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Abstract
Most existing visual question answering (VQA) models choose to model the dense interactions between each image region
and each question word when learning the co-attention between the input images and the input questions. However, to
correctly answer a natural language question related to the content of an image usually only requires understanding a few
key words of the input question and capturing the visual information contained in a few regions of the input image. The
noise information generated by the interactions between the image regions unrelated to the input questions and the question
words unrelated to the prediction of the correct answers will distract VQA models and negatively affect the performance
of the models. In this paper, to solve this problem, we propose a Sparse Co-Attention Visual Question Answering Network
(SCAVQAN) based on thresholds. SCAVQAN concentrates the attention of the model by setting thresholds for attention
scores to filter out the image features and the question features that are the most helpful for predicting the correct answers
and finally improves the overall performance of the model. Experimental results, ablation studies and attention visualization
results based on two benchmark VQA datasets demonstrate the effectiveness and interpretability of our models.

Keywords Visual question answering · Sparse co-attention · Attention score · Threshold

1 Introduction

Among artificial intelligence (AI) technologies, computer
vision and natural language processing are the most popular
and successful applications of deep learning, and these
two fields also have the most direct impact on people’s
lifestyles. Computer vision aims to make machines have the
same visual senses as humans to analyze and understand
various kinds of visual information, and its most well-
known applications are face recognition and autonomous
driving. Natural language processing, on the other hand,
involves various scenarios related to text and speech, mainly
including text classification [1, 2], machine translation [3,
4] and speech recognition [5, 6]. As research continues to
develop, researchers have gradually turned their attention to
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multi-modal learning tasks that combine visual information
and textual information, such as image-text matching [7,
8], image captioning [9, 10] and visual question answering
(VQA) [11–13]. While these multi-modal learning tasks
are becoming more similar to the way the human brain
processes information, they are also placing higher demands
on the associated algorithms and models.

Given a text query or an image query, image-text
matching models retrieve the visually relevant image or the
semantic matching text by measuring the similarity between
the input image and the input text. The task of image
captioning is more complicated than the task of image-
text matching, because the related models not only need
to perceive various visual objects contained in the input
images, but also need to capture the attributes of these visual
objects and their interactions and express them with natural
language. However, it has been shown that rough scene-
level image understanding combined with n-gram statistics
of words is sufficient to generate a reasonable general image
caption. Given an image and a natural language question
related to the content of the image, VQA task requires
the model to give an accurate natural language answer.
Compared with image captioning models, an effective VQA
model must encode the textual information contained in
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the input questions to understand the task objective while
encoding the input images. After obtaining the encoded
features of the input images and the input questions, VQA
models also need to capture the high-level interactions
between the information of the two different modalities and
combine multi-modal feature fusion methods to complete
the inference and prediction of the answers. It can be
seen that VQA task requires models to have the ability to
recognize the specific details contained in the input images,
such as the color of visual objects, human activities and
the interactions between visual objects. In addition, some
complex input questions may involve a certain degree of
reasoning and even require information not contained in
the input images, such as empirical knowledge existing
in other instances and common knowledge that can be
learned from external knowledge bases, to be answered
correctly.

Since attention mechanism was introduced into VQA
[14, 15], it has become an important part of advanced
VQA models. At present, most of the mainstream VQA
systems choose to use co-attention mechanisms combining
visual attention and textual attention. Visual attention helps
the model to filter out significant regional image features,
while textual attention helps the model to focus on key
words of the input questions. Most existing VQA models
choose to model the dense interactions between each image
region and each question word when learning the co-
attention between the input images and the input questions.
However, to correctly answer a natural language question
related to the content of an image usually only requires
understanding a few key words of the input question and
capturing the visual information contained in a few regions
of the input image. The noise information generated by
the interactions between the image regions unrelated to
the input questions and the question words unrelated to
the prediction of the correct answers will distract VQA
models and negatively affect the performance of the models.
Although the traditional attention mechanism can empower
the model with considerable noise-filtering ability, this
effect is achieved by assigning less weight to irrelevant
features and features with weak correlations, that is, the
noise information is not completely eliminated. Therefore,
MESAN [16] based on top-k selection has been proposed
to concentrate the attention of the model by selecting a
specified number of question key words. However, the
drawback of this approach is that the model will ignore
the important textual features when the number of the key
words of the input question is greater than the preset value.
Moreover, when the number of the key words contained
in the input question is smaller than the preset value, the
model will regard the words that are originally insignificant
or even meaningless as key words, thus introducing
unnecessary noise information. In this paper, to solve this

problem, we propose a threshold-based Sparse Co-Attention
Visual Question Answering Network (SCAVQAN) that is
more suitable for VQA task and achieve better results.
SCAVQAN concentrates the attention of the model by
setting thresholds for attention scores to filter out the image
features and the question features that are the most helpful
for predicting the correct answers and finally improves the
overall performance of the model. Experimental results,
ablation studies and attention visualization results based on
two benchmark VQA datasets demonstrate the effectiveness
and interpretability of our models. Our threshold-based
attention mechanism is a heuristic approach that can be
applied to any model that infuses attention mechanism and
can be tried in other tasks besides VQA. The code is
available at https://github.com/644988396/SCAVQAN.

The rest of this paper is organized as follows: Section 2
introduces the research progress of VQA. Section 3
introduces the overall framework and specific technical
details of SCAVQAN. Section 4 introduces the datasets
used in the experiments, the settings of the experimental
parameters, the ablation studies and the experimental
results. In Section 5, we summarize our work and give the
future research direction.

