Applied Intelligence (2022) 52:14724-14738
https://doi.org/10.1007/510489-022-03546-9

l‘)

Check for
updates

Locality sensitive hashing with bit selection

Wenhua Zhou' - Huawen Liu2 @ . Jungang Lou3 - Xin Chen’

Accepted: 20 March 2022 / Published online: 31 May 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract

Locality sensitive hashing (LSH), one of the most popular hashing techniques, has attracted considerable attention for nearest
neighbor search in the field of image retrieval. It can achieve promising performance only if the number of the generated
hash bits is large enough. However, more hash bits assembled to the binary codes contain massive redundant information
and require more time cost and storage spaces. To alleviate this limitation, we propose a novel bit selection framework to
pick important bits out of the hash bits generated by hashing techniques. Within the bit selection framework, we further
exploit eleven evaluation criteria to measure the importance and similarity of each bit generated by LSH, so that the bits
with high importance and less similarity are selected to assemble new binary codes. To demonstrate the effectiveness of the
proposed framework of bit selection, we evaluated the proposed framework with the evaluation criteria on five commonly
used data sets. Experimental results show the proposed bit selection framework works effectively in different cases, and the
performance of LSH has not been degraded significantly after redundant hash bits reduced by the evaluation criteria.
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1 Introduction algorithms have been developed so far. However, finding
exact nearest neighbors from large-scale data is prohibitive

With the explosive growth of data such as images, docu-  and infeasible from the perspective of efficiency [4].

ments and videos, nearest neighbor (NN) search (a.k.a sim-
ilarity search) has attracted extensive attention in various
domains including machine learning, information retrieval,
natural language processing and outlier detection [1-3].
Given a query, the objective of NN search is to identify its
nearest neighbors from a data collection. A variety of NN
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In recent years, approximate NN (ANN) is becoming
popular, for it finds approximate nearest neighbors within
sub-linear and even constant query time [5]. Generally, the
existing ANN search algorithms can be roughly divided
into two categories, i.e, tree-based and hashing-based search
algorithms. The tree-based search algorithms, such as KD-
trees [6], M-trees [7], and ball-trees [8], exploit tree struc-
tures to store data and then find approximate nearest neigh-
bors in sub-linear time [9]. However, the performance of
these algorithms decreases dramatically when the dimen-
sion of data becomes high. Besides, they usually require
large memory to store the tree structures.

The hashing-based search methods become flourishing
recently because of their high query efficiency and low stor-
age space [10]. They encode the high-dimensional data as
binary-code representations by a series of hash functions.
With the binary-code representations, retrieving nearest
neighbors for a given query turns into matching the corre-
sponding binary codes by bit operations. Benefiting from
the bit operations, the task of ANN retrieval can be handled
in main memory and extremely fast, usually within O(1)
time [11]. This enables the hashing-based search algorithms
to be quite popular to large-scale scenarios.
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Locality sensitive hashing (LSH), one of the most famous
hashing algorithms, maps similar or proximate data sam-
ples into the same “bucket” with high probability [11].
Specifically, a series of hash functions are generated ran-
domly to represent the similar data samples as binary codes
with small Hamming distances, so that the neighborhood
relations between the original data samples can be pre-
served. Since the hash functions within LSH are generated
randomly, LSH has high efficiency. Owing to this, vari-
ous extensions of LSH, including kernelized LSH (KLSH)
[12], shift-invariant KLSH (SKLSH) [13]) and I-LSH [14],
have been witnessed. It is noticeable that LSH can achieve
desirable performance if the number of hash functions is
large enough. This, however, leads to a high computa-
tion cost and storage overhead, limiting its applications
to large-scale scenarios. For instance, the binary codes of
one billion data samples with 1024 hash bits need around
1TB storage space, whereas the codes with 64 hash bits only
need 64GB space.

On the other hand, data-dependent hashing techniques
exploit inherent properties of data to learn elaborately
hash functions, so that the generated binary codes have
promising performance. Typical examples of such kind
include principal components analysis hashing (PCAH)
[15], iterative quantization (ITQ) [16], spectral hashing
(SH) [17]. Anchor graph hashing (AGH) [18], sparse
embedding and least variance encoding (SELVE) [19] and
locally linear hashing (LLH) [20] utilize manifold structural
information of data to derive the binary codes. Though the
data-dependent hashing algorithms can generate powerful
hash functions, their time complexity is relatively high and
the scalability is not as good as one expects.

In this paper, we propose a novel bit selection framework
to pick important bits out of the hash bits generated by hash-
ing techniques. Though the hash functions are generated
randomly, a large amount of redundant information exists
within the binary codes assembled from the generated hash
bits. It is necessary to remove those redundant information
from the binary codes, making the assembled binary codes
compact. Taking LSH as an example, we exploit eleven
evaluation criteria to measure the importance and similarity
of each hash bit generated by LSH, so that the bits with high
importance and less similarity are selected to assemble new
binary codes. The evaluation metrics not only consider indi-
vidual bit’s importance, e.g., Laplacian score (LS) [21] and
information entropy (Ent) [22], but also involve correlations
between a pairwise of hash bits, e.g., Pearson correlation
coefficient (PCC) [23] and mutual information (MI) [24].
The experimental results conducted on public benchmark
data sets show the proposed bit selection framework works
effectively, and can achieve reduced effects of hash bits,
without degrading the performance of LSH significantly.

The main contributions of this article are briefly high-
lighted as follows.

— A novel hash bit selection framework for hashing
techniques is proposed. It aims to derive compact binary
codes consisting of less hash bits, which embrace
information as faithful as possible.

— Under the bit selection framework, we renders eleven
bit selection methods by using different evaluation
criteria to pick important and representative hash bits
from the candidate hash bits generated by LSH, without
degrading the performance significantly.

