the eliteHeap
have become empty, a new solution is constructed with the
problem-specific construction method specified in the first
layer.

It is worth noting that the sum of the four parameters of
intensificationProb, concentrationProb, perturbationProb,
and refreshProb is 1, implying that depending on differ-
ent setting of these parameters, different balancing between
intensification and diversification can be expected. More-
over, because of their constant sum, introducing only three
parameters is enough and the remaining parameter can be
calculated based on the given parameters.

As is shown in the pseudo-code of the P3H, the
underlined modules are problem-specific and should be
separately implemented for any specific problem. These
problem-specific modules comprise the major components
of the P3H and are as follows (i) an initial solution
construction method, (ii) a crossover operation, (iii) a
mutation operation, (iv) a restrictedTabu component, (v) a
large neighborhood scheme, and (vi) a perturb mechanism.

5893An effective parallel evolutionary metaheuristic with its application...

The selection of these problem-specific modules is outlined
in Table 1, and is described in detail for the PFSP, JSP, and
QAP, respectively, in the three following subsections.

4.1 Problem-specific modules for the PFSP

The aforementioned six components, for the PFSP, have
been implemented as follows. As the first component, the
solution construction module, four different initial solution
construction methods have been considered. These methods
include (i) a uniformly-at-random construction method, in
which all n! job permutations have an equal chance of (1

n!)
for being selected, (ii & iii), two re-blocking construction
methods proposed in [9], and (iv) the RJP (Recursive
Johnson Procedure) proposed in [6]. All of these methods
have been tested in Section 5 and, based on the results of
experiments, the re-blocking mechanism has been adopted.
We denote these four methods with (i) UNIFORM, (ii)
REBLOCKI, (iii) REBLOCKII, and (iv) RJP, respectively.

The other two components are the crossover and
mutation operator. The Longest Common Sub-sequence
(LCS) developed in [37] has been used as the crossover
operator, and a single swap and insertion move, each with
a chance of 0.5, have been used as the mutation operator. It
is worth noting that the mutation operation is applied with a
small probability, (0.1–0.2), given as an input parameter.

The choice of restrictedTabu module, as the next
component, is based on a modified version of the tabu
search proposed in [47]. In this modified implementation,
first, an ordinary insertion local search is run on the current
solution. Based on using the critical path information, this
insertion local search avoids unfruitful moves. Moreover, by
using the forward and backward completion time matrices,
it reduces computation time [6, 9]. The restrictedTabu
module stops when, for a fixed number of iterations, no
improving move has been found.

The last two components are the Large-Neighborhood-
Improvement and the Perturb module. The iterative decom-
position procedure of [6] is used as the large neighbor-
hood improvement. The method divides the solution into
substrings and iteratively optimizes each substring, called
chunks. The perturb module employed is the combination of
a 3-replacement move, and a random insertion move. The
3-replacement move selects three random indexes, i1, i2, i3,
and puts the job at position i1 in position i2, the job at posi-
tion i2 in position i3 and finally the job at position i3 in
position i1. A parameter called perturbIntensity controls the
degree of such perturbation by the number of times this 3-
replacement move occurs. For instance, when this parameter
is set to two, this 3-replacement move occurs two times.

4.2 Problem-specific modules for the JSP

The six components used for the JSP are as follows.
With respect to the first component, solution construction,
three initial methods have been tested. The First method
is the forward-backward Semi-Active Schedule Genera-
tor (SASG) proposed in [7], and the second method is
the forward-backward Randomized Giffler and Thompson
(RGT) construction method proposed in [8]. This method
primarily generates non-delay schedules using the well-
known Giffler and Thompson procedure and probabilisti-
cally improves a non-delay schedule based on a forward-
backward mechanism.

The other employed construction method, called Iterative
Carlier (IC) procedure, uses the Carlier one-machine
optimization procedure [19] and applies it iteratively.
The process starts with an empty schedule, and, then,
based on a random order of machines, it schedules the
machines incrementally. In each iteration, through solving
the associated one-machine problem, each single machine
is scheduled to optimality, and the result updates the current
solution. As will be discussed in Section 5, based on the
computational experiments, among them only the RGT, has
been adopted.

With respect to the second and third components,
crossover and mutation operators, Linear Order crossover
(LOX) of [30] and a simple mutation operator which
performs a single swap move on a random machine have
been considered.

Since the encoding used in the JSP is based on the
simple permutation of operations on machines, LOX has
to be individually applied to each pair of permutations
on the same machine independently. However, the main
problem with such independent application of LOX is that
the resulting offspring solution may be infeasible. To rectify
this possible infeasibility, we have used the Giffler and
Thompson procedure to not only remove any infeasibility
but create an active schedule as well.

The fourth component, the restrictedTabu module, has
been implemented based on a modified version of the
Limited Tabu Search (LTS) proposed in [8]. Whereas the
same as the LTS, the employed module works based on
N5 and N6’ neighborhoods [48], unlike in the LTS, the
restrictedTabu module keeps no history of solutions visited
during the search process. Furthermore, similar to LTS, for
evaluating potential neighbor solutions, it uses an estimate
of makespan and avoids any exact evaluation.

The fifth component, the Large-Neighborhood-Improve-
ment module, has been adopted as the Forward-Backward
Shifting Bottleneck Procedure (ForwardBackwardSBP)

5894 M. Amirghasemi

which has originally been proposed in [7]. The For-
wardBackwardSBP works as a solution-refinement routine
which incorporates the post-optimization stage of Shifting
Bottleneck Procedure (SBP) of [1].

The Perturb module, as the sixth component, operates
based on the N1 neighbourhood [72] and simply performs
a random swap of two neighbouring operations on a
random critical block. For this module, the perturbIntensity
parameter determines the number of times a move is
performed. The updating of the makespan and critical path,
which need to be done after the completion of each move,
are performed by the method presented in [8].

4.3 Problem-specific modules for the QAP

For the QAP, the six major components of the P3H
have been set as follows. For the first component, the
construction module, three construction methods have been
implemented. The first method, named as UNIFORM,
simply assigns facilities to locations uniformly at random.
The next tested construction module has been developed
in [77], and is called Randomized Heuristic (RH), aiming
at assigning facilities having high interactions (flows) to
locations having low distance to others. In this way,
a percentage of facilities having high interactions are
randomly selected and assigned to locations having small
distances from one another. Then the remaining facilities,
one after another, are allocated to empty locations in such a
way the total assignment cost experiences the least increase.
In effect, the second part of this module works similar to the
procedure presented in [43].

The next construction method tested has originally been
presented in [11] and is a modified implementation of the
procedure presented in [43]. In the employed procedure,
named as GREEDY, a solution is incrementally constructed
by deciding for the best value of each solution component,
one at a time, in a greedy manner. First a random
permutation of facilities is generated, and, based on this
order, the best location for each facility is determined and
is added to the partial solution. In the Section 5, all these
three constructed methods have been tested and, because
of its higher performance, the GREEDY method has been
adopted.

As the second component, the crossover operator, the
cohesive merge procedure of [28] has been implemented.
The cohesive merge is a computationally intensive crossover
scheme which works based on the median distance of
locations (sites). In our implementation, first, as an
initialization phase, the median distance for all location is
calculated. Next, given two parent solutions, every location
is tested as a potential pivot site, resulting in 2n different
solutions. From these 2n generated solutions, only the top
two are selected as the offspring.

As the third component, the mutation operator, a
combination of two different methods has been considered
and applied randomly. The first operator is a simple swap
of locations for two facilities, and the second method
applies a random cycle of size 3. For instance, a cycle
(f1, f2, f3) indicates that facility f1 should be re-assigned
to the location of facility f2, facility f2 to the location of
facility f3, and facility f3 in the empty location which had
previously been occupied by facility f1.

As the fourth component, the restrictedTabu module, the
Extended N* local search procedure [77] has been adopted.
This procedure starts with simple swap neighborhood, and
continues using this neighborhood while improvement is
possible. Then, it switches to Nλ neighborhood [43] in
which after applying each degrading move, the two facilities
relating to that swap are marked as Tabu for being prevented
from participating in further iterations.

The fifth component, Large-Neighborhood-Improvement,
has been selected from the Neighborhood Decomposition-
based Search (NDS) developed in [11]. In this method, the
relocation matrix associated with each solution of the QAP
is passed to the Quick Match (QM) Linear Assignment
solving routine [42], and the linear assignment proposals are
extensively evaluated for improvement.

The sixth component, the Perturb module, simply applies
a number of random cycles of size 3. The number of cycles
applied is determined by the perturbIntensity parameter. For
instance, when perturbIntensity is set to 5, the number of
times the cycle is applied is five.

5 Computational experiments

The P3H has been coded in C++ and computational
experiments have been performed on a Quad-Core PC with
3.4 GHz clock speed CPU. The Visual C++ has been used
as the compiler and parallelization is based on OpenMP
programming interface [21], with up to four cores of the
CPU being used. Because of applying the P3H to three
entirely different problems, a wide variety of benchmark
instances have been involved in the experiments. For each
of these three problems, their corresponding benchmark
instances have been selected as follows.

For the PFSP, the Taillard’s repository of benchmark
instances [63], have been employed. Taillard’s repository
consists of 120 instances, comprising 12 classes, with 10
instances existing in each class. The number of jobs and
machines of these instances are in the range 20–500 and
5–20, respectively.

For the JSP, 43 instances have been taken from the
ORLIB website. This website is managed by Brunel
University, UK, and contains a large number of benchmark
instances produced for operational research problems.

5895An effective parallel evolutionary metaheuristic with its application...