2 Related work

2.1 Visual question answering (VQA)

In addition to being a method to test the deep visual
understanding ability of a model, VQA is regarded as
the benchmark for general AI because it requires a large
number of potential AI capabilities to be performed well.
The deep visual understanding ability refers to the ability
of algorithms to extract high-level visual information from
the input images and make inferences based on it. The
potential AI capabilities required for VQA task mainly
include object detection (e.g., “How many bicycles are
there in this picture”), behavior identify (e.g., “What is
the person in this picture doing”), fine-grained recognition
(e.g., “What vegetable is in the basket”), knowledge base
reasoning (e.g., “Is this a vegetarian pizza or a meat pizza”)
and common sense reasoning (e.g., “Is the person in the
picture waiting for someone”). Thus, VQA requires the
model to have a large amount of multi-modal knowledge
beyond specific domains and it is regarded as a complete
AI task. VQA systems have gone from being able to barely
answer Yes/No questions to being able to correctly answer
questions that require complex reasoning and additional
common sense knowledge, and their achievements have far
exceeded expectations. Moreover, VQA algorithms can be
used in a wide range of scenarios, such as helping visually
impaired users or intelligence analysts, providing medical
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assistance or automated customer service, and building
surveillance video automated query systems.

2.2 Attentionmechanisms in VQA

Attention mechanism, which is inspired by the analogy
of human visual system, is one of the most effective
improvements in multi-modal learning tasks. When viewing
an image, humans often choose to focus on different
regions of the image to quickly understand the visual
information corresponding to these regions, rather than
processing the whole image at once. Attention mechanisms
based on deep neural networks have been widely used in
the fields of machine translation, speech recognition and
image captioning. Attention mechanisms help models to
give different weights to the features of different degrees of
importance to make the learning of neural networks more
flexible. By infusing attention mechanisms, VQA models
can focus attention to analyze and process various kinds
of input information and reduce the negative impact of
irrelevant information on their performance. Moreover, the
attention weights calculated for the input images and the
input questions can be used to realize attention visualization
to enhance the interpretability of the relevant models.
Among them, the attention weights can be understood as the
importance of features. The higher the attention weight is,
the more important the feature is, and vice versa. In VQA,
visual attention helps the model to filter out salient regional
image features, while textual attention helps the model to
focus on key words of the input questions. Nowadays, most
advanced VQA methods utilize co-attention mechanisms
combining visual attention and textual attention to focus
the models on both the image regions and the question
key words that are the most relevant to correctly predicting
the answers. Nam et al. [17] proposed a dual attention
network (DAN) for multi-modal reasoning that enables
visual attention and textual attention to guide each other
in the process of collaborative reasoning. DAN focuses on
specific words of questions and local regions of images

through multiple steps and gathers essential information
from the features of these two modalities. Nguyen et al.
[18] proposed a stackable architecture that is completely
symmetric between visual features and textual features to
achieve multi-step interactions between image features and
question features. In this architecture, each image region
attends on question words and each question word attends
on image regions to implement a dense bi-directional
attention mechanism. Yu et al. [19] accomplished VQA
task by modeling the intra-modal interactions (between
image regions or question words) and the inter-modal
interactions (between image regions and question words).
They proposed a deep modular co-attention network
(MCAN) consisting of modular co-attention layers cascaded
in depth. Each modular co-attention layer models the self-
attention of image features and question features, as well
as the question-guided visual attention of image features
through scaled dot-product attention. MESAN [16] based on
explicit selection eliminates the noise information contained
in the question words that are irrelevant to predicting
the correct answers and ultimately helps VQA models to
achieve higher accuracy.

3 Sparse co-attention visual question
answering networks based on thresholds

The overall framework of SCAVQAN is shown in Fig. 1.
SCAVQAN first uses an image feature extractor and a
word embedding method to extract visual features and
textual features required by subsequent experiments from
the input images and the input questions. Next, a threshold-
based sparse co-attention module takes the previously
extracted image features and question features as inputs
to learn the cross-modal interactions between the visual
information and the textual information to make the model
focus on significant image regions and key words of the
input questions and output the attended image features
and the attended question features. Finally, we use a

Input image

Input question

What type of pants 
does the boy have on?

Image feature 
extractor

Word 
embedding

···

X

Y

Threshold-based 
sparse co-attention 

module

Multi-modal feature 
fusion mechanism Classifier

···

···

XL

YL

···

Output answer

Baggy denim jeans

Fig. 1 The overall framework of Sparse Co-Attention Visual Question Answering Networks (SCAVQAN)
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multi-modal feature fusion mechanism to fuse the attended
image features and the attended question features belonging
to different modalities, and input the fused features into a
classifier to complete the prediction of the answers.