— Extensive experiments were carried out on public
benchmark data sets. The experimental results show
that the framework works effectively. The performance
of LSH was not degraded significantly, after 20% - 60%
redundant hash bits were removed.

The rest of this paper is organized as follows. Section 2
briefly reviews the state-of-the-art of hash learning methods.
Section 3 introduces the bit selection framework for hashing
techniques to derive compact binary codes. In Section 4, we
propose eleven hash bit selection methods for LSH to show
how the framework works. The Experimental results and
discussions on public benchmark data sets are reported in
Section 5, and the conclusions are presented in Section 6.

2 Related work

Due to their low storage cost and high computational effi-
ciency, hashing techniques have been widely applied in
a large variety of scenarios. As mentioned above, the
hash learning algorithms can be roughly divided into two
main groups: data-independent and data-dependent hash-
ing algorithms [14]. This section presents a brief overview
of the data-independent hashing algorithms. More details
about the hashing techniques can be found in good surveys
(e.g., [14]).

The data-independent hashing techniques have been
extensively investigated to handle the problems of nearest
neighbor search for large-scale data. Representative exam-
ple of this kind is LSH, which maps similar data samples
to proximate binary codes with high probability. Theoreti-
cally, the probability that two data samples have the same
binary code is proportional to their similarity measured by
Euclidean distance or semantic consistency [10, 11]. Since
the hash functions of LSH are generated randomly, LSH
have extremely high efficiency. With such favorable prop-
erties, a variety of LSH-like methods have been developed
to learn informative and discriminative binary code. For
instance, kernelized LSH (KLSH) [13] adopts arbitrary ker-
nel functions to capture the intrinsic relationships among
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data samples and can be employed in many existing image
search measures. Shift-invariant kernelized LSH (SKLSH)
[13] maps the random projections to shift-invariant kernel to
maintain the similarity structures of the original data sam-
ples. Unfortunately, most of the LSH-like methods demand
for a considerable length of the binary codes to ensure
a competitive performance, leading to long computational
time and high storage cost.

In contrast to the data-independent methods, the data-
dependent hashing methods make full use of potential prop-
erties of data to construct more effective hash functions.
Generally speaking, the data-dependent hashing methods
can be divided into two classes, namely, principle com-
ponent analysis (PCA) based hashing and manifold based
hashing. The former attempts to preserve the maximal vari-
ance of hash bits in dimensionality reduction, during the
generation process of hash bits. Unfortunately, maximiz-
ing the variance of hash bits is intractable because of the
discrete constrain in learning binary codes. To deal with
this issue, PCA hashing (PCAH) [15] switches to construct
an set of orthogonal hash functions which are uncorrelated
to each other, while iterative quantization (ITQ) [16], the
most representative PCA-like hashing method, searches an
orthogonal rotation matrix to maximizing the variance and
minimizing the quantization error simultaneously.

Accordingly, the manifold-based hashing methods man-
age to make the generated binary codes preserve local sim-
ilarity structures, a kind of nearest neighborhood relation-
ships, among data pairs, wherein those data samples with
similar properties possess the same binary values [19, 20].
Many of the manifold methods exploit various optimization
structures to learn informative and important binary codes.
For example, self-taught hashing (STH) [25] minimizes the
weighted average Hamming distance formulation to meet
the criterion of similarity preserving. Anchor graph hashing
(AGH) [18] maintains the approximate neighborhood struc-
tures of the original data by introducing an anchor graph.
Sparse hashing (SH) [26] converts the high-dimensional
data samples to low-dimensional binary codes with a sparse
coding technique, wherein the similarity structures are pre-
served with less storage.

Since the data-dependent hashing methods fully take
the inherent information of data into consideration, they
can learn more compact and have better performance in
comparison to the LSH-like hashing methods. Nonetheless,
their search efficiency is relatively low, where they need at
least quadratic time during the training stage. Moreover, all
of the data-dependent hashing methods focus on designing
a set of effective hash functions, either maximizing the
correlations or preserving the similarity structures, without
taking into account the redundancy embraced within the
generated binary codes.

@ Springer

Cai [11] argued that LSH is still competitive when the
number of generated hash bits is large enough. However,
the more the hash bits, the higher correlated between them.
It is natural to reduce the number of generated hash bits.
Liu et al. [27] considered the problem of bit selection by
virtue of weighted graph and dynamic programming tech-
niques. Specifically, for each hash bit, its quality and inde-
pendence to others are represented as weighted vertex and
weighted edges of a graph, respectively. Under this con-
text, the problem of bit selection is formulated as quadratic
programming on the graph, which can be solved by replica-
tor dynamics. However, it is computationally expensive and
less robust. Motivated by these observations, here we adopt
eleven evaluation criteria to measure the importance and the
similarities of the generated hash bits. Then the important
and less similarity hash bits are picked out, and taken as
representative ones to assemble new binary codes. With this
strategy, the new binary codes can conserve the properties
of the original data as faithful as possible.

3 Bit selection framework

Assume that X € R"*¢ is a data set consisting of n data
sample with d dimensions. For each row vector x; of X, it
is the i-th d-dimensional data sample. Hash learning aims
to implicitly or explicitly design a set of hash functions H =
[hy, hy, ..., h,] € R?*™ to encode the data samples X into
binary representations B = [by, by, ..., b, ] € {—1, 1}
where m is the number of hash bits and m < d. b; €
{—1, 1}" is the i-th hash bit, whose values are derived from
the i-th hash function h; on all data samples in X.

Bit selection is the process of extracting / principal and
representative hash bits from the m candidate hash bits
generated by hashing techniques to take the place of the
original ones when assembling binary codes. Formally, let
B = [by, by, ..., b,] € {—1, 1} be the binary codes
assembled from the m hash bits. Since bit selection picks /
hash bits out from the m bits without rectifying hash values,
the new binary codes B’ = [by, by, ..., bj] € {1, 1}’”(1
assembled from the / selected hash bits actually is a subset
of B,i.e., B’ CB.

