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Abstract
Decomposition-based multiobjective evolutionary algorithms (MOEA/D) have achieved great success in the field of evo-
lutionary multiobjective optimization, and their outstanding performance in solving for the Pareto-optimal solution set has
attracted attention. This type of algorithm uses reference vectors to decompose the multiobjective problem into multiple
single-objective problems and searches them collaboratively, hence the choice of reference vectors is particularly important.
However, predefined reference vectors may not be suitable for dealing with many-objective optimization problems with
complex Pareto fronts (PFs), which can affect the performance of MOEA/D. To solve this problem, we introduce a reference
vector initialization strategy, namely, scaling of the reference vectors (SRV), and also propose a new reference vector adap-
tation strategy, that is, transformation of the solution positions (TSP) based on the ideal point solution, to deal with irregular
PFs. The TSP strategy can adaptively redistribute the reference vectors through periodic adjustment to endow that the solu-
tion set with better convergence and a better distribution. Both strategies are introduced into a representative MOEA/D,
called θ -DEA-TSP, which is compared with five state-of-the-art algorithms to verify the effectiveness of the proposed TSP
strategy.

Keywords Many-objective optimization problems · Decomposition · Complex Pareto fronts · Reference vector adaptation

1 Introduction

Multiobjective evolutionary algorithms (MOEAs) have
received extensive attention in recent decades. Due to their
superior performance in both research and practical prob-
lem optimization, they have been widely used in the fields
of engineering [1–4] and scientific research [5–8]. In these
fields, an increasing number of multiobjective optimization
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problems (MOPs) are emerging in which it is necessary to
optimize three or more conflicting objectives simultaneously.
Therefore, studying such many-objective optimization prob-
lems (MaOPs) has important practical significance.

Without loss of generality, the minimum MOP can be
defined as:

minimize F (x) = (f1(x), f2(x), · · · , fm(x))T

Subject to x ∈ �
(1)

where x=(x1, x2, · · · , xm)T is the decision vector, fi(x)

represents the i-th objective function in the objective space,
m denotes the number of objective functions, and � is
the feasible region in the decision space. An MOP can
also be called an MaOP if m>3 [9–11]. So-called PFs are
generated by these MOEAs to help decision-makers choose
a solution that strikes a desirable balance among the various
conflicting objectives.

In recent years, the emergence of many excellent algo
rithms, such as the adaptive-reference-point-based nondomi-
nated sorting genetic algorithm (ANSGA-III) [12], MOEA/D
[13], and the reference-vector-guided evolutionary algo-
rithm (RVEA) [14], has enabled many MaOPs to be solved.
In paticular MOEA/D, which was first proposed by Zhang,
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has been a trending research topic in recent decades. With-
out prior knowledge, this algorithm generates a series of
uniformly distributed reference vectors in the first quadrant.
The algorithm then uses this set of predefined reference vec-
tors to decompose the problem into several subproblems.
Reference vectors in different directions are used to search
different areas of the objective space. As described by Liu
[15], the predefined reference vectors are constructed from a
set of reference points on the hyperplane

∑m
i=1 fi = 1 in the

normalized m-dimensional objective space, called the nor-
mal boundary intersection (NBI) [16]. The basic assumption
of MOEA/D is that a uniform distribution of the reference
vectors can ensure the diversity of the solution set, as shown
in Fig. 1(a).

However, such predefined reference vectors do not allow
satisfactory handling of MaOPs with irregular PFs. Because
the generated reference vectors are not evenly distributed
along the true PF, the performance of MOEA/D can be
greatly affected. Under the assumptions that the PF is
symmetric and the m objectives have been normalized to
0<fi<1, the curvature of the PF can be expressed as f

p

1 +
f

p

2 + · · · + f
p
n = 1, where p>0. When p>1, the PF

is concave, and most of the solutions obtained are sparse
in the central area and dense at the corners. When p<1,
the PF is convex, and most of the solutions obtained are
dense in the center area and sparse at the corners. For
the concave and convex cases, the solutions specified by
ten uniformly distributed reference vectors on the PF of a
simple two-objective problem are shown in Fig. 1(b) and (c)
respectively.

According to Pan [17], irregular PFs also include discon-
tinuous and degenerate Pareto surfaces. A discontinuous PF
is defined as a PF whose geometry is incomplete and the PF
of a degenerate MOP has fewer than m-1 dimensionals.

Therefore, to solve such problems, many scholars have
set out to study how to ensure that the reference vectors in
MOEA/D are evenly distributed on the real PF.

The improved MOEA/D (MOEA/D-TPN) proposed by
Jiang [18] adopts a two-phase strategy. In the first phase,
the unevenness of the PF of the MOP is judged, and
then the reference vectors are adjusted in accordance with
the results of the first stage and a corresponding decision
on how to allocate computational resources, however,
this algorithm introduces too many parameters, making it
heavily dependent on the values of these parameters.

Dong [19] proposed an adaptive reference vector adjust-
ment strategy based on chain segmentation, in which a chain
topology relationship is established for the subproblems,
the step length between adjacent individuals is calculated
to divide the chain equally, and then, the positions of the
reference vectors are determined through a distance strat-
egy and the calculation of the ratios between two adjacent
individuals. Finally, vector addition is used to obtain a more
uniformly distributed reference vector set. However, the
structure assumed for the topological relationship is suitable
only for two-dimensional and three-dimensional MOPs.