3.1 Extraction of image features

SCAVQAN uses Faster R-CNN [20] initialized by ResNet-
101 and pre-trained on Visual Genome [21] as its image
feature extractor. Faster R-CNN uses bottom-up mechanism
to propose significant image regions and utilizes top-down
mechanism to determine the weights of these regional
image features. ResNet-101 reconstructs the layers as
learning functions with reference to the layer inputs to
reduce the training burden of the network and makes
it easier to optimize. This network using the residual
learning framework can achieve deeper depth with less
computational cost and obtain higher accuracy with its
greatly deepened depth. Visual Genome collects dense
object annotations, attribute annotations and relationship
annotations for visual images to aid visual models in object
relationship modeling. Specifically, the dataset contains
more than 100K images, each of which contains an
average of 21 visual objects, 18 attributes and 18 pairwise
relationships between the visual objects. Faster R-CNN
is composed of a region proposal network (RPN) and a
detection network, in which the region proposal network
realizes nearly cost-free region proposals by sharing
the full-image convolutional features with the detection
network. Specifically, the region proposal network is a
fully convolutional network, which is trained end-to-end
to predict object boundaries and target scores for image
regions. The region proposal network and the detection
network jointly form the single Faster R-CNN model and
guide the model which image regions should be concerned
by sharing the full-image convolutional features.

In order to ensure the quality of the visual features, we
only select the image regions whose detection probability
exceeds the confidence threshold. After the images are fed
into Faster R-CNN, we obtain a dynamic number of regional
image features X0 ∈ R

m×2048, where m ∈ [10, 100] is the
number of the detected image regions of the input images.
During the experiments, in order to facilitate calculation,
we apply linear transformation to X0 and obtain the regional
image features X ∈ R

m×512 to make the dimension of the
image features and the dimension of the question features
consistent. Among them, the feature of the i-th image region
is xi ∈ R

512.

3.2 Extraction of question features

In order to facilitate calculation and improve the operation
efficiency of the model, we limit the maximum length of

the input questions to 14 for VQA 2.0 [22] and 29 for GQA
[23] following previous works. The extra question words are
discarded, but only a small percentage of the input questions
are longer than the maximum length. First, SCAVQAN
uses GloVe [24], a global log-bilinear regression model
pre-trained on a large-scale corpus, to embed each word
contained in the input questions into a 300-dimensional
word vector. GloVe is a vector arithmetic method for
learning vector space representations of words that can
capture fine-grained semantics as well as grammatical rules.
The GloVe model is a specific weighted least squares model
based on global word-word co-occurrence counting matrix
for efficient use of statistics.

Specifically, SCAVQAN tokenizes the input questions as
individual words and inputs these words into a pre-trained
GloVe word vector to obtain the n × 300-dimensional word
embedding sequences, where n is the number of the words
contained in the input questions. Next, we input the word
embedding sequences of the input questions into a single
layer long short-term memory network (LSTM) with 512
hidden units to obtain the question features Y ∈ R

n×512.
Here, we use the output features of all the question words as
the question features rather than just the output features of
the last question word as the question features.

3.3 Threshold-based sparse co-attentionmodule

SCAVQAN’s sparse co-attention module consists of textual
attention and visual attention. Among them, the textual
attention is the self-attention of the input questions used to
help the model focus on the question key words, and the
visual attention contains the self-attention and the question-
guided attention of the input images used to help the model
focus on the image regions that are the most relevant to
predicting the correct answers. In this section, we will
introduce the details of threshold-based multi-head scaled
dot-product attention and the threshold-based sparse co-
attention module used by SCAVQAN.

3.3.1 Threshold-basedmulti-head scaled dot-product
attention

Scaled dot-product attention [25] takes queries and key-
value pairs as inputs and outputs attended features, i.e., the
weighted sum of the values. The queries, keys, values, and
attended features are all vectors. The weight of each value
is computed by a compatibility function and its inputs are
the query and the corresponding key. Specifically, scaled
dot-product attention computes the dot product of queries
Q and keys K, and divides the results by

√
k to obtain

the attention scores S. Next, it uses a softmax function to
obtain the attention weights W of values V to calculate
the attended features F. The specific calculation process
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of scaled dot-product attention can be described by the
following formulas:

S = QKT

√
k

(1)

W = softmax(S) (2)

F = WV (3)

where k is the dimension of K. The purpose of dividing by√
k is to prevent the dot-products from being too large in

magnitude and to ensure that this method can produce useful
gradients. In practice, the attention functions are usually
computed based on a set of queries, and the queries, keys
and values are integrated into matrices for easy calculation.

However, in VQA task, although the above traditional
scaled dot-product attention can enhance the significant
regional image features and the question key word
features to a certain extent, other irrelevant regional image
features and unimportant question word features will still
participate in the prediction of the answers. The noise
information contained in these unimportant features will
prevent VQA models from predicting the correct answers
and negatively affect the performance of the models.
Therefore, SCAVQAN uses threshold-based scaled dot-
product attention to filter out the regional image features and
the question key word features that are the most helpful for
predicting the correct answers by setting thresholds for the
attention scores to focus the model’s attention and finally
improve the overall performance of the model. Specifically,
we compare the values of the attention weight matrixWwith
threshold T. When the value of a weight is less than T, we
set the value of the corresponding position in the attention
scores S as −∞. Then, we input the new attention scores S′
into a softmax function to obtain the new attention weights

W′. The specific calculation process can be described by the
following formulas:

S′
ij =

{
Sij Wij ≥ T

−∞ Wij<T
(4)

W ′ = softmax(S′) (5)

F = W ′V (6)

By doing so, the new attention weights of the features
with lower attention scores will approach 0 infinitely, i.e.,
the irrelevant regional image features and the unimportant
question word features will not participate in the calculation
of the attended features F. Figure 2 shows the calculation
process of our threshold-based scaled dot-product attention,
where Q, K and V are the inputs, and q is the dimension
of Q. S is the first calculated attention score, S′ is the
last calculated attention score, W is the first calculated
attention weight, and W′ is the last calculated attention
weight. T is the threshold and F is the output attended
feature.