For this purpose, We propose a bit selection framework
for hash learning. The selection framework is shown as
Fig. 1. It comprises three major stages, namely, bit genera-
tion, bit selection and code assembly. Code assembly refers
to the process of concatenating the [ selected hash bits in a
sequential way. Since it is relatively intuitive and simple, we
place more focuses on discussing the first two steps.

The first step of our framework is to generate m candidate
hash bits by using the off-the-shelf hashing techniques. For
the hashing techniques used within, they can be only one
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Fig. 1 The framework of hash bit selection for hash learning

type of hashing algorithm, or multiple hashing algorithms
simultaneously. Even more, different types, e.g., the data-
independent hashing and the data-dependent hashing, of
hashing techniques can also be employed at one time. It
should be mentioned that several hashing algorithms, such
as PCAH, SH and ITQ, generate less hash bits. In this case,
multiple hashing algorithms are often combined to generate
a given number of candidate hash bits. For instance, if
600 hash bits are required to be under consideration, we
can adopt LSH, PCAH and ITQ to generate 200 hash bits,
respectively. Afterwards, these hash bits are concatenated to
derive 600 hash bits.

Note that constructing the pool of candidate hash bits
by multiple hashing algorithms is inherently consistent
with multi-view learning, where data are collected from
multiple sources [28]. Inspired by multi-view learning, we
can also exploit multi-view hashing algorithms to construct
the pool of candidate hash bits [29, 30]. Kong et al. [31]
stated that a single hash bit per projection may separate
similar samples into different binary values. Hence, multi-
bit hashing algorithms encode each projection dimensional
with multiple bits of binary values to map those close
samples into same binary codes.

The second stage is bit selection, which picks repre-
sentative and important hash bits out from the candidate
bits according to evaluation criteria. The selected hash bits
should embrace faithful information to the original one and
have strong representation capability, so that new binary
codes assembled from the selected bits have good perfor-
mance.

Within this stage, three major components are involved
and tightly associated to each other. They are selection
strategies, bit evaluation and bit ranking. Select strategies
denote which way of picking bits from the candidate bits
is adopted; that is, choosing a bit individually or a subset
of bits. If we treat bit individually, only one hash bit is
evaluated and chosen at each time, and the most important
bits are eventually chosen, according to evaluation criteria.
On the contrary, multiple bits are evaluated as a whole and
the subset of bits with high evaluation score is chosen to
assemble binary codes.

(b) Bit selection (c) Code assembly

Bit evaluation is a core component of bit selection, for it
determines the importance or information amount for each
hash bit or bit subset. To evaluate hash bits, evaluation
criteria or metrics are required, and different criteria should
be exploited for selection strategies. For instance, if a hash
bit is under consideration, entropy or Laplacian score can be
used to measure the importance of the hash bit; for a subset
of hash bits, Pearson correlation coefficient and mutual
information are good criteria to measure the correlation or
similarity between pairwise bits.

Based on the important scores induced at the step of
bit evaluation, bit ranking sorts the candidate hash bits
or subsets in a descending order. The hash bits or subset
with high important scores are chosen with high priority to
assemble new binary codes.

4 Bit selection for LSH

LSH, one of the most popular hashing algorithms, attempts
to map similar or proximate data samples to binary codes by
using random hash functions. Let h be a randomly generated
hash function, and xe R be a data sample, the hash value
of X is
1, if x'h>0;
b= sign(x"h) = i xhz (1)
—1, otherwise.
Given m random hash functions H ={hy,h,,....h,;, } and data
samples X € R"*?  the i-th hash bit of X is

b; = sign(Xh;) @)

With H, the k-th sample x; is represented as the following
binary code

cx = sign(x} H) = [bg1, bia, .., by ] &)

Theoretically, there is a high probability that two
similar or proximate data samples are represented as the
same binary code. Unfortunately, a great number of hash
functions are required to retain this feature, that is, the
binary codes should be long enough so that LSH is able
to deliver a remarkable performance. Long binary code

@ Springer



14728

W.Zhou et al.

generation demand on high computational cost and large
storage space, and the generated hash bits will contain an
increasing body of redundancy as its length increases.

A possible solution to the bit redundancy is performing
bit selection for LSH. Under the above selection framework
of hash bits, here we render eleven bit selection methods to
pick important hash bits to assemble new binary codes. To
be specific, a pool of candidate hash bits is first constructed
from the generated hash bits by virtue of LSH. Then each
candidate bit is evaluated in terms of selection criteria.
Afterwards, the candidate bits are sorted according to the
evaluation scores, and only those candidate bits with high
scores are used to assemble new binary codes.

Two types of evaluation criteria are adopted in our
selection methods to measure the importance or similarity
for each candidate hash bit: one evaluates candidate bit
individually, and the other evaluates multiple candidate bits
as a whole.

4.1 Bitimportance

The bit importance criteria assess an individual bit by
calculating several metrics including balance, variance,
entrophy, similarity preservation, and Laplacian score.

1. Variance (Var). In probability theory, the variance of
a random variable measures the variation degree of
its values from the mathematical expectation. A large
variance indicates the values differ far from each other.
The mathematical definition of variance of b; is shown
as follows.

S (bik — by)?

n—1

Var(b;) = 4)
where bjj is the k-th binary value of b;, and b; is the
mean value of b;. From the definition, the larger the
variable, the more information the hash bit carries.