Qi [20] proposed an improved MOEA/D with adpative
weight adjustment (MOEA/D-AWA), in which the reference
points are dynamically adjusted during the optimization
process. The entire optimization process is also divided into
two stages to balance convergence and diversity. Specif-
ically, a sparsity level calculation formula is introduced
to calculate the sparsity of each subproblem; then, over-
crowded subproblems are periodically deleted in accor-
dance with a preset value, and new reference vectors are
generated in relatively sparse positions. However, the exter-
nal archive mechanism and the complicated sparsity level
calculation seriously affect the efficiency of the algorithm.

Fig. 1 Ten uniformly distributed reference vectors on a regular PF, a concave PF, and a convex PF. (a) Ten uniformly distributed reference vectors
on a regular PF. (b) Ten uniformly distributed reference vectors on a concave PF. (c) Ten uniformly distributed reference vectors on a convex PF.
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On the other hand, some scholars have combined machine
learning methods to generate new reference vectors. Gu [21]
proposed a reference point design method based on a self-
organizing map (SOM). This method uses the weights of
the neurons as the reference vectors and uses the objec-
tive vector of the nearest population to periodically train an
SOM network of N neurons. Wu [22] proposed a learning
decomposition method to adaptively determine the refer-
ence vectors. This method is divided into a learning module
and an optimization module. Specifically, in the learning
module, the current nondominated solutions are used as
training data, and Gaussian process (GP) regression is used
to train an analysis model. In the optimization module, fea-
ture vectors are extracted to adjust the reference vectors.
However, the learning process is time consuming and can
easily lead to overfitting.

For MaOPs with convex, concave, degenerate, or discon-
tinuous PFs, many algorithms based on reference vectors
may not be able to solve them well or may require con-
siderable computational resources to solve them [23]. To
solve such problems more effectively, we propose our TSP
strategy, which can be combined with other decomposition-
based MOEAs.

The main contributions of this paper can be summarized
as follows.

1. The proposed TSP strategy can be easily integrated
into other algorithms to improve the convergence of the
population.

2. θ -DEA-TSP is proposed, which incorporates the TSP
strategy and considers the diversity and convergence of
the population throughout the whole execution of the
algorithm, instead of focusing on the diversity of the
population at the end of the algorithm, to avoid the algo-
rithm falling into a local optimum in the early stage.
At the same time, the algorithm has lower computa-
tional complexity.

3. This research is expected to provide better solutions for
MaOPs facing similar problems.

The rest of this paper is organized as follows. In Section 2,
we introduce the background of our work, including the
SRV strategy and the previously proposed strategy for the
transformation of the solution locations (TSL), as well as
the motivation for our work. In Section 3, we describe
in detail the framework of the proposed TSP strategy
and θ -DEA-TSP. In Section 4, our experimental results
illustrate the effectiveness of the proposed strategy and
the comprehensive performance of θ -DEA-TSP on MaOPs
with complex PFs. Finally, in Section 5, this paper is
summarized, and future research topics are proposed.

2 Related work

To solve MaOPs with complex PFs, Liang [24] proposed the
SRV and TSL strategies for modifying the reference vectors.

Specifically, the SRV strategy scales the reference
vectors generated via the NBI method on the basis of a
predesignated center vector, to ensure that the reference
vectors can be evenly distributed on PFs that are concave or
convex in nature.

In the NBI method, the number of reference vectors N is
counted as follows:

N = (H+m−1
m−1 ) (2)

where m is the number of objectives, and H represents
the the number of divisions on each axis. The N reference
points are evenly distributed on the entire normalized
hyperplane with m objectives.

Therefore, the reference points are mostly generated near
the boundary, and only a few points are generated on the
inner part of the hyperplane, where H ≥ m. In the SRV
stragety, divides the boundary and inner layers are divided
using values of as H1 and H2, respectively, to generate two-
layer reference points. The N reference vectors are then
generated as follows:

N = (
H1+m−1
m−1 ) + (

H2+m−1
m−1 ) (3)

However, when the intent is to solve an MaOP with a
concave or convex PF, the reference vectors thus generated
still will not be evenly distributed on the PF, especially in the
case of MaOPs. Therefore, a scaling function (SF) is applied
to the original reference vectors, as expressed below:

Wi = Wi◦ri + Vc◦(1 − ri)

||Wi◦ri + Vc◦(1 − ri)|| (4)

ri = pk
i (5)

pi = max|Wi − Vc|
maxN

i=1{max{|Wi − Vc|}}
(6)

Here, i = 1, 2, · · · , N , Wi represents the i-th reference
vector. Vc represents the designated center vector. The ◦
operator denotes the Hadamard product and ||·|| denotes the
calculation of the norm. ri is the scale of the i-th reference
vector, and pi ∈[0,1] represents the similarity between the
i-th reference vector and the center vector.

To solve MaOPs with degenerate and discontinuous PFs,
Liang [24] also proposed the TSL strategy. Specifically,
this strategy consists of comparing the Euclidean distances
between pair of solutions, filtering out less diverse solutions
based on their the Euclidean distances, removeing the over-
crowded solutions and transforming the remaining highly
diverse solutions into a new set of reference vectors to
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deal with the degenerate or discontinuous PF. This strategy
solves the problem that the reference vectors cannot be
evenly distributed on the PF in the case of complex MaOPs.
However, we have found that the TSL strategy considers
only the diversity of the solutions when deleting over-
crowded solutions. It ignores the convergence of the solu-
tions, leading to population degradation. In the proposed
algorithm θ -DEA*, the TSL strategy is applied at the end
of the algorithm to increase the diversity of the solution set.
However, this can cause the algorithm to fall into a local
optimum early.