Table 2 Comparing the performance of the three different construction methods for the PFSP

Instance Size UNIFORM REBLOCKI REBLOCKII RJP

n m %DEVavg %STDEV %DEVavg %STDEV %DEVavg %STDEV %DEVavg %STDEV

ta001 20 5 18.80 4.84 14.69 4.03 17.10 4.77 13.76 2.72

ta011 20 10 27.77 5.04 24.42 5.05 26.75 4.84 19.82 3.29

ta021 20 20 20.80 3.81 17.89 3.57 21.03 3.62 16.25 2.09

ta031 50 5 17.03 4.34 8.10 3.13 12.37 3.31 2.15 0.49

ta041 50 10 28.13 3.76 20.06 3.06 26.11 3.23 21.00 1.35

ta051 50 20 26.59 2.94 19.08 2.49 23.45 2.90 19.89 1.57

ta061 100 5 11.88 2.75 7.19 2.10 7.96 1.94 8.79 0.68

ta071 100 10 19.79 2.54 11.45 1.92 18.47 2.07 10.50 0.76

ta081 100 20 25.94 2.42 18.71 1.68 21.06 1.87 20.75 1.19

ta091 200 10 13.43 1.95 7.16 0.93 7.62 0.90 9.85 0.47

ta101 200 20 21.33 1.77 15.30 1.30 17.97 1.23 16.18 0.66

ta111 500 20 16.53 1.21 9.95 0.68 11.85 0.75 11.27 0.28

Average 20.67 3.11 14.50 2.49 17.64 2.62 14.19 1.30

Total time(s) 0.093 0.303 0.327 0.122

These instances are (i) a selection of 11 hard-to-solve
instances from [41], named laxx, (ii) 3 classic instances
from [31] named ft06, ft10, and ft20, (iii) 4 instances yn1-
4 from [76], (iv) 10 instances, swv01-10 from [60], (v) 5
instances abz5-9 due to [1], and (vi) 10 instances orb01-10
from [12].

For the QAP, a representative set of 29 benchmark
instances, having up to 90 facilities/locations, have been
selected from the QAPLIB [18]. These instances include 16
instances named taixxa, and taixxb, 7 instances named skoxx
and a selection of 6 representative instances, namely els19,
bur26d, nug30, ste36c, lipa50a, and tai64c. The number
literals (xx) in the instance name indicate the instance size.

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Average Deviation %

UNIFORM
REBLOCK I
REBLOCK II
RJP

Fig. 4 The estimated normal distribution functions for the four
different construction methods for the PFSP

It is worth mentioning that these instances are among the
most popular instances in the literature.

Since the initial solution construction method plays a
key role in affecting the overall quality of the solutions
produced by the procedure, we first analyze the effect of
selecting different initial solution construction methods for
each of the three problems. Then, with respect to each
problem, the values of parameters set for the P3H are
discussed. Analyzing the parallelization effect is provided
next. Finally, a brief evaluation is provided comparing the
performance of the P3H with that of other state-of-the-art
procedures.

5.1 Comparing the initial solution construction
methods

As mentioned in Section 4.1, four heuristic construction
methods have been implemented for the PFSP, namely (i)
UNIFORM, (ii) REBLOCKI, (iii) REBLOCKII, and (iv)
RJP, respectively. To evaluate these methods, a set of 12
Taillards’ instances with different size has been used, and
each construction method has been run 1000 times for
each instance, with different random seed values. Table 2
compares these four methods. The column %DEVavg shows
the average percent deviation of solution Makespan (M)
from the Upper Bound (UB), calculated as (M−UB)/UB∗
100. The column %STDEV shows the sample standard
deviation percentage from the best known upper bound. In

other words, ST DEV =
√

1
N−1 ∗ ∑N

i=1 (Mi − Mavg)
2 and

%ST DEV = ST DEV/UB ∗ 100, with N being set to
1000, and Mi showing the makespan value for run i. Also,

5896 M. Amirghasemi

Table 3 Comparing the performance of the three different construction methods for JSP

Instance Size SASG RGT IC

n m %DEVavg %STDEV %DEVavg %STDEV %DEVavg %STDEV

ft06 6 6 64.10 22.32 24.55 12.43 7.83 4.51

ft10 10 10 91.55 16.51 32.31 7.29 24.41 6.34

ft20 20 5 78.59 14.76 30.80 5.64 25.68 7.36

orb01 10 10 88.80 15.95 27.63 7.05 26.92 6.30

orb02 15 10 90.45 18.95 26.65 8.16 19.63 5.36

orb03 15 10 102.54 17.47 35.80 7.24 22.64 5.96

orb04 20 10 84.39 17.47 29.09 8.15 20.74 5.13

orb05 20 10 90.93 16.35 25.02 5.96 22.57 6.56

orb06 20 10 97.44 17.84 30.65 7.05 22.87 5.70

orb07 15 15 92.61 18.00 24.93 7.30 21.86 5.90

orb08 15 15 99.70 17.08 33.75 7.46 23.35 8.01

orb09 15 15 86.67 17.97 31.57 7.96 18.40 5.12

orb10 15 15 97.44 17.83 29.75 7.38 21.13 6.31

la19 15 15 91.35 20.66 19.23 6.94 16.93 5.03

la21 10 10 81.33 16.32 28.02 6.35 22.27 5.02

la24 10 10 79.71 16.31 29.93 8.12 21.53 5.46

la25 20 15 77.26 14.78 35.48 9.03 21.88 4.97

la27 20 15 79.15 13.82 27.92 5.81 27.59 5.67

la29 20 15 78.80 13.42 39.43 7.60 29.88 6.48

la36 10 10 74.16 13.98 32.79 7.81 22.16 4.79

la37 10 10 73.77 11.96 25.32 6.60 24.84 5.19

la38 10 10 86.46 14.35 31.73 8.30 26.70 5.42

la39 10 10 85.40 13.99 31.09 6.79 24.20 5.25

la40 10 10 85.04 13.68 28.14 7.47 25.02 5.23

abz5 10 10 82.08 17.66 18.36 7.37 12.74 3.98

abz6 10 10 83.41 19.16 17.85 6.80 10.40 4.32

abz7 10 10 71.32 10.24 28.60 5.94 29.01 5.21

abz8 10 10 83.01 12.08 33.88 6.44 29.72 5.01

abz9 10 10 81.97 10.91 32.94 5.75 34.37 5.33

yn1 20 20 76.77 10.36 28.39 6.34 27.03 4.11

yn2 20 20 71.37 10.29 29.83 6.08 28.02 4.47

yn3 20 20 79.13 10.74 26.03 5.89 29.94 4.49

yn4 20 20 85.48 10.75 26.29 5.08 32.73 5.08

swv01 20 10 107.09 12.57 41.20 6.31 39.91 7.65

swv02 20 10 89.85 13.62 36.90 6.12 32.13 6.61

swv03 20 10 98.82 13.00 38.74 5.94 37.08 7.82

swv04 20 10 106.02 13.17 37.01 5.45 36.19 7.16

swv05 20 10 101.06 13.60 41.78 6.30 33.66 6.53

swv06 20 15 103.25 12.69 41.33 5.72 39.48 6.57

swv07 20 15 98.86 11.71 39.93 6.03 34.12 5.36

swv08 20 15 114.57 12.27 39.68 5.45 42.28 6.90

swv09 20 15 109.63 12.21 43.98 6.32 39.51 6.74

swv10 20 15 105.05 12.69 36.05 5.45 35.40 6.03

Average 88.52 14.69 31.40 6.85 26.62 5.73

Total time(s) 2.403 1.401 157.635

5897An effective parallel evolutionary metaheuristic with its application...

0 50 100 150
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Average Deviation %

SASG
RGT
IC

Fig. 5 The estimated normal distribution functions for the three
different construction methods for the JSP

Mavg denotes the average makespan over 1000 runs and for
each method, the total construction time for generating all
12000 solutions has also been shown in Table 2.

With the realistic assumption of having normal distribu-
tion for the %DEVavg, Fig. 4 shows the estimated proba-
bility density functions for all construction methods. The
probability that a construction method generates solutions
with zero percentage deviation from the best known solution
(upper bound), i.e. P(X ≤ 0) = FX(0), can be calculated
for all four methods as 1.5 ∗ 10−11, 2.8 ∗ 10−9, 8.3 ∗ 10−12,
and 4.8 ∗ 10−28, respectively. This indicates that the second
method, the first re-blocking strategy, has the highest chance
of generating solutions with zero percentage deviation from
the best known solution.

In effect, the first method, as the closest competitor of
the winner method, has to be at least 100 times faster
than the winner method to outperform the winner, whereas
comparing construction times shows that the first method
is only 3 times faster than it. Hence, based on these
observations, the first re-blocking method has been adopted
as the construction module for the PFSP.

For selecting the best construction method for the JSP,
all of the three presented methods have been considered,
namely SASG, RGT, and IC. Each of these methods has
been run with 1000 different random seed for each of
the 43 JSP benchmark instances mentioned. As can be
seen in Table 3, IC and RGT show superior performance
over SASG. However, it should be noted that IC is
considerably slower than both SASG and RGT. Figure 5
shows the estimated normal probability functions for the
three methods. The probabilities P(X ≤ 0) for SASG, RGT,
and IC can easily be calculated as 8.4 ∗ 10−10, 2.3 ∗ 10−6,

and 1.7∗10−6. Despite the fact that IC produces the highest
quality solutions, its excessive required computational time
prevents it from being selected. In effect, RC is more than
100 times slower than RGT and more than 60 times slower
than SASG. Based on these considerations, RGT has been
adopted as the construction module for the JSP.

For the QAP also, all of the three construction methods
have also been compared and the best one has been adopted.
The results have been shown in Table 4, and Fig. 6. In this
table, %DEVavg shows the average deviation of solution
Cost (C) from the Best Known Solution (BKS), computed
as (C − BKS)/BKS ∗ 100. Similarly, %STDEV has been

calculated as
√

1
N−1 ∗ ∑N

i=1 (Ci − CAV G)2 ∗ 100
BKS

. The
columns under the titles of UNIFORM, RH and GREEDY
show the uniform, greedy, and RH methods, respectively,
described in Section 4.3. As can be seen, the GREEDY
method, despite being relatively slower, shows superior
performance. Likewise, assuming normal distribution, the
values of P(X ≤ 0) for UNIFORM, RH, and GREEDY
are 1.6 ∗ 10−9, 4.9 ∗ 10−11, and 6.1 ∗ 10−6, respectively.
Therefore, based on these considerations, GREEDY has
been adopted as the construction module for the QAP.