Multi-head attention assigns features of different repre-
sentation spaces to different attention heads so that these
attention heads can independently learn the information
from different locations. Specifically, multi-head attention
uses linear projection to project queries and key-value pairs
into H independent subspaces, where H is the number of
the attention heads and the parameters of these attention
heads are not shared. We execute threshold-based scaled
dot-product attention in parallel in these subspaces and
concatenate their outputs as the outputs of our threshold-
based multi-head scaled dot-product attention. The specific
calculation process of threshold-based multi-head scaled

Dot product Scale Softmax

Dot product

Q

K

V

Selection based on 
thresholdSoftmax

S W

S11 S12 ... S1k

S21 S22 ... S2k

... ... ... ...

Sq1 Sq2 ... Sqk

S11 S12 ... S1k

S21 -∞ ... -∞ 

... ... ... ...

-∞ Sq2 ... Sqk

S S

W

F T

Fig. 2 The calculation process of threshold-based scaled dot-product attention
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dot-product attention can be expressed by the following
formulas:

Fheadh = threshold based attention(QWQ
h ,KWK

h ,VWV
h )

(7)

Fmulti head = concat(Fhead1 ,Fhead2 , ...,FheadH) (8)

where WQ
h , W

K
h and WV

h are linear projection parameter
matrices, Fheadh is the output of the h-th threshold-based
scaled dot-product attention head, and Fmulti head is the
output of threshold-based multi-head scaled dot-product
attention. By infusing the multi-head attention technique,
we further improve the representation ability of the attended
features and effectively prevent overfitting.

3.3.2 Sparse co-attention module

In our sparse co-attention module, both the self-attention of
the input questions and the self-attention of the input images
are based on threshold-based multi-head scaled dot-product
attention, while the question-guided visual attention is based
on traditional multi-head scaled dot-product attention. The
reason why we design the attention mechanisms in our
sparse co-attention module in this way is because after
learning the self-attention of the input questions and the
self-attention of the input images, the model has already
filtered out the textual features of question key words
and the more significant regional image features. Next,
the model only needs to learn the visual features that are

more important for correctly answering the input questions
through the question-guided visual attention. Figure 3
shows the self-attention layer of the input questions, the
self-attention layer of the input images and the question-
guided visual attention layer in SCAVQAN.

The self-attention layer of the input questions We denote
the self-attention layer of the input questions as QSA layer.
A one-layer QSA layer consists of a threshold-based multi-
head scaled dot-product attention layer and a pointwise
feed-forward layer. The pointwise feed-forward layer uses
two fully connected layers to further transform its input
and introduces ReLU function and Dropout to prevent
overfitting. Its input is the output of the threshold-based
multi-head scaled dot-product attention layer. The specific
structure of the pointwise feed-forward layer is the same
as previous studies, i.e., FC(4d)-ReLU-Dropout(0.1)-FC(d),
where d is the dimension of its input features. QSA layer
takes the question features Y as inputs to learn the pairwise
relationships between every two question words and outputs
the attended textual features.

The self-attention layer of the input images We denote the
self-attention layer of the input images as ISA layer. A one-
layer ISA layer consists of a threshold-based multi-head
scaled dot-product attention layer, which takes the regional
image features X as inputs to learn the pairwise relationships
between every two image regions and outputs the attended
visual features.

Multi-head scaled dot-product 
attention based on threshold

Residual connection & 
Layer normalization

ISA

X

X
Multi-head scaled dot-product 
attention based on threshold

Residual connection & 
Layer normalization

Feed-forward layer

Y

Residual connection & 
Layer normalization

Y

QSA

Multi-head scaled dot-product 
attention 

Residual connection & 
Layer normalization

Feed-forward layer

Residual connection & 
Layer normalization

QGVA

X Y

Fig. 3 The self-attention layer of the input questions (QSA), the self-attention layer of the input images (ISA), and the question-guided visual
attention layer (QGVA) in SCAVQAN
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The question-guided visual attention layer We denote the
question-guided visual attention layer as QGVA layer. A
one-layer QGVA layer is composed of a traditional multi-
head scaled dot-product attention layer and a pointwise
feed-forward layer. The structure and functions of the
pointwise feed-forward layer are the same as that of the
QSA layer. QGVA layer takes the outputs of QSA layer
and ISA layer, i.e., the attended textual features and the
attended visual features, as inputs to learn the question-
guided visual attention and outputs the new attended visual
features.

All the attention layers in our sparse co-attention module
can be understood as a process of reconstructing the input
features through the normalized similarity between the input
samples. In addition, we also apply residual connection [26]
and layer normalization to the outputs of all the multi-head
scaled dot-product attention layers and the pointwise feed-
forward layers to stabilize training. Considering that the
inputs and outputs of all the attention layers have the same
dimension, we stack the attention layers to form a hierarchy
to help the model achieve more complex reasoning. An
L-layer sparse co-attention module consists of an L-layer
QSA layer and an L-layer ISA-QGVA layer. Specifically,
the L-layer QSA layer takes the question features Y as
inputs and outputs the attended textual features YL, and
the inputs of the middle layers and the last layer are the
outputs of their previous layer. The L-layer ISA-QGVA
layer takes the regional image features X and the attended
textual features YL as inputs and outputs the attended
visual features XL, and the inputs of the middle layers
and the last layer are the outputs of their previous layer
and the attended textual features YL. Figure 4 shows
the specific structure of an L-layer sparse co-attention
module.