In this article, to solve the problem that the TSL strat-
egy results in degeneration of the population in the face
of complex MaOPs, we propose the TSP strategy as an
alternative. In the TSP strategy, when a new set of ref-
erence vectors is being constructed two solutions to be
deleted are compared with the current ideal point by cal-
culating the Euclidean distance, and the better solution
is retained to prevent population degradation. In addition,
the TSP strategy is applied to adjust the reference vectors
throughout the whole execution of θ -DEA-TSP, thereby
guaranteeing good diversity of the population while improv-
ing convergence.

3Methodologies

In this section, we describe the TSP strategy. Specifically, to
better deal with MaOPs with degraded or discontinuous PFs,
the positions of solutions are converted into new reference
vectors to prevent the degradation of the population while
maintaining its diversity. This strategy can be integrated
along with the SRV strategy into popular MOEAs based
on reference vectors to enhance the evolutionary search
process.

3.1 Transformation of solution positions based on
the ideal point solution

Oriented toward MaOPs with degenerate or discontinuous
PFs, we propose the TSP strategy to fit an irregular PF by
transforming the position of a solution with good distri-
bution and convergence characteristics to obtain a new
reference vector. Specifically, in the TSP strategy, the dis-
tances between pairwise solutions are initially calculated.
If such a distance is less than a preset threshold, then the
corresponding solution with poorer diversity is selected to
calculate the Euclidean distance between this solution and
the ideal point. Solutions with larger Euclidean distances,
that is, poorer convergence are deleted, and the remaining
solutions are converted into reference vectors.

The TSP process is shown in Algorithm 1. First, the
algorithm initializes a population archive PA as the entire

population, in which each individual is normalized. Second,
the Euclidean distances Dist of the pairwise solutions in
PA are calculated. The Euclidean distance is expressed as
follows:

D(X, Y ) =
√
√
√
√

i=1∑

m

(xi − yi)2

Subject to X, Y ∈ ω

(7)

where X=(x1, x2, · · · , xm)T and Y=(y1, y2, · · · , ym)T are
the decision vectors, and ω is the feasible region in the
decision space. Lines 3-10 of the algorithm filter out the
two solutions corresponding to the minimum Euclidean
distance based on Dist , calculate the Euclidean distances
between these two solutions and the current ideal point,
and delete the solution corresponding to the larger distance.
This process is repeated until Distmin is greater than the
threshold ε. The aim of Lines 11-15 is to find the solution
among the remaining solutions that is nearest to be better
solution of each solution pair processed as described above
and generate a new solution S at the midpoint of the two.
The new solution S is stored in PA, Dist is updated, and the
process is repeated until the number of solutions in PA is N .
In Lines 17-19, the solutions in PA are converted into new
reference vectors to guide the generation of new offspring.

To illustrate the process more clearly, we present an
example in Fig. 2. In Fig. 2(a), the algorithm finds four
points corresponding to two Euclidean distances smaller
than our preset threshold ε, namely, points B and C and
points D and E. Second, the Euclidean distances between
B, C, D and E, and the current ideal point Z∗ are calculated,
as shown in Fig. 2(b). Next, the algorithm deletes the
individuals farther from the ideal point between B and C

and between D and E, that is, B and D, as shown in
Fig. 2(c). Finally, the individuals closest to B and D other
than C and E are found, namely, A and F . New individuals
B ′ and D′ are generated at the midpoints between A and C

and between E and F , as shown in Fig. 2(d).

3.2 The framework of θ -DEA-TSP

The SRV and TSP strategies are two independent strategies
that can be easily integrated into MOEAs. The algorithm
framework is shown in Algorithm 2. First, the population
Pop is initialized and reference vectors W are generated
using the NBI method. In Lines 2-3, the SRV strategy
mentioned in Section 2 is used to scale the reference vectors,
and then, the objective normalization flag is set. Lines 4-
14 are the main part of the algorithm. The purpose of
line 5 is to generate N offspring. Then, based on the
Boolean value of the objective normalization flag, it is
judged whether it is necessary to deal with the problem of
different ranges for each objective. Subsequently, the SRV
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strategy is used to adjust the generated reference vectors. We
introduce a frequency parameter fr to control the frequency
of application of the TSP strategy so that it will be applied
throughout the entire execution of the algorithm instead of
taking effect only at the end of the algorithm. Finally, N

individuals are obtained through environmental selection.

3.3 Computational complexity

Since it is still necessary to calculate the Euclidean distances
between pairs of solutions, the computational complexity
of the TSP strategy is the same as that of the original TSL

strategy, which is O(N2). However, the overall algorithm
frameworks differ between the TSL and TSP strategies.
In the overall framework of θ -DEA∗, the TSL strategy
takes effect every constant generation at the end of
the algorithm, and the algorithm complexity is O(N2 ∗
Tmax − 0.75 ∗ Tmax

C
), where Tmax is the maximum number

of function evaluations (FEs), and C is the preset constant
of the algorithm. In contrast, this article introduces the
frequency parameter fr , and the complexity of θ -DEA-TSP

is O(N2∗ Tmax

fr ∗ Tmax

). In the case of many FEs, the TSL

strategy will take effect frequently. Therefore, in this case,
the complexity of θ -DEA-TSP will be better than that of
θ -DEA∗.