2. Balance (Bal) [32]. Given a hash bit b;, the balance of
b; refers to the equilibrium degree of 1 to -1 within
b;. From the perspective of data, the balance implies
the representation capability of the corresponding hash
function h;, which encodes the data samples to one of
binary values, -1 and 1. Formally, the balance of the i-th
hash bit b; is Bal(b;) = bl.Tl. It is remarked that a hash
bit with rich information and powerful discernibility
can partition the data samples evenly [32], so a smaller
Bal(b;) indicates the better balance of b;. For the sake
of consistency, here the balance of b; is defined as

n
Bai(h) = 1 — 1 2=k=1bik] Z"Zl i )

3. Entropy (Ent) [22]. Entropy is an effective criterion to

measure the uncertainty degree a random variable has in

@ Springer

information theory. Given a variable, it contains much
more information and more important to prediction if
it is highly uncertain. For the hash bit b;, its entropy is
represented as

Ent(b)=— > Y P(bi=v)log P(bix=v) (6)

ve(l,—1} &

where b;; is the k-th value of b; and P(b;x = v) is
probability of b;z=v (v=1 or -1).

4. Similarity preservation (SP) [27]. Similarity preserva-
tion denotes the similarities of data in the original space
should be preserved after projected into the Hamming
space; that is, the structural property of data should
also be kept down, and similar data samples should be
presented as similar binary codes. Thus, a high-quality
hash bit can preserve the local structural information of
data. Specifically, the metric of similarity preservation
of the i-th bit is

SP(b;) = )b,-b,.T —SH2 %)

where S is an affinity matrix and each entry S; ; =

exp(— || xi — x; ||2 /€2). € is a constant parameter. Note
that, the smaller the value of SP(b;), the higher the
quality of the i-th hash bit.

5. Laplacian Score (LS) [21]. Laplacian score is widely
used to evaluate quality of variable. It considers
both local similarity property and variance of data
simultaneously. Given a hash bit b;, its Laplacian score
is represented as follows.

Yi (bik — bij)* Sy

LS®) == Var(b,;)

®)

where b;; is the k-th value of b;, and Sy; is the
similarity degree of x; to x;. A high Laplacian score
of b; denotes the hash bit is important, for it can retain
the local similarities of data and has a small variance
simultaneously.

According to the definitions above, we know that these
metrics evaluate the importance of hash bits individually.
With these evaluation metrics, the principle of bit selection
is to reserve those hash bits with high scores; that is, if a bit
has high score, it will be selected to assemble new binary
codes with a high probability.

Algorithm 1 summarizes the implementation details of
our bit selection methods by evaluating individually hash
bits. It works in a straightforward way and can be eas-
ily understood. Firstly, LSH is performed to generate m
candidate hash bits, forming a pool of bits. For each candi-
date bit, its importance is evaluated by virtue of one of the
corresponding metrics ((4) to (8)). Afterwards, the candi-
date hash bits are sorted in a descending order in terms of
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their importance. Finally, the top / hash bits are kept down
to assemble new binary codes.

Algorithm 1 Bit selection with individual bit evaluation.

Input: The data set Xe R™4_ the number of candidate bits
m, and the number of the selected bit /;

Output: The binary codes with the selected bits B’ €

(—1,1 }n x :
Generate m candidate hash bits Be {—1, 1}"*" by LSH,
For i=1 tom do

Calculate the importance of b; by (4)-(8);

End
Rank the importance of the candidate bits in descending
order;
Select the top [ bits to assemble new binary codes B';
7: Return B'.

A

a

The computational cost of Algorithm 1 mainly consists
of three steps: generating the candidate bits (Step 1), esti-
mating the important scores (from Step 2 to 4) and ranking
the scores (Step 5). The first step conduct LSH to gener-
ate the candidate bits B. Its computational time is O(mnd),
where m is the number of hash bits. For the second step, its
time complexity is dependent on which evaluation criterion
is adopted. Generally, the complexity is a linear one, i.e.,
O(km), where k is a constant value. The computational time
of bit ranking is O(m logm). Hence, the total time cost of
Algorithm 1 is O(mnd + m logm).

4.2 Bit similarity

It is worth to mention that the metrics above only take the
importance of individual bit into consideration, ignoring the
interactions between bits. This may unfortunately leads to a
fact that the selected hash bits contain redundant informa-
tion. It is notable that highly correlated bits often exhibit
similar behaviors. For example, two highly correlated
hash bits b; and b; assign the same value, i.e. 1 or -1, to
any sample, that is the two bits contribute equally to the
hashing learning. In such a case, redundancy exists between
b; and b; , and it is apparently no need to choose both b;
and b; for compact code assembling even though they both
present high importance. As far as the bit redundancy is con-
cerned, we take six more metrics to evaluate the pairwise
similarities among hash bits. Below is the brief description
of these metrics.

1. Hamming Distance (HD). Hamming distance is fre-
quently used to measure how many different values
between two strings at the same positions. Here we
exploit it to check how many different hash values

between two given hash bits. Given two hash bits b; and
b, their Hamming distance is

HD(b;,bj) = exp (— > b @ bjk) ©)
k

where @ refers to the logical operation of exclusive
disjunction that returns 1 only when by is differ to b jy;
otherwise returns 0. According to the definition, one
may observe that if b; has a small Hamming distance
to b, they are proximate to each other; that is, they are
highly correlated.

Euclidean Distance (ED). Traditionally, the distance
refers to how far from one sample to another in
the Cartesian coordinate. Here we just calculate the
distance between two hash bits with binary values. To
be specific, the Euclidean distance £D(b;, b;) of b; to
b; is shown in the following.

ED(b;,b;) = exp (— > ik —b,-j>2) (10)
k=1

where b;y, is the k-th value of b;. Obviously, the smaller
the Euclidean distance ED(b;, b;), the more similar
between b; and b;.