3.3.3 Multi-modal feature fusion mechanism and classifier

Now, the attended visual features XL ∈ R
m×512 and the

attended textual features YL ∈ R
n×512 output by our

sparse co-attention module contain rich information about
the attention weights of the image regions and the question
key words that are more important for correctly answering
the input questions. First, we use a two-layer multi-layer
perceptron (MLP) to compress XL and YL to the same
size, i.e., R512. We use a softmax function to calculate the
attention weights of the image features and the question
features and multiply them with the corresponding features
to obtain the final image features X̃ and the final question
features Ỹ . Taking the final image features X̃ as an example,
the specific calculation process can be expressed by the
following formulas:

α = softmax(MLP(XL)) (9)

QSA

Y

QSA

···
QSA

ISA-QGVA

ISA-QGVA

ISA-QGVA

···

X

YL XL

Fig. 4 The specific structure of an L-layer sparse co-attention module

X̃ =
m∑

i=1

αix
L
i (10)

where α ∈ R
m is the attention weight. Similarly, we can

calculate the final question features Ỹ by the above method.
Then, we project X̃ and Ỹ to the same dimension z and the
results are combined to achieve linear multi-modal feature
fusion:

Z = LayerNorm(X̃WX + ỸWY) (11)

whereWX andWY are linear projection parameter matrices,
layer normalization is used to promote optimization, and
Z ∈ R

z is the fused multi-modal feature. Finally, we project
the fused multi-modal feature Z to the same dimension as
the number of the most common answers of the training set
and fed it into a sigmoid function to complete the prediction
of the answers:

A = sigmoid(Linear(Z)) (12)

where Linear(·) represents a linear layer, A ∈ R
a is the

prediction result of the model, and a is the number of the
most common answers of the training set.

4 Results and discussion

We conduct experiments on two benchmark VQA datasets
to verify the effectiveness of our proposed models. In
this section, we will describe the datasets used in the
experiments and the specific experimental settings. We
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conduct ablation studies to test the performance of different
variants of our models and the effects of different thresholds
on their performance. Finally, we compare our models with
advanced VQA methods based on the experimental results
and attention visualization methods.

4.1 Datasets

VQA 2.0 Data bias in the real world often leads to VQA
models ignoring the visual information contained in the
input images and instead utilize the language priors implied
in the input questions to predict the correct answers. For
example, in VQA 1.0 [27], for Yes/No questions, VQA
models can achieve more than 50% accuracy by only taking
“yes” as the prediction answer without providing the input
images. To solve this problem, Goyal et al. [22] created
a more balanced and larger dataset VQA 2.0 based on
VQA 1.0. Each question in VQA 2.0 corresponds to a
pair of images that are similar but have different answers.
Experimental results show that the performance of some
existing VQA models on VQA 2.0 is significantly worse
than their performance on VQA 1.0. It means that these
models do make use of the language priors contained in
VQA 1.0 and proves that VQA 2.0 effectively eliminates
these language priors to some extent. The VQA 2.0 dataset
composed of such image-question pairs makes the visual
information contained in the input images more important
for the relevant models to answer the input questions
correctly and can more effectively track the progress of
research related to VQA. Specifically, the complete VQA
2.0 dataset is divided into the train set, the val set, and
the test set, which contains more than 443K, 214K, and
453K image-question pairs, respectively. The test set is
further divided into the test-dev set, the test-std set, the test-
challenge set and the test-reserve set. According to the types
of the questions and the answers, the accuracy results of
VQA models are divided into four types: Yes/No, Number,
Other and Overall.

GQA Like the VQA 2.0 dataset, the GQA dataset [23]
also seeks to eliminate the strong and prevalent real-world
priors existing in previous VQA datasets. The difference
is, GQA balances not only binary questions, but also open
questions, by applying a tunable smoothing technique that
makes the answer distribution for each question group more
uniform. In addition, GQA designs a strong and robust
question engine that leverages Visual Genome scene graph
structures [21] to generate diverse reasoning questions,
which all come with functional programs that represent
their semantics, and are visually grounded in the image
scene graphs, to retain the semantic and visual richness of
real-world images for visual reasoning and compositional
question answering. The GQA dataset consists of 113,018

images and 22,669,678 questions of assorted types and
varying compositionality degrees, measuring performance
on an array of reasoning skills. The GQA dataset is split into
70% train, 10% validation, 10% test and 10% challenge.

Metric For VQA 2.0, we use the standard accuracy as
the evaluation metric. For GQA, we use four additional
metrics to get further insight into the models, i.e., Validity,
Plausibility, Consistency, and Distribution (lower is better).
The validity score checks whether a given answer is in the
question scope. The plausibility metric measures whether an
answer is reasonable or makes sense. The consistency score
measures responses consistency across different questions.
The distribution metric measures the overall match between
the predicted answer distribution and the true answer
distribution.