4 Experiment study

In this section, we combine the proposed strategy with
θ -DEA to obtain the resulting θ -DEA-TSP algorithm for
comparison with several typical algorithms: θ -DEA* [24],
ANSGA-III [25], RVEA [14], and the guided nondomi-
nated sorting genetic algorithm (gNSGA-II) [26]. θ -DEA*
is the algorithm proposed by Liang, which integrates the
SRV and TSL strategies into θ -DEA. θ -DEA* is an algo-
rithm based on decomposition. It incorporates the TSL
strategy and selects a set of excellent solutions to guide
the reference vectors for self-adaptation, enabling some
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Fig. 2 An example illustrating
the whole process of screening,
deleting, and generating
solutions in accordance with the
TSP strategy

improvements in solving MaOPs. ANSGA-III is adaptive
in the dynamic deletion and inclusion of new reference
points. It is an algorithm proposed by Deb based on the non-
dominated sorting genetic algorithm version II (NSGA-II)
framework for solving MaOPs, providing denser PFs under
the same computational workload and demonstrating excel-
lent performance in dealing with constrained and uncon-
strained MaOPs. RVEA is also an optimization algorithm
based on decomposition. It applies an adaptive strategy for
dynamic adjustment of the reference vector distribution in
accordance with the objective function, and reference vec-
tor regeneration strategies are used to deal with irregular
PFs. Many papers have proven its effectiveness in solv-
ing MaOPs. gNSGA-II is an evolutionary algorithm based
on dominance that introduces the concept of g-dominance.
Through comparisons with this algorithm, the performance
of the g-dominance method for solving MaOPs has been
proven. Since DTLZ1 is an MOP with a regular PF, we test
the above mentioned 5 algorithms on DTLZ2-7 [27]. Each
test problem is run independently 20 times, and the average
and standard deviation are taken. The above tests are all car-
ried out on the PlatEMO [28] platform. To ensure fairness,
the parameters of the algorithms mentioned above are all set
to their default values in PlatEMO.

In the following sections, we first give the parameter set-
tings for the simulation experiments. Second, we briefly
introduce the evaluation metrics used in the comparative
study. Then, we analyze the influence of the value of the

parameter fr on the performance of our algorithm. Finally,
we compare the experimental results obtained by indepen-
dently running each algorithm 20 times on each test prob-
lem. In these comparisons, the symbol “-” indicates that
θ -DEA-TSP is significantly better than the other algorithm
considered for comparison, the symbol “+” indicates that
θ -DEA-TSP is significantly inferior to the other compared
algorithm, and the symbol “≈” indicates that the result
obtained is not significantly different from that of the other
algorithm.

4.1 Parameter setting

The parameters of all algorithms considered for compari-
son are set as follows: In θ -DEA-TSP, θ -DEA∗, ANSGA-
III, RVEA, and gNSGA-II, the simulated binary crossover
(SBX) operator and polynomial mutation are used to solve
the test problems, and the detailed settings are shown in
Table 1. To ensure fairness, the default parameters values

Table 1 Parameter settings for crossover and mutation

Parameters Values

crossover probability (Pc) 1.0

mutation Probability (Pm) 1/N

cross distribution index (ηc) 20

variation distribution index (ηm) 20
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are used for binary crossover and polynomial mutation. The
relevant parameter settings of the test function are summa-
rized in Table 2, where M is the number of objectives; D is
the number of decision variables, and k is a parameter used
to artificially change the length of a decision variable.

4.2 Performancemetrics

In the experiments, we measure the performance of various
algorithms on the test problems. We use the following three
metrics to evaluate the convergence and comprehensive
performance of the solution set.

(1) Generation Distance (GD) [34]
The GD metric is used to calculate the distance between

the obtained solution set and the true Pareto solution set,
which is defined as follows:

GD =
∑n

i=1(d
p
i )

1

p

n
(8)

where n denotes the number of obtained solutions, di is
the Euclidean distance between the obtained solution i and
its nearest true solution, and p denotes the number of
objectives. The smaller the GD value is, the stronger the
algorithm performance.

(2) Inverse Generation Distance (IGD) [35]
The IGD indicator is calculated as the average value

of the distance from each reference point to the nearest
solution, and can be used to simultaneously evaluate the
convergence and distribution of the solution set calculated
by an algorithm. The indicator is defined as follows:

IGD(P, P ∗) =
∑

x∗∈P ∗
d(x∗, P )

|P ∗| (9)

where P represents the solution set obtained by the algo-
rithm, P ∗ denotes the solution set of the ideal PF, and d(x∗,
P ) denotes the minimum Euclidean distance from x∗ to P .
The smaller the IGD value is, the stronger the algorithm
performance.

(3) Hypervolume Distance (HV) [36]
HV is another way to measure the comprehensive per-

formance. It calculates the volume of the objective space
enclosed by the reference points and the i-th non-dominated
solution. The larger the HV value, the better the comprehen-
sive performance. The metric can be defined as follows:

HV (S) =volume(
|S|⋃

i=1
ai) (10)

where ai is the hypercube formed by the solution x and the
origin of the coordinate axes as diagonal lines. The space
covered by ai is volume(ai).

Notably, the widely used evaluation metric HV is not
selected for the DTLZ problems because HV and IGD show
certain contradictions on concave PFs [37]. For MaOPs whose
PFs are nonconvex, HV has a certain error [36]. The PF of
DTLZ2-6 is concave, as shown in Table 2. GD is an indi-
cator of convergence and, can still measure the convergence
of an algorithm even if the diversity of the solution set is
not good. To prove the effectiveness of the convergence
enhancement strategy, we choose the GD and IGD metrics
to evaluate the results on the DTLZ problems.