It should be noted that all the comparisons on initial
solution construction methods for the PFSP, JSP and QAP,
reported in this subsection, have been performed on the
same running environment.

5.2 Parameter settings

Regardless of the problem the P3H applies to, the P3H
needs totally 11 parameters for being adjusted. In setting
these parameters, it has been noted that exploiting some
high quality neighborhoods without effective exploration
of solution space, and exploring solution space without
effective exploitation of high quality neighborhoods is the
easiest trap that an inappropriate parameter setting for the
P3H can fall in. This theoretical principal is the main basis
for manual setting of the P3H parameters. It is worth noting,
while an adaptive (automatic) parameter tuning method [40]
could be adopted, a manual parameter tuning, guided by
balancing the exploration vs exploitation forces of the P3H
is adopted and is explained as follows.

In effect, in setting these parameters for each of the three
problems, a small number of instances, which with respect
to their characteristics and sizes have had a varying degree
of complexity, have been selected and different values for
the parameters have been tested. Then the set of values
which performed best have been chosen. In our parameter
setting experiments, we found that many different settings
of parameters achieved the same high quality performance.

This similar performance can be mainly explained by the
robustness of the procedure. In setting the parameters, we

5898 M. Amirghasemi

Table 4 Comparing the performance of the three different construction methods for the QAP

Instance UNIFORM RH GREEDY

%DEVavg %STDEV %DEVavg %STDEV %DEVavg %STDEV

sko42 26.93 2.24 17.51 1.74 17.36 1.97

sko49 24.23 1.76 15.23 1.41 15.36 1.55

sko56 23.73 1.71 14.40 1.25 15.02 1.42

sko64 21.18 1.34 13.77 1.10 13.33 1.17

sko72 20.33 1.24 12.49 0.97 12.66 1.00

sko81 19.22 1.10 11.74 0.80 11.65 0.91

sko90 18.54 1.01 11.61 0.75 11.21 0.85

els19 241.64 61.13 163.96 42.84 206.63 56.10

bur26d 10.16 2.02 5.56 1.26 9.81 1.91

nug30 32.87 3.41 20.74 2.67 24.16 3.46

ste36c 127.66 20.88 73.59 11.60 99.53 20.43

lipa50a 3.12 0.16 2.57 0.14 2.65 0.14

tai64c 59.39 18.71 178.16 16.27 28.75 14.27

tai20b 163.04 50.76 99.15 28.12 104.69 41.05

tai25b 145.14 26.34 95.50 19.29 79.13 22.60

tai30b 105.26 17.52 83.58 15.43 51.59 13.65

tai35b 82.08 11.82 75.34 8.19 43.98 9.63

tai40b 77.50 8.86 61.14 6.38 40.17 7.04

tai50b 71.96 7.34 47.28 6.88 33.78 6.21

tai60b 65.86 6.24 39.14 2.82 34.69 5.56

tai80b 51.91 3.86 32.04 2.61 28.50 3.28

tai20a 27.52 3.38 19.50 2.89 17.85 2.66

tai25a 23.99 2.50 17.03 2.04 15.38 2.12

tai30a 20.89 1.80 15.23 1.60 13.53 1.51

tai35a 21.26 1.72 14.58 1.45 12.47 1.33

tai40a 20.51 1.53 14.04 1.24 12.18 1.27

tai50a 19.43 1.19 13.48 1.05 11.17 0.94

tai60a 18.21 1.01 12.53 0.82 9.92 0.74

tai80a 15.73 0.69 10.84 0.58 8.23 0.50

Average 53.77 9.08 41.09 6.35 33.98 7.77

Total time(s) 0.111 0.751 2.418

noticed that it is based on the values of other parameters
which the setting of a particular parameter finds its meaning.
In effect, because of this interdependence, whereas in some
contexts of the setting of other parameters, the lower values
of a single parameter contribute to high quality solutions,
in other contexts the reverse is true. This is partly due to
the facts that (i) the performance of the P3H is mainly
dependent on how it strikes balance between exploration
and exploitation, and (ii) it is the combination of parameters
that affects such balance.

In the cases where the increasing of a parameter,
like perturbationProb or mutation, contributes to further
exploration, and the increasing of the other parameter,
like intensificationProb or concentrationProb, contributes
to further exploitation, the setting of the first group of

parameters can offset that of the second group and vice
versa. Table 5 shows the setting of the parameters for
each of the three problems, and it includes a UNIVERSAL
column, proposing an initial starting value when applying
P3H to other optimisation problems. This column is guided
by our preliminary experiments as well as the average
values for three problems under study. It is suggested
that these universal starting values is adjusted based on
both the exploration/exploitation considerations, explained
in Section 4, and any relevant problem-specific knowledge.

5.3 Analyzing the effect of parallelization

Due to our Quad-Core processor and the capability of
the P3H in working with different number of threads, we

5899An effective parallel evolutionary metaheuristic with its application...

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Average Deviation %

UNIFORM
RH
GREEDY

Fig. 6 The estimated normal distribution functions for the three
different construction methods for the QAP

analyzed four variants of the P3H, shown as P3Hc, in which
c shows the number of threads that are active. Although
there is no limitation on the number of threads employed in
the P3H, the Quad-Core processor has enforced the limit of
four threads.

Each variant has been run 10 times with a problem-
specific time limit for each run. The time limits have been
set in such a way that the P3H has a maximum allowed
running time equal or close to other algorithms in the
literature. In this direction, for the PFSP and JSP, the time
limit has been set to n∗m/10 and max

(
1.0, n

m
∗ (9n − 60)

)

seconds for each run, where n and m are the number of
jobs and machines, respectively. Also in solving the QAP,

the time limit has been set to 1
10 ∗ 2

N
10 minutes, where

N shows the instance size. For each variant, the best and
average percent deviation from the best known solution
(tightest upper bound), %DEVbest and %DEVavg, has been
reported. Additionally, to provide a basic estimate on the
time complexity of the P3Hc, its maximum allowed run
time, with respect to various sample problem sizes have
been reported in Table 6.

Table 7 shows the result of running all four variants on
the 12 classes of Taillards’ instances. As can be seen, there
is an improving trend with increasing the number of cores.
For instance, we observe a 23% improvement in %DEVavg

from 0.64 in the P3H1 to 0.49 in the P3H4.
As shown in Table 8, similar comparisons have been

made for the JSP. For some of the JSP instances, increasing
the number of cores from 2 to 3 has non-improving
or degrading effect on %DEVavg and %DEVbest. This
may be due to the unpredictable randomized nature of
the metaheuristics in general and parallel metaheuristics
in particular which can lead to unexpected behaviors. In
effect, the issue is more critical for parallel methods due
to parallel computational overhead and possible memory
race conditions for the shared variables. It should be noted
that despite the increase of %DEVavg for some individual
instances, the total %DEVavg for the P3H2 is equal to that
of the P3H3, and %DEVbest is decreased from 0.34 to
0.30, indicating significant improvement for the rest of the
instances.

For the QAP instances, Table 9 shows the related
results. Again, an improving trend can be observed in both
%DEVavg and %DEVbest. In effect, %DEVavg has been
improved nearly by 25% through increasing the number of
cores from 1 to 4.

Table 5 The setting of
parameters for the PFSP, JSP,
and QAP

Parameter PFSP JSP QAP UNIVERSAL

value value value value

Layer 1:

totalSolutionsGenerated 10000 2000 10000 10000

eliteHeapSize 1000 100 500 500

Layer 2:

poolSize 100 50 100 100

generationSize 200 50 200 100

similarityThreshold 0.75 0.95 0.75 0.8

mutationProb 0.2 0.2 0.2 0.2

Layer 3:

intensificationProb 0.2 0.1 0.4 0.2

concentrationProb 0.4 0.2 0.1 0.2

perturbationProb 0.1 0.1 0.1 0.1

perturbationIntensity 1 1 2 2

refreshProb 0.3 0.6 0.4 0.4

5900 M. Amirghasemi

Table 6 Maximum allowed
running times of the P3H, for
the PFSP, JSP, and QAP,
respectively

PFSP JSP QAP

n m Time(s) n m Time(s) n Time(m)

20 5 10 10 10 30 30 0.8

20 10 20 15 10 112.5 40 1.6

20 20 40 15 15 75 50 3.2

50 10 50 20 5 480 60 6.4

100 10 100 20 10 240 72 14.7

100 20 200 20 15 160 80 25.6

200 20 400 20 20 120 90 51.2

Finally, in order to compare different variants of P3H in
the same running environment, three variants of the P3H
have been implemented and are run on the same CPU,
each using a single thread/core, having identical maximum
running time. These variants are P3HGA, P3HENHANCE,
and P3H1. While in P3HGA the enhancing module of
the P3H is disabled and only the genetic algorithm layer
is active, in P3HENHANCE, only the enhancing layer, is
active, and the GA layer is deactivated. In P3H1, while
both GA and enhancing layers are active, the procedure
operates on a single thread/core. The results are shown in
Table 10. As can be seen, P3HENHANCE and P3H1 show a
superior performance compared to P3HGA. This highlights
the crucial contribution of the enhancing module to the
overall success of the P3H.

5.4 Comparison with other metaheuristics

In this section, we compare the P3H4 with some of the
highest performance metaheuristic in the literature. The

comparisons are based on %DEVavg and the running
time. It is worth noting that since different programming
approaches have been used and various computational envi-
ronments and threads have been employed, the reported
running times have only informative purposes and any
running time comparison needs to consider the discrep-
ancies involved, from the number of threads through the
type of processors to the categories of the programming
environments.