4.2 Experimental settings

In order to fix the number of the image regions detected
in the input images and the number of the words contained
in the input questions, we use zero padding to fill X and Y
to their maximum sizes (m=100 and n=14 or 29), i.e., the
number of the input image regions is 100 and the number
of the input question words is 14 or 29. During training,
we use -∞ before the softmax function to mask the padded
values of the attention scores to make their probabilities
approach 0 infinitely to ensure that the previously padded
regional image features and padded question word features
will not negatively affect the performance of the models.
The dimensions of the threshold-based multi-head scaled
dot-product attention layer and the traditional multi-head
scaled dot-product attention layer are both 512, and the
number of the attention heads is 8, i.e., H=8. The number
of the layers of our sparse co-attention module is set to 6.
The dimension of the fused multi-model feature Z is 1024,
i.e., z=1024. The number of the most common answers of
the training set is 3129 in VQA 2.0 and 1843 in GQA.

We use the Adam optimizer to train our models, where
β1 = 0.9 and β2 = 0.98. Binary Cross-Entropy Loss
is adopted as the loss function and the batchsize is set
to 64. The structure of the multi-layer perceptron used in
the fusion of the multi-modal features is FC(512)-ReLU-
Dropout-FC(1). Our VQA 2.0 models use the train set and
the val set of VQA 2.0 and a subset of Visual Genome
[21] as the training set, and adopt the test-dev set and the
test-std set of VQA 2.0 as the test set. Our GQA models
use the train set and the val set of GQA as the training
set, and adopt the test-dev set of GQA as the test set. Our
VQA 2.0 models are trained up to 13 epochs and GQA
models are trained up to 11 epochs. The Dropout is set
to 0.1. The above experimental parameter settings and the
structure of the multi-layer perceptron are consistent with
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Table 1 Ablation experimental results of SCAVQAN-Q on the test-dev set of VQA 2.0

T Yes/No Number Other Overall

0.05 87.08% 52.98% 60.77% 70.72%

0.06 87.01% 53.33% 60.88% 70.79%

0.07 86.93% 53.16% 60.94% 70.77%

0.08 86.93% 53.50% 60.88% 70.78%

0.09 87.07% 52.68% 60.96% 70.78%

0.10 86.96% 53.49% 60.95% 70.82%

0.11 87.03% 53.08% 60.78% 70.72%

0.12 86.84% 52.94% 60.86% 70.66%

those in existing stacked co-attention VQA models to fairly
and clearly compare the performance of the models.

4.3 Ablation studies

We have fixed the dimensions and the number of the
attention heads of the threshold-based multi-head scaled
dot-product attention layer and the traditional multi-head
scaled dot-product attention layer, and the number of the
layers of our sparse co-attention module according to the
experience of other advanced co-attention VQA models.
Therefore, we only need to test the performance of different
variants of our models and the effects of different thresholds
on their performance through ablation experiments. We
report our experimental results on the test-dev set and the
test-std set of VQA 2.0, and the test-dev set of GQA.

SCAVQAN based on the thresholds of the input question
words We denote SCAVQAN based on the thresholds of
the input question words as SCAVQAN-Q. SCAVQAN-
Q uses threshold-based multi-head scaled dot-product
attention when modeling the self-attention of the input

questions, while it uses traditional multi-head scaled dot-
product attention when learning the self-attention of the
input images and the question-guided visual attention.
We conduct ablation experiments for the threshold T ∈
{0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.11, 0.12} of the input
question words on VQA 2.0, and the experimental results
are shown in Table 1 and Fig. 5. The best value of each
column is shown in bold. It can be seen that with the
increase of the threshold T of the input question words, the
accuracies of SCAVQAN-Q on Number questions, Other
questions and all types of the input questions generally
increase first and then decrease. When T=0.10, the model
achieves its highest overall accuracy, i.e., 70.82%.

SCAVQAN based on the thresholds of the input image
regions We denote SCAVQAN based on the thresholds of
the input image regions as SCAVQAN-I. SCAVQAN-I uses
threshold-based multi-head scaled dot-product attention
when modeling the self-attention of the input images,
while it uses traditional multi-head scaled dot-product
attention when learning the self-attention of the input
questions and the question-guided visual attention. We

Fig. 5 Experimental results of
MCAN, MESAN and
SCAVQAN-Q with T ∈
{0.05, 0.06, 0.07, 0.08, 0.09, 0.10,
0.11, 0.12} on the test-dev set of
VQA 2.0
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Table 2 Ablation experimental results of SCAVQAN-I on the test-dev set of VQA 2.0

T Yes/No Number Other Overall

0.06 86.84% 52.60% 60.89% 70.68%

0.07 86.75% 52.61% 60.99% 70.65%

0.08 87.09% 52.61% 60.84% 70.72%

0.09 86.94% 53.04% 60.78% 70.68%

0.10 86.87% 52.66% 60.92% 70.67%

0.11 87.00% 53.31% 60.83% 70.76%

0.12 86.85% 52.75% 60.92% 70.67%

0.13 86.68% 53.10% 60.75% 70.56%

conduct ablation experiments for the threshold T ∈
{0.06, 0.07, 0.08, 0.09, 0.10, 0.11, 0.12, 0.13} of the input
image regions on VQA 2.0, and the experimental results
are shown in Table 2 and Fig. 6. The best value of
each column is shown in bold. It can be seen that more
accurate and significant image regions can help VQA
models to better answer Other questions, but a small
number of image regions can not provide enough visual
information when the models face Number questions,
which leads to a decrease in the corresponding accuracies.
When an appropriate threshold T of the input image
regions is selected, our models still achieve better overall
performance. For example, when T=0.11, SCAVQAN-I
achieves its highest overall accuracy, i.e., 70.76%.