4.3 Sensitive analysis of parameter fr

fr is an important parameter in the reference vector adapta-
tion strategy. Its value will affect the frequency of reference
vector adaptation, and thus, in turn, affect the convergence
and distribution of the solution set found by the algorithm.
To study the impact of this parameter on the algorithm per-
formance, with fr=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
and 1, we tested the algorithm on DTLZ2-7 with 6, 8, 10,
and 15 objectives, and all parameters except fr remaining
unchanged. Fig. 3 shows the comprehensive performance
on the test problems when fr takes each value. With tak-
ing different values of fr , the IGD ranking of θ -DEA-TSP
fluctuates greatly on the DTLZ2-7 test problems. However,
it can be seen from Fig. 3 that when fr=0.1 and M=8, θ -
DEA-TSP has the best IGD ranking on the DTLZ2-7 test

Table 2 Parameter settings for the test problems

Problem Feature M D k Function evaluations(FEs)

DTLZ2 Concave [29] 6, 8 ,10 ,15 M+k-1 [30] 10 15000*M

DTLZ3 Concave, Multi-modal [29]

DTLZ4 Concave, Biased [29]

DTLZ5 Concave, Degenerate [31]

DTLZ6 Concave, Degenerate [32]

DTLZ7 Mixed, Disconnected, Multi-modal, Scaled [29] 20

IDTLZ1 Non-concave [12] 5

IDTLZ2 Non-concave [12] 10

IDTLZ5IM Non-concave [33]
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Fig. 3 The IGD performance of
θ -DEA-TSP on the 6-, 8-, 10-,
and 15-objective versions of
DTLZ2-7 when fr is 0.1-1

problems. Therefore, for the comparative experiment, we
choose fr=0.1 as the value of the frequency parameter of
θ -DEA-TSP.

4.4 Comparison experience

4.4.1 Test problems

In this section, θ -DEA-TSP is compared with θ -DEA∗,
ANSGA-III, RVEA, and gNSGA-II on DTLZ2-7 [38],
IDTLZ1-2 [12] and DTLZ5IM [33]. Here, the numbers of
objectives (m values) of DTLZ2-7 are 6, 8, 10, and 15.
Tables 3 and 4 show the performance of the algorithms in
terms of the GD metric and the IGD metric, respectively, on
DTLZ2-7.

Experiments were run 20 times independently on the
DTLZ2-7 test problems to compare the convergence
performance of θ -DEA-TSP, θ -DEA∗, ANSGA-III, RVEA,
and gNSGA-II as represented by the GD metric. The mean
and variance of the GD values are listed in Table 3. In
Table 3, the average GD value of θ -DEA-TSP is better than
those of the other algorithms on 50% of the 24 problems
tested. In particular, θ -DEA-TSP shows obviously superior
performance on DTLZ4-7. Especially for the concave and
multipeak DTLZ6 problem [39], the results for the 6-, 8-,
10-, and 15-objective versions of this problem are all better
than those of the other four algorithms. On 8-objecitve
DTLZ6, the GD value of θ -DEA-TSP is 64% lower than
that of the second-ranking algorithm θ -DEA∗. On the 10-
objective DTLZ6 problem, the GD value of θ -DEA-TSP
is 54% lower than that of the second-ranking algorithm
θ -DEA∗.

The experimental results in terms of the IGD values on
DTLZ2-7 are shown in Table 4. We can see that when

solving DTLZ4-7, θ -DEA-TSP exhibits excellent perfor-
mance. Even when the number of objectives is large, the
IGD value of this algorithm is still better than those of the
other algorithms. It is not difficult to see that θ -DEA-TSP
is highly very competitive on such problems. In addition, it
can be seen from the experimental results that RVEA shows
excellent performance on DTLZ2 and DTLZ3 and on other
test problems with regular PFs. However, on DTLZ5-7,
which have discontinuous or degraded PFs, the performance
of our algorithm is significantly better than the other four,
thus proving the effectiveness and pertinence of the TSP
strategy proposed in this article. To more intuitively illus-
trate the performance of the five algorithms on DTLZ2-7
for different numbers of objectives, we plot their ranking
histograms in Fig. 4. The x-axis represents the number of
objectives, the y-axis represents the algorithm, and the z-
axis represents the average ranking. The lower the column
height in this figure, the higher the ranking of the corre-
sponding algorithm, and the better its performance. We can
see that the performance of the θ -DEA-TSP and RVEA
algorithms is relatively stable, while the ranking of θ -DEA∗
fluctuates greatly for problem with 8 objectives and 15
objectives. The performance of the ANSGA-III worsens as
the number of objectives increases. Compared with the other
four algorithms, gNSGA-II performs poorly on these prob-
lems. The optimization results of the 5 compared algorithms
for 15-objective DTLZ5 and 6-objective DTLZ7 are shown
in Figs. 5 and 6.