Table 11 shows the result of comparing the P3H4

with several state-of-the-art metaheuristics. These methods
include the Simulated Annealing algorithm, SAOP, of [49],
the iterated local search (ILS) of [61], two Ant Colony
Optimization algorithms, PACO and M-MMAS, proposed
in [51], the Hybrid genetic algorithm, HGA RMA, of [57],
the Particle swarm optimization algorithm, PSOVNS of [68],
the hybrid variable neighborhood search, NEGAVNS of [80],
the Re-blocking Adjustable Memetic Procedure, RAMP,
of [9], and the Refining Decomposition-based Integrated
Search, RDIS, of [6].

Table 7 Analyzing the effect of the P3H parallelization on %DEVbest and %DEVavg for the PFSP

Instances Size P3H1 P3H2 P3H3 P3H4

n m %DEVbest %DEVavg %DEVbest %DEVavg %DEVbest %DEVavg %DEVbest %DEVavg

ta001-ta010 20 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ta011-ta020 20 10 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

ta021-ta030 20 20 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01

ta031-ta040 50 5 0.01 0.06 0.01 0.03 0.00 0.02 0.00 0.01

ta041-ta050 50 10 0.39 0.60 0.34 0.47 0.31 0.48 0.30 0.43

ta051-ta060 50 20 0.49 0.81 0.43 0.71 0.35 0.59 0.31 0.58

ta061-ta070 100 5 0.02 0.11 0.01 0.06 0.00 0.05 0.00 0.04

ta071-ta080 100 10 0.23 0.50 0.16 0.37 0.13 0.33 0.05 0.30

ta081-ta090 100 20 1.23 1.61 1.03 1.41 1.01 1.32 0.99 1.30

ta091-ta100 200 10 0.26 0.48 0.18 0.34 0.15 0.33 0.16 0.30

ta101-ta110 200 20 1.68 2.07 1.52 1.88 1.43 1.73 1.36 1.69

ta111-ta120 500 20 1.14 1.46 1.09 1.37 1.03 1.28 1.01 1.22

Average 0.45 0.64 0.40 0.55 0.37 0.51 0.35 0.49

5901An effective parallel evolutionary metaheuristic with its application...

Table 8 Analyzing the effect of the P3H parallelization on %DEVbest and %DEVavg for the JSP

Instance Size P3H1 P3H2 P3H3 P3H4

n m %DEVbest %DEVavg %DEVbest %DEVavg %DEVbest %DEVavg %DEVbest %DEVavg

ft06 6 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ft10 10 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ft20 20 5 0.00 0.21 0.00 0.14 0.00 0.00 0.00 0.00

la19 10 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

la21 15 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

la24 15 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

la25 20 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

la27 20 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

la29 20 10 0.09 0.86 0.09 0.59 0.69 0.91 0.09 0.66

la36 15 15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

la37 15 15 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

la38 15 15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

la39 15 15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

la40 15 15 0.00 0.15 0.16 0.16 0.00 0.15 0.00 0.15

abz5 10 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

abz6 10 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

abz7 20 15 0.15 0.58 0.15 0.29 0.15 0.34 0.15 0.29

abz8 20 15 0.30 0.59 0.45 0.71 0.60 0.71 0.30 0.56

abz9 20 15 0.00 0.69 0.00 0.28 0.00 0.69 0.00 0.37

orb01 10 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

orb02 10 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

orb03 10 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

orb04 10 10 0.00 0.12 0.00 0.18 0.00 0.00 0.00 0.00

orb05 10 10 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00

orb06 10 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

orb07 10 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

orb08 10 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

orb09 10 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

orb10 10 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

yn1 20 20 0.23 0.71 0.00 0.51 0.00 0.44 0.00 0.44

yn2 20 20 0.33 0.73 0.33 0.73 0.33 0.60 0.00 0.49

yn3 20 20 0.34 0.65 0.34 0.53 0.22 0.63 0.22 0.49

yn4 20 20 0.52 1.32 0.31 0.98 0.31 0.91 0.21 0.79

swv01 20 10 0.92 2.22 1.21 2.03 0.36 2.00 0.36 1.56

swv02 20 10 0.54 1.00 0.34 0.82 0.34 0.80 0.34 1.09

swv03 20 10 1.57 2.42 1.50 2.09 1.57 2.25 1.22 2.05

swv04 20 10 1.56 2.80 1.63 2.80 1.29 2.71 1.16 2.44

swv05 20 10 1.12 2.19 0.42 1.52 0.56 1.52 0.28 1.53

swv06 20 15 1.26 2.45 1.08 1.92 1.50 2.18 0.42 1.28

swv07 20 15 2.07 2.95 1.25 2.56 1.38 2.71 1.57 2.58

swv08 20 15 1.20 3.06 1.77 2.72 0.80 2.53 1.60 2.23

swv09 20 15 1.15 2.89 1.69 2.84 1.09 2.76 1.39 2.58

swv10 20 15 2.24 3.20 1.89 2.89 1.66 2.67 1.55 2.58

Average 0.36 0.74 0.34 0.64 0.30 0.64 0.25 0.56

5902 M. Amirghasemi

Table 9 Analyzing the effect of the P3H parallelization on %DEVbest and %DEVavg for the QAP

Instance P3H1 P3H2 P3H3 P3H4

%DEVbest %DEVavg %DEVbest %DEVavg %DEVbest %DEVavg %DEVbest %DEVavg

sko42 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

sko49 0.00 0.03 0.00 0.01 0.00 0.01 0.00 0.02

sko56 0.01 0.05 0.00 0.02 0.00 0.02 0.00 0.02

sko64 0.00 0.03 0.00 0.02 0.00 0.01 0.00 0.00

sko72 0.00 0.05 0.00 0.04 0.00 0.04 0.00 0.03

sko81 0.01 0.06 0.01 0.04 0.01 0.05 0.01 0.04

sko90 0.00 0.05 0.02 0.05 0.03 0.06 0.00 0.02

els19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

bur26d 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

nug30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ste36c 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

lipa50a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

tai64c 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

tai20b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

tai25b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

tai30b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

tai35b 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

tai40b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

tai50b 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

tai60b 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00

tai80b 0.00 0.04 0.00 0.03 0.00 0.03 0.00 0.01

tai20a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

tai25a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

tai30a 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00

tai35a 0.00 0.19 0.00 0.19 0.00 0.15 0.00 0.10

tai40a 0.37 0.54 0.07 0.40 0.31 0.45 0.12 0.37

tai50a 0.47 0.84 0.68 0.86 0.68 0.82 0.39 0.61

tai60a 0.90 1.01 0.75 0.96 0.60 0.86 0.64 0.85

tai80a 0.92 1.11 0.78 1.03 0.83 1.05 0.82 0.97

Average 0.09 0.14 0.08 0.13 0.08 0.12 0.07 0.11

As can be seen in Table 11, the P3H4 outperforms
all other approaches on 20 × 20 and 50 × 20 problem
groups. In addition, for 20 × 5, 20 × 10 and 100 × 20
instances, the P3H4 performance is equal to that of top
performing methods. Furthermore, except for three problem
groups with the deviation percentages of 1.3%, 1.69%, and
1.22%, the average deviation from the best known solution
is always less than 0.6%.

Concerning the processor speeds, it should be mentioned
that HGA RMA, NEGAVNS, and PSOVNS have been run
on PCs with 2.6 GHz, 2.4 GHz, and 2.8 GHz clock speeds
respectively. Also both RDIS and RAMP have been run on
a 2.2 GHz CPU. Table 12 shows the maximum allowed
running time, in seconds, for different approaches. As can
be seen, NEGAVNS, RDIS, RAMP, and the P3H4 have been

allowed an equal time limit and HGA RMA has the lowest
running time. It should be noted that SAOP, ILS, M-MMAS,
and PACO have all been re-implemented in [57], and hence
they are run on the same processor, and share the same
maximum allowed running time, as that of HGA RMA.

Further, since NEGAVNS, RAMP, RDIS, and P3H4 have
identical maximum allowed running time, Friedman test,
on their relative ranks, presented in Table 13, has been
performed. An interested reader can see [26] for different
tests applied to metaheuristics performance. It should be
noted that ranks are calculated based on average deviation
from the best known solution, %DEVavg. In the case of tied
%DEVavg values, the average of the ranks is used. As can
be seen, whereas RAMP and P3H4 have the lower ranks
on smaller instances, NEGAVNS shows better performance

5903An effective parallel evolutionary metaheuristic with its application...

Table 10 Comparing the performance of the three different variants of the P3H

Instance Size P3HGA P3HENHANCE P3H1

n m %DEVbest %DEVavg %DEVbest %DEVavg %DEVbest %DEVavg

ta001 20 5 0.00 0.03 0.00 0.00 0.00 0.00

ta011 20 10 0.25 1.23 0.00 0.00 0.00 0.00

ta021 20 20 0.78 1.10 0.00 0.00 0.00 0.00

ta031 50 5 0.00 0.00 0.00 0.00 0.00 0.00

ta041 50 10 2.07 3.23 1.14 1.14 1.10 1.17

ta051 50 20 2.49 3.67 0.42 0.83 0.44 0.85

ta061 100 5 0.00 0.00 0.00 0.00 0.00 0.00

ta071 100 10 0.33 0.81 0.02 0.16 0.16 0.30

ta081 100 20 3.37 4.65 1.44 1.68 1.35 1.58

ta091 200 10 0.21 0.74 0.09 0.34 0.11 0.28

ta101 200 20 2.41 3.43 1.32 1.58 1.35 1.68

ta111 500 20 1.40 1.97 1.21 1.52 1.22 1.56

Average 1.11 1.74 0.47 0.60 0.48 0.62

on larger instance groups. Friedman test, performed on the
ranked data set, shows a statistically significant difference
of the ranks, with χ2(2) = 15.286 and p = 0.002.