SCAVQAN based on the multi-modal thresholds We denote
SCAVQAN based on the multi-modal thresholds as
SCAVQAN-M. SCAVQAN-M uses threshold-based multi-
head scaled dot-product attention when modeling the self-
attention of the input questions and the self-attention of the
input images, while it uses traditional multi-head scaled dot-
product attention when learning the question-guided visual

attention. We conduct ablation experiments for the threshold
TQ ∈ {0.09, 0.10, 0.11} of the input question words and the
threshold TI ∈ {0.08, 0.09, 0.10, 0.11} of the input image
regions on VQA 2.0, and the experimental results are shown
in Table 3 and Fig. 7. The best value of each column is
shown in bold. Since the accuracy levels of the models have
similar variation curves under different thresholds, we only
take SCAVQAN-M(TQ = 0.10) as an example to discuss
the performance of the models. As can be seen from Fig. 7,
with the increase of the threshold TI of the input image
regions, the accuracies of SCAVQAN-M on Other questions
and all types of questions generally increase first and then
decrease. When TI=0.10, the model achieves its highest
overall accuracy, i.e., 70.76%.

Based on the above experimental results, we con-
duct ablation studies on GQA for the threshold T ∈
{0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28} of the input ques-
tion words on our best model SCAVQAN-Q to further
verify the effectiveness of our threshold-based method, and
the experimental results are shown in Table 4. The best
value of each column is shown in bold. It can be seen
that SCAVQAN-Q performs better than MCAN when the

Fig. 6 Experimental results of
MCAN, MESAN and
SCAVQAN-I with T ∈
{0.06, 0.07, 0.08, 0.09, 0.10, 0.11,
0.12, 0.13} on the test-dev set of
VQA 2.0
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Table 3 Ablation experimental results of SCAVQAN-M on the test-dev set of VQA 2.0

TQ TI Yes/No Number Other Overall

0.09 0.08 86.88% 52.55% 60.78% 70.59%

0.09 0.09 86.91% 52.98% 60.88% 70.71%

0.09 0.10 86.85% 52.95% 60.89% 70.68%

0.09 0.11 86.75% 52.73% 60.77% 70.56%

0.10 0.08 86.83% 52.68% 60.92% 70.66%

0.10 0.09 86.75% 53.10% 61.03% 70.72%

0.10 0.10 87.02% 52.82% 60.94% 70.76%

0.10 0.11 86.87% 52.63% 60.90% 70.66%

0.11 0.08 86.89% 52.42% 60.84% 70.61%

0.11 0.09 86.83% 53.25% 60.88% 70.70%

0.11 0.10 86.87% 53.09% 60.78% 70.65%

0.11 0.11 86.76% 52.76% 60.88% 70.62%

threshold value is appropriate. For example, when T=0.26,
the overall accuracy of SCAVQAN-Q is 57.13%, which is
0.29% higher than that of MCAN.

As can be seen from the results of the ablation studies
above, compared with the advanced co-attention network
MCAN and MESAN based on top-k selection, the overall
performance of our proposed models is better mainly
because they achieve higher accuracies on Other questions.
We think this is because when modeling the self-attention
of the input questions and the self-attention of the input
images, the models based on our threshold-based multi-
head scaled dot-product attention can more accurately filter
out the question key words and the more significant image
regions to better understand the input questions and the
input images, so as to more accurately answer the relatively
complex Other questions.

4.4 Comparison with advanced VQAmodels

The accuracy results of various models on VQA 2.0 and
GQA are shown in Tables 5 and 6 respectively. The
best value of each column is shown in bold. In order to
make a fair comparison, all the models in Table 5 are
single models rather than integrated models, and all of
these models are trained with the regional image features
extracted by Faster R-CNN. BUTD [28] is based on bottom-
up attention and won the 2017 VQAChallenge. MCAN [19]
models the dense interactions between internal elements
of the input questions and the input images through a
stacked encoder-decoder structure. When modeling visual
attention, MEDAN [29] chooses to learn the question-
guided visual attention first and uses a new optimizer
named AdamW to train the model. MUAN proposes a

Fig. 7 Experimental results of
MCAN, MESAN and
SCAVQAN-M with TQ = 0.1
and TI ∈ {0.08, 0.09, 0.10, 0.11}
on the test-dev set of VQA 2.0
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Table 4 Ablation experimental results of SCAVQAN-Q on the test-dev set of GQA