θ -DEA* selects excellent solution sets only in the mid-
dle and late stages of the algorithm and generates reference
vectors to guide the algorithm. A strategy for screening the
solution sets that places too much emphasis on diversity
may result in the degradation of the solution set. RVEA opti-
mizes the reference vectors globally, which is not beneficial
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Table 3 The average GD values of the θ -DEA-TSP algorithm and other algorithms on the DTLZ2-7 test problems

Problem M θ -DEA-TSP Mean(std) θ -DEA∗ Mean(std) RVEA Mean(std) ANSGA-III Mean(std) gNSGA-II Mean(std)

DTLZ2 6 7.6804e-3 (1.87e-4) 8.3461e-3 - (8.91e-5) 9.0739e-3 - (6.15e-6) 8.2397e-3 - (3.92e-4) 2.0645e-1 - (3.37e-2)

DTLZ2 8 8.0090e-3 (9.00e-4) 9.0228e-3 - (6.79e-4) 2.3838e-2 - (1.19e-5) 1.1489e-2 - (1.48e-3) 2.4273e-1 - (1.50e-3)

DTLZ2 10 7.8146e-3 (1.18e-3) 7.4077e-3 - (9.21e-4) 9.4849e-4 + (1.74e-3) 1.0894e-2 - (6.68e-3) 2.1609e-1 - (1.01e-2)

DTLZ2 15 3.2867e-2 (6.41e-3) 2.0690e-2 + (5.17e-5) 1.5044e-2 + (1.80e-2) 4.0926e-2 - (6.33e-3) 2.2068e-1 - (5.25e-3)

DTLZ3 6 4.6792e-1 (1.09e+0) 8.1135e-3 + (2.12e-4) 9.0896e-3 + (9.18e-5) 1.3030e+0 - (2.19e+0) 1.5449e+2 - (8.22e+0)

DTLZ3 8 9.5252e-1 (1.52e+0) 1.6177e-1 + (5.94e-1) 2.3772e-2 - (1.24e-4) 7.5663e+0 - (3.16e+0) 1.7710e+2 - (4.75e+0)

DTLZ3 10 6.3082e-1 (1.25e+0) 9.1695e-2 + (3.75e-1) 1.7666e-3 + (1.68e-3) 9.0507e+0 - (5.43e+0) 1.7365e+2 - (3.58e+0)

DTLZ3 15 1.9341e+0 (3.26e+0) 1.2888e+0 - (2.99e+0) 2.5969e-2 + (2.84e-2) 1.8333e+1 - (8.62e+0) 1.7958e+2 - (2.78e+0)

DTLZ4 6 7.3612e-3 (2.19e-4) 8.3169e-3 - (6.69e-5) 8.8159e-3 - (3.35e-4) 7.8012e-3 - (1.23e-3) 1.4819e-2 - (1.79e-3)

DTLZ4 8 6.5104e-3 (1.28e-3) 7.8258e-3 - (7.84e-4) 2.3145e-2 - (8.82e-4) 1.2695e-2 - (4.52e-3) 2.8101e-2 - (4.07e-4)

DTLZ4 10 8.5447e-3 (1.39e-3) 7.9675e-3 - (9.96e-4) 5.9096e-3 + (4.33e-3) 9.7986e-3 - (5.38e-3) 3.9587e-2 - (1.33e-2)

DTLZ4 15 2.2079e-2 (1.38e-3) 2.0660e-2 + (4.88e-5) 3.4487e-2 - (1.05e-2) 2.6342e-2 - (2.90e-3) 4.9793e-2 - (1.70e-2)

DTLZ5 6 8.0904e-2 (3.31e-2) 1.2930e-1 - (4.05e-2) 3.0446e-1 - (1.05e-1) 1.0090e-1 - (1.67e-2) 2.2109e-1 - (3.13e-2)

DTLZ5 8 9.9914e-2 (2.51e-2) 1.8842e-1 - (2.38e-2) 6.5053e-2 + (1.62e-1) 1.4077e-1 - (1.70e-2) 2.6245e-1 - (3.39e-3)

DTLZ5 10 1.0208e-1 (1.71e-2) 1.9744e-1 - (2.46e-2) 2.7461e-1 - (2.95e-1) 1.5860e-1 - (3.74e-2) 2.5777e-1 - (5.06e-3)

DTLZ5 15 1.3419e-1 (4.79e-2) 1.0788e-1 + (5.28e-2) 5.7012e-4 + (1.23e-3) 1.6419e-1 - (5.51e-2) 2.7900e-1 - (3.49e-3)

DTLZ6 6 2.1564e-1 (3.41e-2) 3.4821e-1 - (6.61e-2) 4.9344e-1 - (5.43e-2) 3.4803e-1 - (4.74e-2) 9.5961e-1 - (1.49e-2)

DTLZ6 8 2.7804e-1 (6.07e-2) 4.5814e-1 - (6.46e-2) 8.9401e-1 - (1.15e-1) 5.8214e-1 - (1.01e-1) 9.9223e-1 - (9.76e-3)

DTLZ6 10 2.8410e-1 (4.34e-2) 4.3772e-1 - (5.94e-2) 4.8703e-1 - (8.98e-2) 7.5169e-1 - (1.69e-1) 9.9092e-1 - (6.24e-3)

DTLZ6 15 4.4762e-1 (7.97e-2) 4.8621e-1 - (1.03e-1) 9.7167e-1 - (1.05e+0) 6.5784e-1 - (5.20e-1) 1.0059e+0 - (7.94e-3)

DTLZ7 6 1.0939e-2 (3.30e-3) 9.6202e-3 + (1.28e-3) 3.3385e-2 - (6.21e-3) 2.5260e-2 - (5.51e-3) 3.9332e-1 - (3.82e-1)

DTLZ7 8 1.9700e-2 (1.63e-3) 2.5023e-2 - (3.31e-3) 2.9006e-2 - (3.71e-3) 5.3229e-2 - (1.29e-2) 7.9152e-1 - (1.98e-1)

DTLZ7 10 3.0158e-2 (3.32e-3) 3.5813e-2 - (3.39e-3) 7.5955e-2 - (4.48e-3) 5.3000e-2 - (1.12e-2) 3.1994e+0 - (3.10e-1)