The performance of the procedure on the JSP has also
been compared with several metaheuristics as shown in
Table 14. These methods are (i) Small-Large Embedded
Neighborhood Search (SLENP) of [7] (ii) Tabu-based
Genetic Algorithm (TGA) of [8], (iii) Tabu Search and
Simulated Annealing (TSSA) hyrid of [78], and Iterative
Ejections of Bottleneck Operations (IEBO) procedure of
[45]. The column Tavg shows the average running time, in
seconds, to find the best solution for each method. Both
SLENP and TGA have been run on a PC with 2.2 GHz CPU,

TSSA has been run on a 3.0 GHz CPU, and IEBO has been
run on a cluster with 2.93 GHz CPU cores.

As shown in Table 14, in terms of deviation from the
best known solution, the P3H4 outperform both SLENP
and TGA, with an overall %DEVavg of 0.56%, compared
to 1.11% and 1.28% deviations of SLENP and TGA,
respectively. Moreover, on orb instances, P3H4 outperforms
SLENP, TGA, and TSSA with a %DEVavg of 0.00% for
all instances. IEBO has the lowest %DEVavg on swv and
yn instances, at the expense of significantly higher running
times, compared to that of three other methods.

With respect to the QAP, the performance of the P3H4

has been compared with that of the Progressive Adjusting

Table 11 Comparison of the %DEVavg of P3H4 to that of other metaheuristics for the PFSP

Instances Size SAOP ILS M-MMAS PACO HGA RMA PSOVNS NEGAVNS RAMP RDIS P3H4

n m

ta001-ta010 20 5 1.05 0.33 0.04 0.18 0.04 0.03 0.00 0.00 0.00 0.00

ta011-ta020 20 10 2.60 0.52 0.07 0.24 0.02 0.02 0.01 0.03 0.03 0.00

ta021-ta030 20 20 2.06 0.28 0.06 0.18 0.05 0.05 0.02 0.04 0.04 0.01

ta031-ta040 50 5 0.34 0.18 0.02 0.05 0.00 0.00 0.00 0.00 0.01 0.01

ta041-ta050 50 10 3.50 1.45 1.08 0.81 0.72 0.57 0.82 0.37 0.95 0.43

ta051-ta060 50 20 4.66 2.05 1.93 1.41 0.99 1.36 1.08 0.61 1.88 0.58

ta061-ta070 100 5 0.30 0.16 0.02 0.02 0.01 0.00 0.00 0.00 0.01 0.04

ta071-ta080 100 10 1.34 0.64 0.39 0.29 0.16 0.18 0.14 0.06 0.38 0.30

ta081-ta090 100 20 4.49 2.42 2.42 1.93 1.30 1.45 1.40 1.76 2.35 1.30

ta091-ta100 200 10 0.94 0.50 0.30 0.23 0.14 0.18 0.16 0.15 0.32 0.30

ta101-ta110 200 20 3.67 2.07 2.15 1.82 1.26 1.35 1.25 2.00 2.30 1.69

ta111-ta120 500 20 2.20 1.20 1.02 0.85 0.69 – 0.71 1.20 1.32 1.22

5904 M. Amirghasemi

Table 12 Comparison of the maximum allowed running times of the P3H4 to that of other metaheuristics for the PFSP

Instances Size SAOP ILS M-MMAS PACO HGA RMA PSOVNS NEGAVNS RAMP RDIS P3H4

n m

ta001-ta010 20 5 4.5 4.5 4.5 4.5 4.5 300 10 10 10 10

ta011-ta020 20 10 9 9 9 9 9 300 20 20 20 20

ta021-ta030 20 20 18 18 18 18 18 300 40 40 40 40

ta031-ta040 50 5 11.3 11.3 11.3 11.3 11.3 300 25 25 25 25

ta041-ta050 50 10 22.5 22.5 22.5 22.5 22.5 300 50 50 50 50

ta051-ta060 50 20 45 45 45 45 45 300 100 100 100 100

ta061-ta070 100 5 22.5 22.5 22.5 22.5 22.5 600 50 50 50 50

ta071-ta080 100 10 45 45 45 45 45 600 100 100 100 100

ta081-ta090 100 20 90 90 90 90 90 600 200 200 200 200

ta091-ta100 200 10 90 90 90 90 90 600 200 200 200 200

ta101-ta110 200 20 180 180 180 180 180 600 400 400 400 400

ta111-ta120 500 20 450 450 450 450 450 – 1000 1000 1000 1000

Structural Solver (PASS) of [10], the Neighborhood
Decomposition-based Search (NDS) of [11], Self-Adaptive
Facility Interchange (SAFI) of [77], the Diversified Tabu
Search (DivTS) of [39], and the Cooperative Parallel
Tabu Search(CPTS) of [38]. Since each study, except for
CPTS, have reported performance only on a subset of
instances under study, it is difficult to make any conclusion
based on overall averages. However, it can be seen that
P3H4 outperforms PASS, NDS, SAFI, and ACO-GA/LS on
sko instances. Overall, it seems the CPTS is the highest
performing algorithm for the QAP at the time. The CPTS
uses a parallel approach and has been run on 10 CPUs
each having 1.3 GHz clock speed. In Table 15, the average
running time (Tavg) of all algorithm, except for P3H4,
has been reported, in minutes. However, since the P3H4

works based on time-limit stopping criterion, the maximum
allowed time Tmax has been reported. As is seen, while
having a close overall performance to the CPTS, the P3H4

is significantly faster than it.

6 Concluding remarks

With respect to solving three hard-to-solve combinatorial
optimization problems, the P3H has been both robust
and effective, achieving 0.35%, 0.25%, and 0.07% overall
average best deviation (%DEVbest) for the PFSP, JSP and
QAP, respectively. This is due to two complementary facts.
First, the employed threads use components in random order
and in this way explore solution space effectively. Second,
the threads cooperate by improving a common solution and
this way exploit high quality areas of solution space. It is
this balance between exploration and exploitation which has
significantly contributed to the robustness and efficiency of

the P3H. It is worth noting that the success of the P3H
in solving the flowshop scheduling problem could have
multiple practical implications and benefits with respect to
total energy consumption in production systems [13].

Directions for overcoming limitations and further
enhancing the procedure are as follows. First, the parallel
strategy employed can be enhanced by creating a pool of
high quality solutions and providing access to the elements
of this pool for all of the threads. In this way, the threads fill
and cooperatively improve the same pool. Second, a feed-
back mechanism can be incorporated into the procedure to
take the responsibility of further balancing exploration with
exploitation. This balancing can be done by embedding a
learning capability in the procedure to adjust the parameters
while a problem is being solved, and can be of paramount
importance.

Table 13 The ranks of NEGAVNS, RAMP, RDIS, and P3H4 based on
average deviation from the best known solution

Instance group NEGAVNS RAMP RDIS P3H4

1 2.5 2.5 2.5 2.5

2 2 3.5 3.5 1

3 2 3.5 3.5 1

4 1.5 1.5 3.5 3.5

5 3 1 4 2

6 3 2 4 1

7 1.5 1.5 3 4

8 2 1 4 3

9 2 3 4 1

10 2 1 4 3

11 1 3 4 2

12 1 2 4 3

5905An effective parallel evolutionary metaheuristic with its application...

Table 14 Comparison of the %DEVavg and Tavg of the P3H4 to that of other metaheuristics for the JSP