Cosine Distance (CD). Generally, this measurement
denotes a cosine value of the angle between two
random variables. If these two variables have the close
orientation, the distance is very small. Particularly, the
cosine similarity equals to 1 if the angle is zero. On the
contrary, the similarity is zero if these two variable are
perpendicular to each other. Hence, we use the cosine
distance to approximate the similarity of b; to b; as
follows

b!b;

CD(b;,bj) = cos(b;, bj) = ———
(b; j) cos(b; ]) b | ”bj H

(11
Jaccard Distance (JD). The Jaccard distance (a.k.a. Jac-
card similarity coefficient) is often taken to represent
the similarity between two sets. It refers to the propor-
tion of how many values are the same within the sets to
the number of all values within their union set. Within
each hash bit, its hash value is a binary one. Thus, the
union and intersection sets are not appropriate. For the
purpose of bit evaluation, the Jaccard distance of b; to
b; is given by

JD(b,‘,bj) (12)

_ Yok Ibik =Dbji)
Zk 1(bj;z=0) + Zk I(bjk:O)_Zk I(bik:bjk)
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where I (v) is an indication function of v. If v is true,
1(v) = 1; otherwise, I (v) = 0.

5. Pearson Correlation Coefficient (PCC) [23]. Pearson
correlation coefficient is a popular criterion to measure
the correlation between two variables in statistics. For
the hash bits b; and b, their correlation coefficient is

Cov(b,-, bj)
VVarj)Var(b;)

where Cov(b;,b;) is the covariance of b; to bj,
and Var(b;) is the variance of b;. A large value
of PCC(b;,b;) implies that b; and b; are highly
correlated to each other, making them more similar.

6. Mutual Information (MI) [24]. Mutual information can
effectively measure how much information commonly
shared by two variables. If one variable contains a
large amount of information through observing another
one, they may exhibit similar properties or behaviors.
Based on the notion of entropy, the mutual information
between b; and b; is defined as follows.

PCC(b;, b)) =

13)

MI(b;,b;) = Ent(b;) + Ent(b;) — Ent(b;, b;) (14)
where Ent(b;) is the entropy of b; in (6).

Based on the similarity metrics above, we render the sec-
ond kind of bit selection methods for LSH in Algorithm 2.
Contrastive to the selection methods in Algorithm 1 which
only involves the importance of individual bit, Algorithm 2
mainly take use of the similarities of pairwise bits to choose
those important bits with less correlation. To be specific,
we firstly employ LSH to yield a pool of candidate hash
bits. The similarity matrix A of the hash bits is derived by
calculating the similarities between bits in a pairwise way
using the metrics provided above ((9) to (14)). To reduce the
redundancy among the selected hash bits, we choose greed-
ily the most important bits during the iteration process of
bit selection, that is, once the maximum value g;; in A is
picked, the i-th or j-th bit exclusively, and remove the i-th
and j-th rows and columns from A. The selection process
is repeated until / bits are obtained, which are subsequently
used to assemble more compact binary codes.

The computational cost of Algorithm 2 mainly comprises
three steps: generating the candidate bits (Step 1), estimat-
ing the similarity scores between pairwise bits (from Step
2 to 6) and selecting the first / hash bits (from Step 8 to
12). The time cost of the first step is O(mnd). Since the
bit similarity is estimated via a pairwise way, its compu-
tational time is O (m?). Within the last step, a column and
a row are removed at each time. Thus, its time complex-
ity is O(m). Hence, the total time cost of Algorithm 2 is
O(mnd + m?* + ml).

@ Springer

Algorithm 2 Bit selection with bit correlation.

Input: The data set Xe R™4_ the number of candidate bits
m, and the number of the selected bit /;
Output: The binary codes with the selected bits B’ €
(=11

1: Obtain m candidate hash bits Be {—1, 1}"*™ by LSH,;

2: Fori=1tom do

3: For j=1tom do

4: Calculate the correlation a;; between b; and b
by (9)-(14);

5: End

6: End

7: Construct the similarity matrix A=[a;;1; j=1.m;

8: Fori=1to/do

9: Locate the row-index of the largest value a;;;

10: Select the i-th or j-th hash bit exclusively;

11: Update A by removing the i-th and j-th columns
and rows;

12: End

13: Assemble new binary codes B’ by using the rest bits in

14: Return B'.

5 Evaluation experiments

To verify the effectiveness of the proposed framework
of bit selection, we conducted a series of experiments
on public data sets. Specifically, we made a compari-
son of LSH to its corresponding ones with the selection
criteria. Besides, NDomSet [27], a kind of bit selec-
tion algorithm developed recently, was also used as a
baseline.

The objectives of evaluation experiments are three-fold,;
that is, whether the performance of LSH is degraded signif-
icantly after bit selection performed, how the performance
of LSH is changed with different numbers of selected
hash bits, how many the selected bits are required with-
out degraded the performance of LSH significantly. For
these purposes, we carried out three groups of experi-
ments on a PC with a 3.8GHz Intel Core i7-9700 CPU and
8GB RAM.

5.1 Experimental data sets

Five publicly available image data sets were employed
in our experiments. They are CALTECH101, CIFAR-10,
USPS, TAPR-TC12 and NUS-WIDE. Their brief descrip-
tions are given in the following.
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— CALTECHI101 consists of 8,677 color images with 101
categories, about 50 images per category [33]. The
image resolution is roughly 300x200 pixels, and each
image is represented as a 512-dimensional GIST feature
vector.

— CIFAR-10 contains 60,000 color images from the well
known 80M tiny image collection [34]. These images
are categorized into 10 classes, each consisting of
6,000 impages with 32x32 sizes. The images are also
represented as 512-dimensional GIST feature vectors.

— USPS consists of 9,298 images (16 x 16) associated with
a digit form ‘0’ to ‘9’ [20]. Each image is represented
as a 256-dimensional feature vector.