DTLZ7 15 1.5797e-1 (3.02e-2) 1.4210e-1 + (9.64e-3) 1.7819e-1 - (4.35e-2) 1.2366e-1 + (2.08e-2) 5.7681e+0 - (6.91e-1)

+/-/= 8/16/0 8/16/0 1/23/0 0/24/0

For each instance, the best average value among the algorithms is indicated bold

for subregion-specific solution sets. Although ANSGA-III
modifies the traditional concept of dominance applied in
NSGA-II, it also introduces extreme point calculation and
target normalization strategies to enhance the convergence
of the algorithm. However, the experimental results are still
not very good. When θ -DEA-TSP solves a problem whose
PF has degenerate or discontinuous characteristics, it will
dynamically screen the excellent solution set throughout the
whole process, delete locally inferior solutions, and gener-
ate reference vectors from the results to better guide the
evolution of the algorithm. Hence, the θ -DEA-TSP algo-
rithm performs better on DTLZ2-7 in terms of both the GD
and IGD evaluation metrics.

In Fig. 5, on the one hand, we can see that the con-
vergence of gNSGA-II, ANSGA-III, and θ -DEA∗ is poor,
which may be because they lack convergence improve-
ment methods or place too much emphasis on the diversity
of the solution set. On the other hand, RVEA has poor

diversity on this problem, which may be because, in high-
dimensional situations, its current reference vectors tend to
be excessively concentrated in a certain location, and its
adaptive reference vector strategy dose not improve this sit-
uation. In comparison, θ -DEA-TSP does not fully converge,
but because it considers both convergence and diversity,
it performs significantly better than the algorithms. In Fig. 6,
with an increase in the number of dimensions, the selec-
tion pressure of the dominance-based algorithms decreases
sharply, preventing them from converging to the optimal
PF, and gNSGA-II does not fully converge. In contrast,
the convergence and diversity performance of θ -DEA-TSP,
θ -DEA∗, RVEA and ANSGA-III on 6-objective DTLZ7
are all good, and θ -DEA-TSP is slightly better than the
other two.

To further analyze and compare the experimental results,
we present boxplots of the experimental results for some
test problems, namely, 8-objective DTLZ5, 10-objective
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Table 4 The average IGD values of the θ -DEA-TSP algorithm and other algorithms on the DTLZ2-7 test problems

Problem M θ -DEA-TSP Mean(std) θ -DEA∗ Mean(std) RVEA Mean(std) ANSGA-III Mean(std) gNSGA-II Mean(std)

DTLZ2 6 3.1761e-1 (1.80e-3) 3.1940e-1 = (1.47e-3) 2.7903e-1 + (2.27e-5) 3.2338e-1 = (5.46e-2) 1.6406e+0 - (3.38e-1)

DTLZ2 8 4.2307e-1 (2.51e-3) 4.2324e-1 = (2.04e-3) 3.8701e-1 + (5.85e-5) 6.0857e-1 - (5.82e-2) 2.3477e+0 - (1.21e-1)

DTLZ2 10 5.3686e-1 (4.57e-3) 5.3706e-1 = (2.67e-3) 5.0066e-1 + (1.38e-3) 6.4260e-1 - (9.55e-2) 1.6684e+0 - (4.83e-1)

DTLZ2 15 6.6251e-1 (3.39e-2) 6.4946e-1 = (2.34e-4) 7.3878e-1 - (1.21e-1) 9.3486e-1 - (2.47e-2) 1.4094e+0 - (1.23e-1)

DTLZ3 6 3.8954e-1 (3.78e-2) 3.2050e-1 + (3.36e-3) 2.8022e-1 + (8.79e-4) 3.7299e-1 = (9.03e-2) 8.3693e+2 - (1.96e+2)

DTLZ3 8 5.1822e-1 (5.39e-2) 4.3925e-1 + (1.95e-2) 3.8842e-1 + (1.28e-3) 1.5925e+0 - (1.14e+0) 1.0060e+3 - (2.14e+2)

DTLZ3 10 6.1182e-1 (4.75e-2) 5.7047e-1 + (6.46e-2) 5.0290e-1 + (3.79e-3) 1.7893e+0 - (1.34e+0) 7.4378e+2 - (1.81e+2)

DTLZ3 15 9.8920e-1 (6.50e-2) 1.0046e+0 = (7.81e-2) 7.7462e-1 + (1.38e-1) 1.1239e+0 - (5.40e-2) 7.2881e+2 - (1.10e+2)

DTLZ4 6 3.1837e-1 (9.11e-4) 3.1909e-1 = (9.63e-4) 3.3310e-1 - (7.55e-2) 4.0090e-1 - (1.31e-1) 5.2182e-1 - (9.75e-2)

DTLZ4 8 4.3170e-1 (2.21e-2) 4.3564e-1 = (2.59e-2) 4.3358e-1 = (5.69e-2) 5.8987e-1 - (9.60e-2) 6.1214e-1 - (3.67e-3)

DTLZ4 10 5.4030e-1 (1.01e-2) 5.4102e-1 = (1.80e-2) 5.4490e-1 = (5.71e-2) 6.5484e-1 - (9.85e-2) 6.4147e-1 - (4.04e-2)

DTLZ4 15 6.5272e-1 (4.37e-3) 6.4952e-1 + (1.22e-4) 7.9036e-1 - (3.81e-2) 9.3220e-1 - (3.68e-2) 7.6786e-1 - (3.91e-2)