Instance Size SLENP TGA TSSA IEBO P3H4

n m %DEVavg Tavg %DEVavg Tavg %DEVavg Tavg %DEVavg Tavg %DEVavg Tavg

ft06 6 6 0.00 0.0 0.00 0.0 – – – – 0.00 0.0

ft10 10 10 0.00 9.2 0.00 0.7 0.00 3.8 – – 0.00 0.5

ft20 20 5 0.00 2.7 0.00 92.1 – – – – 0.00 22.0

la19 10 10 0.00 0.8 0.00 1.2 0.00 0.5 – – 0.00 0.2

la21 15 10 0.07 15.2 0.35 26.5 0.00 15.2 – – 0.00 16.8

la24 15 10 0.16 20.4 0.03 51.2 0.13 19.8 – – 0.00 1.6

la25 20 10 0.00 13.7 0.20 17.1 0.01 13.8 – – 0.00 2.2

la27 20 10 0.00 32.0 0.08 45.3 0.00 11.7 – – 0.00 5.1

la29 20 10 1.00 40.0 1.27 22.5 0.63 63.9 – – 0.66 36.3

la36 15 15 0.02 12.9 0.00 5.1 0.00 9.9 – – 0.00 5.5

la37 15 15 0.00 9.2 0.18 14.8 0.39 42.1 – – 0.00 5.4

la38 15 15 0.22 14.8 0.14 5.7 0.30 47.8 – – 0.00 6.0

la39 15 15 0.05 19.1 0.06 6.2 0.06 28.6 – – 0.00 1.5

la40 15 15 0.38 15.9 0.29 11.1 0.20 52.1 – – 0.15 8.7

abz5 10 10 0.00 3.5 0.05 11.5 – – – – 0.00 1.1

abz6 10 10 0.00 0.2 0.00 0.1 – – – – 0.00 0.1

abz7 20 15 1.22 64.8 1.36 50.7 0.88 85.9 – – 0.29 60.4

abz8 20 15 1.11 55.9 1.44 38.2 0.80 90.7 – – 0.56 33.3

abz9 20 15 1.70 35.8 1.28 33.9 0.85 90.2 – – 0.37 50.3

orb01 10 10 0.06 6.0 0.17 5.6 0.00 3.5 – – 0.00 0.9

orb02 10 10 0.00 0.5 0.00 0.7 0.01 6.4 – – 0.00 0.2

orb03 10 10 0.00 7.4 0.57 1.4 0.75 13.8 – – 0.00 0.4

orb04 10 10 0.12 7.6 0.56 4.8 0.33 14.3 – – 0.00 5.1

orb05 10 10 0.00 12.1 0.00 10.0 0.18 6.6 – – 0.00 5.8

orb06 10 10 0.09 9.2 0.22 8.6 0.00 8.5 – – 0.00 0.9

orb07 10 10 0.00 0.3 0.00 0.1 0.00 0.5 – – 0.00 0.1

orb08 10 10 0.00 6.0 0.08 5.8 0.39 7.2 – – 0.00 0.7

orb09 10 10 0.00 0.5 0.29 2.6 0.00 0.4 – – 0.00 0.2

orb10 10 10 0.00 0.2 0.00 0.1 0.00 0.3 – – 0.00 0.1

yn1 20 20 1.55 40.0 1.12 27.6 0.71 106.3 0.02 190 0.44 55.6

yn2 20 20 1.04 62.3 1.63 27.7 0.24 110.4 0.30 197 0.49 39.1

yn3 20 20 1.24 42.2 1.21 43.5 0.39 110.8 0.15 212 0.49 39.0

yn4 20 20 1.94 56.0 1.95 45.1 0.48 108.7 0.11 216 0.79 41.5

swv01 20 10 3.66 60.6 4.01 64.6 1.19 142.1 0.32 299 1.56 114.0

swv02 20 10 3.05 64.4 2.05 58.6 0.36 119.7 0.00 18 1.09 68.3

swv03 20 10 2.58 48.7 2.80 57.9 1.39 139.1 0.55 312 2.05 76.8

swv04 20 10 3.25 57.7 4.99 98.6 0.66 143.9 0.23 339 2.44 86.1

swv05 20 10 4.80 58.1 4.35 63.7 1.39 146.7 0.26 338 1.53 94.6

swv06 20 15 4.02 81.9 4.95 62.1 1.32 192.5 0.38 402 1.28 108.2

swv07 20 15 3.39 68.5 4.67 53.2 1.96 190.2 0.44 392 2.58 68.0

swv08 20 15 3.54 71.8 4.39 66.7 1.36 190.0 0.67 394 2.23 67.9

swv09 20 15 3.17 68.7 4.07 58.8 1.70 193.8 0.33 393 2.58 40.1

swv10 20 15 4.45 85.7 4.32 32.0 0.95 184.6 0.89 403 2.58 60.1

Average 1.11 29.83 1.28 28.69 – – – – 0.56 28.62

5906 M. Amirghasemi

Table 15 Comparing the performance of the P3H4 with that of other metaheuristics with respect to %DEVavg and running time for the QAP

Instance PASS SAFI NDS ACO-GA/LS DivTS CPTS P3H4

%DEVavg Tavg %DEVavg Tavg %DEVavg Tavg %DEVavg Tavg %DEVavg Tavg %DEVavg Tavg %DEVavg Tmax

sko42 0.000 1.8 0.000 0.6 0.000 0.3 0.000 0.7 0.000 4.0 0.000 5.3 0.000 1.8

sko49 0.007 5.7 0.005 6.9 0.000 3.0 0.056 7.6 0.008 9.6 0.000 11.4 0.017 3.0

sko56 0.033 9.6 0.026 6.7 0.021 5.1 0.012 9.1 0.002 13.2 0.000 21.0 0.015 4.9

sko64 0.051 15.1 0.039 10.8 0.008 8.0 0.004 17.4 0.000 22.0 0.000 42.9 0.005 8.4

sko72 0.111 15.7 0.089 13.4 0.067 9.9 0.018 70.8 0.006 38.0 0.000 69.6 0.027 14.7

sko81 0.156 11.2 0.096 12.3 0.086 17.6 0.025 112.3 0.016 56.4 0.000 121.4 0.044 27.4

sko90 0.146 12.9 0.155 18.4 0.080 30.4 0.042 92.1 0.026 89.6 0.000 193.7 0.022 51.2

els19 0.000 0.036 0.000 0.055 0.000 0.00 – – 0.000 0.2 0.000 0.1 0.000 0.4

bur26d 0.000 0.002 0.000 0.018 0.000 0.01 – – 0.000 0.5 0.000 0.4 0.000 0.6

nug30 – – – – – – 0.000 0.3 0.000 1.2 0.000 1.7 0.000 0.8

ste36c 0.000 0.887 0.000 0.880 0.000 0.41 0.000 0.5 0.000 2.3 0.000 2.5 0.000 1.2

lipa50a – – – – – – 0.000 5.2 0.000 6.6 0.000 11.2 0.000 3.2

tai64c – – – – – – 0.000 0.0 – – 0.000 20.6 0.000 8.4

tai20b – – – – 0.000 0.0 – – 0.000 0.2 0.000 0.1 0.000 0.4

tai25b – – – – 0.000 0.0 – – 0.000 0.5 0.000 0.4 0.000 0.6

tai30b – – – – 0.000 0.4 0.000 0.3 0.000 1.3 0.000 1.2 0.000 0.8

tai35b – – – – 0.000 0.6 0.000 0.3 0.000 2.4 0.000 2.4 0.000 1.1

tai40b – – – – 0.000 0.3 0.000 0.6 0.000 3.2 0.000 4.5 0.000 1.6

tai50b – – – – 0.040 4.7 0.000 2.9 0.000 8.8 0.000 13.8 0.000 3.2

tai60b – – – – 0.034 4.8 0.000 2.8 0.000 17.1 0.000 30.4 0.003 6.4

tai80b – – – – 0.174 14.7 0.000 60.3 0.006 58.2 0.000 110.9 0.011 25.6

tai20a 0.000 0.2 0.000 0.053 0.000 0.0 – – 0.000 0.2 0.000 0.1 0.000 0.4

tai25a 0.041 0.7 0.000 0.196 0.000 0.2 – – 0.000 0.6 0.000 0.3 0.000 0.6

tai30a 0.181 1.6 0.000 0.419 0.007 1.8 0.341 1.4 0.000 1.3 0.000 1.6 0.000 0.8

tai40a 0.851 8.4 0.303 6.345 0.713 2.2 0.593 13.1 0.222 5.2 0.148 3.5 0.373 1.6

tai50a 1.324 11.8 0.715 9.546 1.146 3.9 0.901 29.7 0.725 10.2 0.440 10.3 0.614 3.2

tai60a 1.458 9.8 0.685 7.302 1.287 6.7 1.068 58.5 0.718 25.7 0.476 26.4 0.853 6.4

tai80a 1.524 17.9 0.987 14.601 1.459 15.7 1.178 152.2 0.753 52.7 0.570 94.8 0.971 25.6

Average – – 0.058 28.7 0.106 7.3

References

1. Adams J, Balas E, Zawack D (1988) The shifting bottleneck
procedure for job shop scheduling. Manag Sci 391–401

2. Ahuja R, Orlin J, Tiwari A (2000) A greedy genetic algorithm for
the quadratic assignment problem. Comput Oper Res 27(10):917–
934

3. Aiex RM, Binato S, Resende MGC (2003) Parallel grasp
with path-relinking for job shop scheduling. Parallel Comput
29(4):393–430. https://doi.org/10.1016/S0167-8191(03)00014-0.
http://www.sciencedirect.com/science/article/pii/
S0167819103000140

4. Alba E (2005) Parallel metaheuristics: a new class of algorithms,
vol 47. Wiley, Hoboken

5. Aldous D, Vazirani U (1994) “Go with the winners” algorithms.
In: 35th Annual symposium on foundations of computer science,
1994 proceedings, pp 492–501. https://doi.org/10.1109/SFCS.19
94.365742

6. Amirghasemi M (2021) An effective decomposition-based
stochastic algorithm for solving the permutation flow-shop

scheduling problem. Algorithms 14(4). https://doi.org/10.3390/
a14040112. https://www.mdpi.com/1999-4893/14/4/112

7. Amirghasemi M, Zamani R (2014) A synergetic combination
of small and large neighborhood schemes in developing an
effective procedure for solving the job shop scheduling prob-
lem. SpringerPlus 3(1):1–15. https://doi.org/10.1186/2193-1801-
3-193

8. Amirghasemi M, Zamani R (2015) An effective asexual genetic
algorithm for solving the job shop scheduling problem. Comput
Ind Eng 83:123–138. https://doi.org/10.1016/j.cie.2015.02.011.
http://www.sciencedirect.com/science/article/pii/S036083521500
0686

9. Amirghasemi M, Zamani R (2017) An effective evolutionary
hybrid for solving the permutation flowshop scheduling prob-
lem. Evol Comput 25(1):87–111. https://doi.org/10.1162/EVCO a
00162

10. Amirghasemi M, Zamani R, Voß S (2018) An effective
structural iterative refinement technique for solving the quadratic
assignment problem. In: Cerulli R, Raiconi A (eds) Computational
logistics. Springer International Publishing, Cham, pp 446–
460

5907An effective parallel evolutionary metaheuristic with its application...

https://doi.org/10.1016/S0167-8191(03)00014-0
http://www.sciencedirect.com/science/article/pii/S0167819103000140
http://www.sciencedirect.com/science/article/pii/S0167819103000140
https://doi.org/10.1109/SFCS.1994.365742
https://doi.org/10.1109/SFCS.1994.365742
https://doi.org/10.3390/a14040112
https://doi.org/10.3390/a14040112
https://www.mdpi.com/1999-4893/14/4/112
https://doi.org/10.1186/2193-1801-3-193
https://doi.org/10.1186/2193-1801-3-193
https://doi.org/10.1016/j.cie.2015.02.011
http://www.sciencedirect.com/science/article/pii/S0360835215000686
http://www.sciencedirect.com/science/article/pii/S0360835215000686
https://doi.org/10.1162/EVCO_a_00162
https://doi.org/10.1162/EVCO_a_00162

11. Amirghasemi M, Zamani R, Voß S (2019) Developing an effec-
tive decomposition-based procedure for solving the quadratic
assignment problem. In: Paternina-Arboleda C (ed) Computa-
tional logistics. Springer International Publishing, Cham, pp 297–
316