T Accuracy Binary Open Validity Plausibility Consistency Distribution

0.22 56.79% 74.86% 40.90% 96.54% 84.92% 87.49% 1.20

0.23 56.36% 74.17% 40.70% 96.54% 85.09% 87.96% 1.31

0.24 57.12% 75.48% 40.97% 96.79% 85.24% 87.22% 1.13

0.25 56.99% 74.97% 41.18% 96.67% 85.43% 87.16% 1.25

0.26 57.13% 76.00% 40.54% 96.82% 84.96% 87.99% 1.09

0.27 56.90% 74.79% 41.18% 96.56% 84.92% 88.13% 1.25

0.28 56.27% 75.05% 39.77% 96.78% 85.28% 87.01% 1.23

MCAN [19] 56.84% 75.56% 40.38% 96.85% 85.32% 87.19% 1.31

Table 5 Results of our models and the state-of-the-art models on VQA 2.0

Test-dev Test-std

Model Yes/No Number Other Overall Overall

BUTD [28] 81.82% 44.21% 56.05% 65.32% 65.67%

MCAN [19] 86.82% 53.26% 60.72% 70.63% 70.90%

MEDAN(Adam) [29] 87.10% 52.69% 60.56% 70.60% 71.01%

MUAN 86.77% 54.40% 60.89% 70.82% 71.10%

MESAN [16] 87.05% 53.21% 60.72% 70.71% 71.08%

SCAVQAN-Q(T=0.1) 86.96% 53.49% 60.95% 70.82% 71.14%

SCAVQAN-I(T=0.11) 87.00% 53.31% 60.83% 70.76% 71.09%

SCAVQAN-M(TQ = TI = 0.1) 87.02% 52.82% 60.94% 70.76% 71.08%

Table 6 Results of SCAVQAN-Q and the state-of-the-art models on GQA

Model Accuracy Binary Open Validity Plausibility Consistency Distribution

CNN+LSTM 46.55% 63.26% 31.80% 96.02% 84.25% 74.57% 7.46

BUTD [28] 49.74% 66.64% 34.83% 96.18% 84.57% 78.71% 5.98

MAC [30] 54.06% 71.23% 38.91% 96.16% 84.48% 81.59% 5.34

MCAN [19] 56.84% 75.56% 40.38% 96.85% 85.32% 87.19% 1.31

SCAVQAN-Q(T=0.25) 56.99% 74.97% 41.18% 96.67% 85.43% 87.16% 1.25

SCAVQAN-Q(T=0.26) 57.13% 76.00% 40.54% 96.82% 84.96% 87.99% 1.09

SCAVQAN-Q(T=0.27) 56.90% 74.79% 41.18% 96.56% 84.92% 88.13% 1.25
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MCAN SCAVQAN-Q

Fig. 8 Textual self-attention maps of MCAN and SCAVQAN-Q

MCAN SCAVQAN-IQuestion: What color is the truck?

Fig. 9 Visual self-attention maps of MCAN and SCAVQAN-I

MCAN SCAVQAN-MQuestion: Is the pitcher wearing a hat?

Fig. 10 Visual question-guided attention maps of MCAN and SCAVQAN-M
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general unified attention module to simultaneously model
the relationships between elements within and between
modalities and to perform VQA task by deeply stacking
this module. In order to better focus the attention of VQA
models, MESAN [16] based on top-k selection explicitly
filters out the input features that are the most relevant
to predicting the correct answers. As can be seen from
Table 5, while maintaining the accuracy levels similar to
that of the advanced VQA models on Yes/No questions and
Number questions, our models achieve higher accuracies
on the more complex Other questions and better overall
performance. In Table 6, MAC [30] approaches questions by
decomposing them into attention-based reasoning steps and
imposes structural constraints to perform iterative reasoning
processes that are directly inferred from the data in an
end-to-end approach. As can be seen from Table 6, while
maintaining the validity scores similar to that of MCAN, our
models perform better on all other metrics. All the above
experimental results prove the effectiveness of our proposed
models.

4.5 Attention visualization

In this section, we compare the attention visualization
results of our models with MCAN for specific question
instances and specific image instances to prove the
effectiveness and interpretability of our models. Figure 8
shows the textual self-attention maps of MCAN and
SCAVQAN-Q for the input question “What service does
the car parked at the curb provide”. It can be seen that
the attention map captured by SCAVQAN-Q is more
sparse. This relatively sparse attention map means that our
model is more focused, and thus can infer and predict
the correct answers more accurately. Figure 9 shows the
visual self-attention maps of MCAN and SCAVQAN-I
for the input question “What color is the truck”. It can
be seen that SCAVQAN-I is able to accurately focus on
the image regions containing “truck”, i.e., the 11th, 18th,
21st, and 33rd image boxes, while MCAN, on the other
hand, diverts more attention to other image regions that
are not relevant to the input question. Figure 10 shows
the question-guided visual attention maps of MCAN and
SCAVQAN-M for the input question “Is the pitcher wearing
a hat”. It can be seen that SCAVQAN-M pays more
attention to the question key words “pitcher” and “hat”.
Moreover, since there are multiple image regions associated
with the question key word “hat” in the input image, our
model also focuses more attention on these image regions
that are more important for correctly answering the input
question.

5 Conclusion

In this paper, we propose a threshold-based Sparse Co-
Attention Visual Question Answering Network (SCAV-
QAN) to solve the problem of distraction caused by model-
ing the interactions between all the input image regions and
all the input question words in some advanced VQA mod-
els. SCAVQAN focuses the models’ attention and achieves
advanced performance by setting thresholds for attention
scores to filter out the visual features and the textual features
that are the most relevant to answering the input questions
correctly. Experimental results, ablation studies and atten-
tion visualization results based on two benchmark VQA
datasets demonstrate that our models can filter out the ques-
tion key words of the input questions and the significant
image regions of the input images more accurately to bet-
ter understand the input questions and the input images, so
as to answer the relatively complex Other questions more
accurately. Our threshold-based attention mechanism can be
applied to any model that infuses attention mechanism and
can be tried in other tasks besides VQA. In future research,
we will explore more effective attention mechanisms to help
VQA models better respond to the most difficult Num-
ber questions at the present stage and further promote the
progress of VQA related research.
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