— TAPR-TCI12 is a multi-label data set that contains
20,000 image-text pairs annotated by 255 labels [35],
covering natural images taken from locations around
the world. Each image is represented by a 512-
dimensional GIST feature vector.

— NUS-WIDE comprises of 269,648 images, where each
image is annotated by 81 labels. In our experiments,
the first 10 categorizes are considered, amounting to
186,577 images [17]. The ground-truth images are those
that share at least one common label.

5.2 Evaluation metrics

Following the routine, in our experiments we also adopted
three commonly used evaluation metrics, i.e., top-k pre-
cision (Pre@k), top-k recall (Rec@k) and mean average
precision (mAP), to evaluate the performance of LSH. For
each query sample, its retrieved nearest neighbors were
ranked according to the Hamming distance, so that the eval-
uation criteria could be estimated. The evaluation criteria
are defined as follows.

the relevant images in the top-k images

Pre@k = (15)

the retrieved top-k images

the relevant images in the top-k images
Rec@k = £05 1n Te Top-* mag (16)
all the relevant images

mAP =— > — » P(j)li(j) a7
eoM j=1

where Q is the number of query samples, M is the number
of relevant images, R is the number of retrieved images.
P;(j) is the top-j precision of the i-¢h samples, and [; (j) =
1 indicates the j-th retrieved image is a true neighbor of the
i-th query, otherwise I; (j) = 0. Without loss of generality,
we retrieved 1,000 nearest samples for each query, i.e.,
k = 1000, in our experiments.

5.3 Results and discussion
5.3.1 Comparison of LSH to the bit selection methods

The first group of comparison experiments aims to deter-
mine how much the bit selection methods bring negative
effects to the performance of LSH. For this purpose, we first
performed LSH on the data sets to generate 128, 256 and
512 candidate hash bits, respectively. Then the bit selection
methods were adopted to pick 80% bits out from the can-
didate bits; that is, 103, 205, 410 hash bits were chosen,
respectively. Based on the selected hash bits, the values of
the evaluation criteria of LSH and its corresponding ones
with the selection methods were recorded.

The recall comparisons of LSH to the bit selection
methods with 80% hash bits are presented in Fig. 2 to
6, where the bars above (or below) zero indicate that the
bit selection methods have higher (or lower) values of the
rec@k criterion than that of LSH. For example, the bit
selection method using Euclidean distance (ED) achieved
higher rec@k than LSH when the number of hash bits
was 102, while the one using entropy (Ent) had worse
performance than LSH on CALTECHI101 (see Fig. 2).

From the experimental results in Figs. 2, 3, 4, 5 and 6,
one can observe that the bit selection methods work well and
have not deteriorated the performance of LSH significantly,
after removing 20% redundant hash bits generated by LSH.
In some cases, several selection methods even outperformed
LSH. For instance, on the CALTECH101 data set, the
selection methods using Euclidean distance (ED), Jaccard
distance (JD) and mutual information (MI) achieved better
performance with 80% hash bits, in comparing to LSH.
Another interesting thing is that on all data sets, the
difference of rec@k between the selection methods with
410 bits and LSH with 512 bits is smaller than those with
less bits. This is intuitively reasonable because the more the
hash bits, the more the redundancies among them.

The experimental comparisons of LSH with the bit
selection methods with 80% hash bits at the aspect of
precision are presented in Figs. 7, 8,9, 10 and 11. According
to the experimental results, similar conclusions can be easily
made for the precision criterion. As an example, the bit
selection methods with less hash bits on the CALTECH101
data set (see Fig. 7) are consistent with LSH in terms of
precision; that is, the selection methods have not degraded
the performance of LSH after removing 20% hash bits. On
the CIFAR-10 data set (see Fig. 8 (a)-(c)), the difference
of the selection methods with 410 hash bits are much
smaller than those with 103 bits. This indicates the fact
that long hash codes embody much more information, and
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SP w Bal Var Ent
Ls ED mCD D
HD  mPCC “MI ® NDomSet

(a) 103b

(b) 205b

(c) 410b

Fig. 2 The recall comparison of LSH to the bit selection methods with 80% hash bits on CALTECH101, where the bars above (below) zero

indicate that they are better (worse) than LSH. (a) 103 over 128 bits (b) 205 over 256 bits (c) 410 over 512 bits

SP wBal Var Ent
LS ED mCD D
HD mPCC Ml ® NDomSet

(a) 103b

(b) 205b

(c)410b

Fig.3 The recall comparison of LSH to the bit selection methods with 80% hash bits on CIFAR-10, where the bars above (below) zero indicate

that they are better (worse) than LSH. (a) 103 over 128 bits (b) 205 over 256 bits (c) 410 over 512 bits

SP Bal Var Ent
Ls ED mCD i)
HD  mPCC Mi = NDomSet

(a) 103b

(b) 205b

(c)410b

Fig. 4 The recall comparison of LSH to the bit selection methods with 80% hash bits on USPS, where the bars above (below) zero indicate that

they are better (worse) than LSH. (a) 103 over 128 bits (b) 205 over 256 bits (c) 410 over 512 bits

@ Springer
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0.03 0.03 0.03

SP Bal Var Ent

LS ED muCD 1D

HD mPCC Mi B NDomSet
0.02 0.02 0.02
0.01 0.01 0.01
0.00 — -T 0.00 — -T 0.00 - -T
0.01 0.01 -0.01
-0.02 0.02 -0.02
0.03 0.03 -0.03

(a) 103b (b) 205b (c)410b

Fig.5 The recall comparison of LSH to the bit selection methods with 80% hash bits on IAPR-TC12, where the bars above (below) zero indicate
that they are better (worse) than LSH. (a) 103 over 128 bits (b) 205 over 256 bits (c) 410 over 512 bits