12. Applegate D, Cook W (1991) A computational study of the
job-shop scheduling problem. ORSA J Comput 3(2):149–156

13. Babaee Tirkolaee E, Goli A, Weber GW (2020) Fuzzy mathemati-
cal programming and self-adaptive artificial fish swarm algorithm
for just-in-time energy-aware flow shop scheduling problem with
outsourcing option. IEEE Trans Fuzzy Syst 28(11):2772–2783.
https://doi.org/10.1109/TFUZZ.2020.2998174

14. Baluja S, Caruana R (1995) Removing the genetics from the
standard genetic algorithm. In: Prieditis A, Russel S (eds) Twelfth
international conference on machine learning. San Francisco,
Morgan Kaufmann Publishers, pp 38–46

15. Bertsekas D, Tsitsiklis J, Wu C (1997) Rollout algorithms for
combinatorial optimization. J Heuristics 3(3):245–262

16. Bozejko W, Wodecki M (2002) Solving the flow shop problem
by parallel tabu search. In: Proceedings. International conference
on parallel computing in electrical engineering, pp 189–194.
https://doi.org/10.1109/PCEE.2002.1115237

17. Bozejko W, Wodecki M (2004) Parallel genetic algorithm for the
flow shop scheduling problem. In: Wyrzykowski R, Dongarra J,
Paprzycki M, Waśniewski J (eds) Parallel processing and applied
mathematics. Springer, Berlin, pp 566–571

18. Burkard RE, Karisch SE, Rendl F (1997) Qaplib–a quadratic
assignment problem library. J Glob Optim 10(4):391–403

19. Carlier J (1982) The one-machine sequencing problem. Eur J Oper
Res 11(1):42–47

20. Cecilia JM, Garcia JM, Ujaldon M, Nisbet A, Amos M
(2011) Parallelization strategies for ant colony optimisation on
GPUs. In: 2011 IEEE International symposium on parallel and
distributed processing workshops and phd forum, pp 339–346.
https://doi.org/10.1109/IPDPS.2011.170

21. Chapman B, Jost G, Van Der Pas R (2008) Using OpenMP:
portable shared memory parallel programming, vol 10. MIT Press

22. Clerc M, Kennedy J (2002) The particle swarm-explosion,
stability, and convergence in a multidimensional complex space.
IEEE Trans Evol Comput 6(1):58–73

23. Crainic T (2019) Parallel metaheuristics and cooperative
search. Springer International Publishing, Cham, pp 419–451.
https://doi.org/10.1007/978-3-319-91086-4 13

24. Crainic TG, Toulouse M (2010) Parallel meta-heuristics. Springer,
pp 497–541

25. De Jong KA (2006) Evolutionary computation: a unified
approach. MIT Press. http://books.google.com.au/books?
id=OIRQAAAAMAAJ

26. Derrac J, Garcı́a S, Molina D, Herrera F (2011) A prac-
tical tutorial on the use of nonparametric statistical tests
as a methodology for comparing evolutionary and swarm
intelligence algorithms. Swarm Evol Comput 1(1):3–18.
https://doi.org/10.1016/j.swevo.2011.02.002. https://www.
sciencedirect.com/science/article/pii/S2210650211000034

27. Dorigo M, Gambardella LM (1997) Ant colony system: a
cooperative learning approach to the traveling salesman problem.
IEEE Trans Evol Comput 1(1):53–66

28. Drezner Z (2003) A new genetic algorithm for the quadratic
assignment problem. Inf J Comput 15(3):320–330

29. Drezner Z, Hahn PM, Taillard É D (2005) Recent advances
for the quadratic assignment problem with special emphasis on
instances that are difficult for meta-heuristic methods. Ann Oper
Res 139(1):65–94. https://doi.org/10.1007/s10479-005-3444-z

30. Falkenauer E, Bouffouix S (1991) A genetic algorithm for
job shop. In: IEEE International conference on robotics

and automation, 1991, proceedings, vol 1, pp 824–829.
https://doi.org/10.1109/ROBOT.1991.131689

31. Fisher H, Thompson GL (1963) Probabilistic learning combina-
tions of local job-shop scheduling rules. Industrial scheduling, pp
225–251

32. Garey M, Johnson D, Sethi R (1976) The complexity of flowshop
and jobshop scheduling. Math Oper Res 117–129

33. Glover F (1989) Tabu search–part I. ORSA J Comput 1(3):190–
206

34. Glover F (1998) A template for scatter search and path relinking.
Lect Notes Comput Sci 1363:13–54

35. Hansen P, Mladenović N (2003) Variable neighborhood
search. In: Glover F, Kochenberger GA (eds) Handbook
of metaheuristics. Springer US, Boston, pp 145–184.
https://doi.org/10.1007/0-306-48056-5 6

36. Holland JH (1975) Adaptation in natural and artificial systems.
University of Michigan Press, Michigan

37. Iyer S, Saxena B (2004) Improved genetic algorithm for the
permutation flowshop scheduling problem. Comput Oper Res
31(4):593–606

38. James T, Rego C, Glover F (2009a) A cooperative parallel tabu
search algorithm for the quadratic assignment problem. Eur J
Oper Res 195(3):810–826. https://doi.org/10.1016/j.ejor.2007.06.
061. http://www.sciencedirect.com/science/article/pii/S03772217
07011058

39. James T, Rego C, Glover F (2009b) Multistart tabu search and
diversification strategies for the quadratic assignment problem.
IEEE Trans Syst Man Cybern Part A: Syst Hum 39(3):579–596

40. Joshi SK, Bansal JC (2020) Parameter tuning for meta-heuristics.
Knowl-Based Syst 189:105094. https://doi.org/10.1016/j.knosys.
2019.105094. https://www.sciencedirect.com/science/article/pii/
S0950705119304708

41. Lawrence S (1984) Resource constrained project scheduling:
an experimental investigation of heuristic scheduling techniques
(supplement). Report Graduate School of Industrial Administra-
tion, Carnegie-Mellon University, Pittsburgh

42. Lee Y, Orlin J (1993) Quickmatch: a very fast algorithm
for the assignment problem. Report, Massachusetts Institute
of Technology, Sloan School of Management (Report number:
WP#3547-93)

43. Li Y, Pardalos P, Resende M (1994) A greedy randomized
adaptive search procedure for the quadratic assignment problem.
Quadratic Assignment and Related Problems 16:237–261

44. Lourenco H, Martin O, Stützle T (2003) Iterated local search.
Handbook of metaheuristics, pp 320–353

45. Nagata Y, Ono I (2018) A guided local search with
iterative ejections of bottleneck operations for the job
shop scheduling problem. Comput Oper Res 90:60–71.
https://doi.org/10.1016/j.cor.2017.09.017. https://www.
sciencedirect.com/science/article/pii/S0305054817302460

46. Nawaz M, Enscore E, Ham I (1983) A heuristic algorithm for
the m-machine n-job flow-shop sequencing problem. Omega
11(1):91–95

47. Nowicki E, Smutnicki C (1996) A fast tabu search algorithm for
the permutation flow-shop problem. Eur J Oper Res 91(1):160–
175

48. Nowicki E, Smutnicki C (2005) An advanced tabu search
algorithm for the job shop problem. J Sched 8(2):145–159.
https://doi.org/10.1007/s10951-005-6364-5

49. Osman IH, Potts CN (1989) Simulated annealing for per-
mutation flow-shop scheduling. Omega 17(6):551–557.
https://doi.org/10.1016/0305-0483(89)90059-5. http://www.
sciencedirect.com/science/article/pii/0305048389900595

50. Pospichal P, Jaros J (2009) GPU-based acceleration of the genetic
algorithm. GECCO competition

5908 M. Amirghasemi

https://doi.org/10.1109/TFUZZ.2020.2998174
https://doi.org/10.1109/PCEE.2002.1115237
https://doi.org/10.1109/IPDPS.2011.170
https://doi.org/10.1007/978-3-319-91086-4_13
http://books.google.com.au/books?id=OIRQAAAAMAAJ
http://books.google.com.au/books?id=OIRQAAAAMAAJ
https://doi.org/10.1016/j.swevo.2011.02.002
https://www.sciencedirect.com/science/article/pii/S2210650211000034
https://www.sciencedirect.com/science/article/pii/S2210650211000034
https://doi.org/10.1007/s10479-005-3444-z
https://doi.org/10.1109/ROBOT.1991.131689
https://doi.org/10.1007/0-306-48056-5_6
https://doi.org/10.1016/j.ejor.2007.06.061
https://doi.org/10.1016/j.ejor.2007.06.061
http://www.sciencedirect.com/science/article/pii/S0377221707011058
http://www.sciencedirect.com/science/article/pii/S0377221707011058
https://doi.org/10.1016/j.knosys.2019.105094
https://doi.org/10.1016/j.knosys.2019.105094
https://www.sciencedirect.com/science/article/pii/S0950705119304708
https://www.sciencedirect.com/science/article/pii/S0950705119304708
https://doi.org/10.1016/j.cor.2017.09.017
https://www.sciencedirect.com/science/article/pii/S0305054817 302460
https://www.sciencedirect.com/science/article/pii/S0305054817 302460
https://doi.org/10.1007/s10951-005-6364-5
https://doi.org/10.1016/0305-0483(89)90059-5
http://www.sciencedirect.com/science/article/pii/0305048389900595
http://www.sciencedirect.com/science/article/pii/0305048389900595

51. Rajendran C, Ziegler H (2004) Ant-colony algorithms for per-
mutation flowshop scheduling to minimize makespan/total
flowtime of jobs. Eur J Oper Res 155(2):426–438.
https://doi.org/10.1016/S0377-2217(02)00908-6. http://www.
sciencedirect.com/science/article/pii/S0377221702009086

52. Ravetti MG, Riveros C, Mendes A, Resende MGC, Parda-
los PM (2012) Parallel hybrid heuristics for the permu-
tation flow shop problem. Ann Oper Res 199(1):269–284.
https://doi.org/10.1007/s10479-011-1056-3