0.005 ! 0.005
Sp Bal Var Ent
LS ED mCD D
HD mPCC Mmi ® NDomSet
0.003 - 0,003
0.001 - 0001

-0.001 - -0.001

-0.003 -0.003

-0.005 -0.005
(a) 103b

(b) 205b

0.005

0.003

0.001

-0.001

-0.003

-0.005

(c)410b

Fig.6 The recall comparison of LSH to the bit selection methods with 80% hash bits on NUS-WIDE, where the bars above (below) zero indicate
that they are better (worse) than LSH. (a) 103 over 128 bits (b) 205 over 256 bits (c) 410 over 512 bits

0.03 0.03

N Bal Var Ent

LS ED mCD D

HD mPCC M m NDomSet
002 0.02
001 001
0.00 rf 0.00 _—
001 0.01
0.02 -0.02
0.03 -0.03

(a) 103b (b) 205b

-

(c) 410b

Fig. 7 The precision comparison of LSH to the bit selection methods with 80% hash bits on CALTECH101, where the bars above (below) zero

indicate that they are better (worse) than LSH. (a) 103 over 128 bits (b) 205 over 256 bits (c) 410 over 512 bits
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0.06 0.06 0.06

SP Bal Var Ent

Ls ED mCD D

HD mPCC Ml ® NDomSet
0.04 0.04 0.04
0.02 0.02 0.02
0.00 - -T 0.00 .—-— 0.00 .
0.02 0.02 0.02
0.04 0.04 0.04
0.06 -0.06 0.06

(a) 103b (b) 205b (c) 410b

Fig.8 The precision comparison of LSH to the bit selection methods with 80% hash bits on CIFAR-10, where the bars above (below) zero indicate

that they are better (worse) than LSH. (a) 103 over 128 bits (b) 205 over 256 bits (c) 410 over 512 bits

0.06 0.06 0.06
N m Bal Var Ent
Ls ED mCD i)
HD mPCC =Ml m NDomSet
0.04 0.04 0.04
0.02 0.02 0.02
0.00 . rL 0.00 — I——_—‘ 0.00 - -—L
0.02 -0.02 0.02
0.04 0.04 0.04
0.06 -0.06 0.06
(a) 103b (b) 205b (c)410b

Fig.9 The precision comparison of LSH to the bit selection methods with 80% hash bits on USPS, where the bars above (below) zero indicate

that they are better (worse) than LSH. (a) 103 over 128 bits (b) 205 over 256 bits (c) 410 over 512 bits

0.06 0.06 0.06

SP Bal Var Ent

LS ED = CD i)

HD  mPCC Mi ® NDomSet
0.04 0.04 0.04
0.02 0.02 0.02
0.00 .—r 0.00 - .—.— 0.00
0.02 -0.02 0.02
0.04 -0.04 0.04
0.06 -0.06 0.06

(a) 103b (b) 205b

(c)410b

Fig. 10 The precision comparison of LSH to the bit selection methods with 80% hash bits on IAPR-TC12, where the bars above (below) zero

indicate that they are better (worse) than LSH. (a) 103 over 128 bits (b) 205 over 256 bits (c) 410 over 512 bits
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0.06 0.06 0.06

SP Bal Var Ent

LS ED = CD D

HD mPCC Mmi ® NDomSet
0.04 1 0.04 0.04
0.02 0.02 0.02
0.00 I IT 0.00 l .T 0.00 || L 1 B
-0.02 -0.02 -0.02
0.04 -0.04 -0.04
-0.06 -0.06 -0.06

(a) 103b (b) 205b (c) 410b

Fig. 11 The precision comparison of LSH to the bit selection methods with 80% hash bits on NUS-WIDE, where the bars above (below) zero
indicate that they are better (worse) than LSH. (a) 103 over 128 bits (b) 205 over 256 bits (c) 410 over 512 bits

the selection methods with more bits have comparable
performance to LSH.

5.3.2 Sensitivity of the bit selection methods

The second group of comparison experiments is conducted
to testify the sensitivity of the bit selection methods with
different numbers of hash bits selected. Given 512 hash
bits generated via LSH on the data sets, we apply the bit
selection methods to assembling new hash bits in various

selection ratios, ranging form 50% to 100%. Afterwards, we
estimated the mAP scores of these bit selection methods.
Figure 12 gives the mAP scores of the bit selection
methods, where the x-axis denotes the bit selection ratio,
ranging from 50% to 100% out of 512 hash bits generated
by LSH. For clarity purpose, the mAP score of LSH is also
provided and serves as the horizontal line. According to
Fig. 12, it is observed that the bit selection methods with
Euclidean distance (ED) and mutual information (MI) have
better performance than LSH on CALTECHI101, though

. —a—LSH -%=SP
- %= Ent
cD
pCcC

——Bal
LS
D
MI

Var

ED

HD
—=—NDomSet

0.16

The selected rate

50% 60% 70% 80%

() CALTECH101

90% 100% 50%

60%

70%

0.41
0.41

0.40

0.39

The selected rate

0.38
50%

60%

70% 80%
(d) IAPR-TC12

90% 100%

(b) CIFAR-10

The selected rate The selected rate
0.57

50% 60% 70% 80%

(c) USPS

80% 90% 100% 90% 100%

The selected rate
50%

60%

70% 80%
(e) NUS-WIDE

90% 100%

Fig. 12 The mAP scores of the bit selection methods with different quantities of bits, ranging from 50% to 100% of 512 bits
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Table 1 The maximum reduction ratios (%) of the bit selection methods with less than 1% loss of mAP

CALTECH101 CIFAR-10 USPS IAPR-TC12 NUS-WIDE

128b  256b  512b  128b  256b  512b  128b  256b  512b  128b  256b  512b  128b  256b  512b
Sp 18.75 20.00 20.89 54.68 57.03 6191 37.50 4531 6090 29.63 29.67 4335 39.84 4726 50.50
Bal 29.68 4451 6093 32.02 3554 4443 1563 23.04 3730 3750 41.60 50.00 33.59 3671 40.42
Var 28.12 4401 5996 3203 3945 46.67 15.62 22.67 3820 3351 3554 4140 3159 3471 3942
Ent 28.12 4401 5996 29.68 3437 4433 15.62 22.67 3820 3351 3554 4140 3159 3471 3942
LS 17.92  17.18 20.00 54.68 57.03 5644 2812 4120 53.12 4820 4921 53.12 60.90 62.89 73.60
ED 39.84 55.07 67.77 1640 1679 23.82 1875 23.00 3847 29.68 31.64 4335 4140 4530 48.20
CD 39.06 4335 5898 46.87 53.13 5507 3359 4257 4628 49.78 51.23 5253 5625 5230 55.85
D 3320 4335 5996 5078 51.17 56.05 17.96 2578 33,59 3125 31.64 4042 4140 4218 4840
HD 1875 2773 2480 4921 55.07 5507 20.00 2695 33.10 3086 31.74 4238 46.09 46.09 50.00
PCC 14.02  13.10 14.06 4140 48.04 57.03 21.87 2578 3320 3095 31.74 4199 46.87 4335 5195
MI 38.10 4531 6289 2734 3945 5001 15.67 21.00 30.66 22.10 2343 3359 3359 32.03 3359
NDomSet 38.10 4531 56.05 4375 4726 58.00 5546 72.65 8632 29.60 3500 39.00 4140 4531 46.28

they contain less hash bits. Alternatively, the selection
methods with similarity preservation SP and Laplacian
score (LS) achieve higher scores than others, including
NDomSet and LSH, on the USPS data set. Besides, the bit
selection method involving cosine distance (CD) achieves
stable performance even with less hash bits, around 60%,
on the CALTECHI101, CIFAR-10 and USPS data sets.
Although the bit selection methods had relatively poor
performance on the IAPR-TC12 and NUS-WIDE data sets,
they are still competitive in the performance when the
number of selected hash bits is around 90%.

5.3.3 Reduction ratio of the bit selection methods

The objective of the third group of experiments is to test
the maximum reduction ratios of the bit selection methods,
without degrading the performance significantly; that is,
how many hash bits are needed to parallel in performance to
LSH. Firstly, LSH is performed on the data sets to generate
128, 256 and 512 hash bits. Then the bit selection methods
were applied to pick the least hash bits out so that the mAP
scores of the selection methods were lower than those of
LSH within 1%.

Table 1 records the maximum reduction ratios of the bit
selection methods with less than 1% loss of mAP, where
the bold values are the highest reduction ratios among the
bit selection methods. From the experimental results in
Table 1, it is obvious that the bit selection methods are
capable of selecting less bits by removing redundant ones,
without degrading the performance of LSH significantly.
For example, the reduction ratios of the selection methods
involving Euclidean distance (ED) are the best ones and
reach to around 40%, 55% and 68% on the CALTECH101
data set, when the quantities of hash bits are 128, 256 and
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512, respectively. Moreover, the maximum reduction ratios
get greater as the number of candidate hash bits increases.
This implies that a longer hash code often embodies more
redundant information than a shorter one.

Table 2 lists the running time of selecting 205 over
256 hash bits, i.e., the reduction ratio is 20%, by the bit
selection methods. As shown in Table 2, estimating the
values of balance (Bal), variance (Var), entropy (Ent) and
Pearson correlation coefficient (PCC) is more efficient than
the other evaluation criteria. Besides, NDomSet is the most
time consuming one among the selection methods, for it
requires to calculate both mutual information and similarity
preservation of hash bits. Even so, it is still acceptable
for the large-scale data. This means that the proposed
framework of bit selection has high efficiency and can be
used as a post-processing stage for hashing techniques.

Table 2 The running time (seconds) of selecting 205 over 256 hash
bits by the bit selection methods

CALTECHI101 CIFAR10 USPS IAPR-TCI12 NUS-WIDE

Sp 0.859 0.710 0.705 1.030 1.05

Bal 0.016 0.101 0.016 0.033 0.372
Var 0.062 0.047 0.047 0.046 0.066
Ent 0.005 0.002 0.003 0.003 0.006
LS 0.259 0.217 0.220 0.238 0.256
ED 0.119 0.088 0.097 0.103 0.129
CD 0.115 0.120 0.098 0.167 0.154
ID 0.322 0.246 0.204 0.245 0.339
HD 0.343 0.421 0.152 0.320 0.362
PCC 0.130 0.123 0.115 0.075 0.092
MI 2.210 2.134 2200 2.165 2.27

NDomSet 3.027 3.047 2985 3.25 3.060
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6 Conclusion

In this paper, a novel bit selection framework is introduced
to choose important and representative bits out of the
hash bits generated by hashing techniques. It mainly
consists of three stages, i.e., bit generation, bit selection,
and code assembly, wherein bit selection plays a central
role. The stage of bit selection also involves three
components, including selection strategies, bit evaluation,
and bit ranking. To show the effectiveness of the proposed
framework, we further exploit eleven evaluation criteria to
measure the importance and similarity metrics of each bit
generated by LSH, so that the bits with high importance and
less similarity are selected to assemble new binary codes.
We evaluated the proposed framework with the evaluation
criteria on five commonly used data sets. Experimental
results show the proposed bit selection framework works
effectively in different cases, and the performance of LSH
does not degrade significantly after redundant hash bits
removed with the evaluation criteria.

In the future work, we will take other existing hashing
techniques into account to testify that the proposed frame-
work can work for general hashing techniques. Besides,
advanced techniques of measuring correlation will also be
considered to improve the reduction ratio of bit selection.
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