53. Reeves C, Yamada T (1998) Genetic algorithms, path relinking,
and the flowshop sequencing problem. Evol Comput 6(1):45–60

54. Rinnoy Kan A (1976) Machine sequencing problem: classification
complexity and computation. The Hague, Martinus Nijhoff

55. Röck H (1984) The three-machine no-wait flow shop is np-
complete. J ACM (JACM) 31(2):336–345

56. Ruiz R, Stützle T (2007) A simple and effective iterated greedy
algorithm for the permutation flowshop scheduling problem. Eur J
Oper Res 177(3):2033–2049. https://doi.org/10.1016/j.ejor.2005.
12.009. http://www.sciencedirect.com/science/article/pii/S03772
21705008507

57. Ruiz R, Maroto C, Alcaraz J (2006) Two new robust genetic algo-
rithms for the flowshop scheduling problem. Omega 34(5):461–
476. https://doi.org/10.1016/j.omega.2004.12.006. http://www.
sciencedirect.com/science/article/pii/S0305048305000174

58. Sevkli M, Aydin ME (2007) Parallel variable neighbourhood
search algorithms for job shop scheduling problems. IMA J Manag
Math 18(2):117–133. https://doi.org/10.1093/imaman/dpm009.
http://imaman.oxfordjournals.org/content/18/2/117.abstract

59. Stöppler S, Bierwirth C (1992) The application of a parallel
genetic algorithm to the n/m/p/c max flowshop problem. In:
Fandel G, Gulledge T, Jones A (eds) New directions for operations
research in manufacturing. Springer, Berlin, pp 161–175. Book
section 10. https://doi.org/10.1007/978-3-642-77537-6 10

60. Storer RH, Wu SD, Vaccari R (1992) New search spaces for
sequencing problems with application to job shop scheduling.
Manag Sci 38(10):1495–1509

61. Stützle T (1998) Applying iterated local search to the permu-
tation flow shop problem. Technical Report AIDA-98-04. TU
Darmstadt, FG Intellektik

62. Taillard E (1991) Robust taboo search for the quadratic assignment
problem. Parallel Comput 17(4–5):443–455. https://doi.org/10.
1016/S0167-8191(05)80147-4. http://www.sciencedirect.com/
science/article/pii/S0167819105801474

63. Taillard E (1993) Benchmarks for basic scheduling problems. Eur
J Oper Res 64(2):278–285

64. Taillard ED (1994) Parallel taboo search techniques for the job
shop scheduling problem. ORSA J Comput 6(2):108–117

65. Talbi EG (2006) Parallel combinatorial optimization, vol 58.
Wiley, Hoboken

66. Talbi EG, Roux O, Fonlupt C, Robillard D (2001) Parallel ant
colonies for the quadratic assignment problem. Futur Gener Com-
put Syst 17(4):441–449. https://doi.org/10.1016/S0167-739X(99)
00124-7. http://www.sciencedirect.com/science/article/pii/S0167
739X99001247

67. Talukdar S, Murthy S, Akkiraju R (537) Asynchronous teams.
Springer US, Boston. https://doi.org/10.1007/0-306-48056-5 19

68. Tasgetiren MF, Liang YC, Sevkli M, Gencyilmaz G (2007) A
particle swarm optimization algorithm for makespan and total
flowtime minimization in the permutation flowshop sequencing
problem. Eur J Oper Res 177(3):1930–1947. https://doi.org/10.
1016/j.ejor.2005.12.024. http://www.sciencedirect.com/science/
article/pii/S0377221705008453

69. Tosun U, Dokeroglu T, Cosar A (2013) A robust island parallel
genetic algorithm for the quadratic assignment problem. Int J Prod
Res 51(14):4117–4133. https://doi.org/10.1080/00207543.2012.
746798

70. Vallada E, Ruiz R (2009) Cooperative metaheuristics for the
permutation flowshop scheduling problem. Eur J Oper Res
193(2):365–376. https://doi.org/10.1016/j.ejor.2007.11.049. http:
//www.sciencedirect.com/science/article/pii/S0377221707011253

71. Van Hentenryck P, Michel L (2009) Constraint-based local search.
The MIT Press

72. Van Laarhoven P, Aarts E, Lenstra J (1992) Job shop scheduling
by simulated annealing. Oper Res 40(1):113–125

73. Whitley D (1994) A genetic algorithm tutorial. Stat Comput
4(2):65–85

74. Whitley D, Rana S, Heckendorn RB (1999) The island model
genetic algorithm: on separability, population size and conver-
gence. J Comput Inf Technol 7:33–48

75. Wodecki M, Bozejko W (2002) Solving the flow shop problem
by parallel simulated annealing. In: Wyrzykowski R, Dongarra
J, Paprzycki M, Waśniewski J (eds) Parallel processing and
applied mathematics, Lecture Notes in Computer Science,
vol 2328. Springer, Berlin, pp 236–244. Book section 26.
https://doi.org/10.1007/3-540-48086-2 26

76. Yamada T, Nakano R (1992) A genetic algorithm applicable to
large-scale job-shop problems. Parallel Problem Solving from
Nature 2:281–290

77. Zamani R, Amirghasemi M (2020) A self-adaptive nature-
inspired procedure for solving the quadratic assignment problem.
In: Khosravy M, Gupta N, Patel N, Senjyu T (eds) Frontier
applications of nature inspired computation. Springer, Singapore,
pp 119–147. https://doi.org/10.1007/978-981-15-2133-1 6

78. Zhang CY, Li P, Rao Y, Guan Z (2008) A very fast TS/SA algo-
rithm for the job shop scheduling problem. Comput Oper Res
35(1):282–294. https://doi.org/10.1016/j.cor.2006.02.024. http://
www.sciencedirect.com/science/article/pii/S0305054806000670,
part Special Issue: Applications of {OR} in Finance

79. Zhu W, Curry J, Marquez A (2009) SIMD Tabu search
for the quadratic assignment problem with graphics hard-
ware acceleration. Int J Prod Res 48(4):1035–1047.
https://doi.org/10.1080/00207540802555744

80. Zobolas G, Tarantilis CD, Ioannou G (2009) Minimizing makespan
in permutation flow shop scheduling problems using a hybrid
metaheuristic algorithm. Comput Oper Res 36(4):1249–1267

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Mehrdad Amirghasemi
received his M.Sc. in Intel-
ligent Systems Design from
Chalmers University of Tech-
nology, Gothenburg, Sweden
and his Ph.D. in Computing
and Information Technology
(operations research) from the
University of Wollongong,
New South Wales, Australia.
He is currently a Research
Fellow at the SMART Infras-
tructure Facility, University of
Wollongong, with his current
research interest being the
design and analysis of meta-

heuristic algorithms for multiple problems in operations research,
supply chain and logistics, IoT and cloud computing. He has published
in multiple highly ranked journals such as Evolutionary Computation,
Computers and Industrial Engineering, and Annals of Operations
Research.

5909An effective parallel evolutionary metaheuristic with its application...

https://doi.org/10.1016/S0377-2217(02)00908-6
http://www.sciencedirect.com/science/article/pii/S0377221702009086
http://www.sciencedirect.com/science/article/pii/S0377221702009086
https://doi.org/10.1007/s10479-011-1056-3
https://doi.org/10.1016/j.ejor.2005.12.009
https://doi.org/10.1016/j.ejor.2005.12.009
http://www.sciencedirect.com/science/article/pii/S0377221705008507
http://www.sciencedirect.com/science/article/pii/S0377221705008507
https://doi.org/10.1016/j.omega.2004.12.006
http://www.sciencedirect.com/science/article/pii/S0305048305000174
http://www.sciencedirect.com/science/article/pii/S0305048305000174
https://doi.org/10.1093/imaman/dpm009
http://imaman.oxfordjournals.org/content/18/2/117.abstract
https://doi.org/10.1007/978-3-642-77537-6_10
https://doi.org/10.1016/S0167-8191(05)80147-4
https://doi.org/10.1016/S0167-8191(05)80147-4
http://www.sciencedirect.com/science/article/pii/S0167819105801474
http://www.sciencedirect.com/science/article/pii/S0167819105801474
https://doi.org/10.1016/S0167-739X(99)00124-7
https://doi.org/10.1016/S0167-739X(99)00124-7
http://www.sciencedirect.com/science/article/pii/S0167739X99001247
http://www.sciencedirect.com/science/article/pii/S0167739X99001247
https://doi.org/10.1007/0-306-48056-5_19
https://doi.org/10.1016/j.ejor.2005.12.024
https://doi.org/10.1016/j.ejor.2005.12.024
http://www.sciencedirect.com/science/article/pii/S0377221705008453
http://www.sciencedirect.com/science/article/pii/S0377221705008453
https://doi.org/10.1080/00207543.2012.746798
https://doi.org/10.1080/00207543.2012.746798
https://doi.org/10.1016/j.ejor.2007.11.049
http://www.sciencedirect.com/science/article/pii/S0377221707011253
http://www.sciencedirect.com/science/article/pii/S0377221707011253
https://doi.org/10.1007/3-540-48086-2_26
https://doi.org/10.1007/978-981-15-2133-1_6
https://doi.org/10.1016/j.cor.2006.02.024
http://www.sciencedirect.com/science/article/pii/S0305054806000670
http://www.sciencedirect.com/science/article/pii/S0305054806000670
https://doi.org/10.1080/00207540802555744

	An effective parallel evolutionary metaheuristic with its application...
	Abstract
	Introduction
	Related work
	Related work to the components of the presented method
	Parallel methods for the PFSP, JSP, and QAP
	Parallel methods for the PFSP
	Parallel methods for the JSP
	Parallel methods for the QAP

	Problem formulation
	The P3H
	Problem-specific modules for the PFSP
	Problem-specific modules for the JSP
	Problem-specific modules for the QAP

	Computational experiments
	Comparing the initial solution construction methods
	Parameter settings
	Analyzing the effect of parallelization
	Comparison with other metaheuristics

	Concluding remarks
	References