DTLZ5 6 1.1595e-1 (3.72e-2) 1.6814e-1 - (7.34e-2) 3.9731e-1 - (6.32e-2) 1.9949e-1 - (6.95e-2) 1.3561e+0 - (3.73e-1)

DTLZ5 8 2.1051e-1 (6.16e-2) 2.9780e-1 - (7.72e-2) 5.8335e-1 - (2.03e-1) 4.9863e-1 - (1.78e-1) 2.0176e+0 - (2.37e-1)

DTLZ5 10 2.2635e-1 (5.06e-2) 2.9674e-1 - (7.93e-2) 4.4081e-1 - (1.74e-1) 4.6443e-1 - (2.17e-1) 1.8984e+0 - (2.06e-1)

DTLZ5 15 2.2745e-1 (8.24e-2) 2.3108e-1 = (8.01e-2) 6.5999e-1 - (1.54e-1) 2.6038e-1 = (1.31e-1) 2.4692e+0 - (1.16e-1)

DTLZ6 6 1.9600e-1 (6.69e-2) 3.4520e-1 - (7.92e-2) 2.7970e-1 - (6.12e-2) 4.9770e-1 - (2.37e-1) 8.3732e+0 - (5.36e-1)

DTLZ6 8 2.6892e-1 (8.04e-2) 3.9209e-1 - (7.16e-2) 2.7590e-1 = (8.88e-2) 2.7197e+0 - (1.01e+0) 8.5943e+0 - (4.63e-1)

DTLZ6 10 3.1422e-1 (1.14e-1) 4.0310e-1 - (8.38e-2) 2.0154e-1 + (5.22e-2) 4.4331e+0 - (1.67e+0) 8.6551e+0 - (3.37e-1)

DTLZ6 15 3.9969e-1 (1.08e-1) 4.1291e-1 = (1.16e-1) 4.4277e-1 - (2.18e-1) 1.9507e+0 - (1.72e+0) 8.8434e+0 - (5.11e-1)

DTLZ7 6 5.1649e-1 (1.23e-1) 5.3737e-1 - (8.66e-2) 9.8615e-1 - (1.81e-1) 5.3433e-1 - (6.27e-2) 1.3045e+0 - (9.17e-1)

DTLZ7 8 9.7826e-1 (2.28e-1) 1.3852e+0 - (3.09e-1) 1.7811e+0 - (2.27e-1) 1.2882e+0 - (2.36e-1) 1.3591e+0 - (1.48e-1)

DTLZ7 10 1.5927e+0 (4.10e-1) 2.0604e+0 - (3.51e-1) 3.4305e+0 - (4.59e-1) 1.8892e+0 - (3.64e-1) 1.3013e+1 - (3.04e+0)

DTLZ7 15 8.9100e+0 (1.58e+0) 1.0059e+1 - (7.00e-1) 6.3893e+0 + (1.44e+0) 1.0516e+1 - (6.44e-1) 2.7328e+1 - (1.13e+1)

+/-/= 4/10/10 9/12/3 0/21/3 0/24/0

For each instance, the best average value among the algorithms is indicated in bold

DTLZ5, 8-objective DTLZ6, and 10-objective DTLZ7 in
Fig. 7. The average IGD values of our algorithm on 8-
objective DTLZ5 and 10-objective DTLZ5 are significantly
better than those of the other four algorithms. It is not diffi-
cult to see in Fig. 6(a) and (b) that the stability of θ -DEA-
TSP is also significantly better than that of the other four
algorithms. It can be seen from the boxplot for 8-objectives
DTLZ6 that the IGD values of θ -DEA-TSP, θ -DEA*, and
RVEA are relatively close and the fluctuations of the IGD
values of these three algorithms are relatively small. The
boxplot for 10-objective DTLZ7 shows that, except for the
outliers, the IGD values of θ -DEA-TSP are relatively close
to those of ANSGA-III. Among the compared algorithms,
the fluctuation in the performance of gNSGA-II on this test
problem is particularly obvious. In addition, RVEA yields
too many outliers, although the fluctuation in the IGD values
is similar to that of the other three algorithms.

The experimental results for the IGD values on DTLZ5IM
and IDTLZ1-2 for all dimensionalities are shown in Table 5.
For these test problems in all numbers of dimensions,
58.33% of the experimental results of θ -DEA-TSP are better
than those of the other algorithms considered for compar-
ison. Especially for DTLZ5IM and 6-objective IDTLZ2,
θ -DEA-TSP shows excellent performance. A feature of
IDTLZ1-2 is that many reference points created on the stan-
dardized hyperplane do not have a Pareto optimal advan-
tage. θ -DEA-TSP, θ -DEA* and ANSGA-III all benefit
from their adaptive strategies for adaptively screening refer-
ence points and reallocating them to obtain Pareto-optimal
solutions. Therefore, they perform well on these two test
problems. However, gNSGA-II and RVEA lack strategies
for local adaptation, leading to unsatisfactory results.

The experimental results for the HV values on DTLZ5IM
and IDTLZ1-2 for each dimensionality are shown in Table 6.
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Fig. 4 Bar chart of the average
rankings of the five algorithms
considered for comparison in
terms of the IGD metric on the
6-, 8-, 10-, and 15-objective
versions of the DTLZ2-7 test
problems

The experimental results of θ -DEA-TSP are better than
those of the other compared algorithms on half of these test
instances. The PF of DTLZ5IM is nonconvex. By comparing
the experimental HV and IGD results, it can be seen that the

HV and IGD values may contradict each other in the testing
of the PF. Nearly half of the HV values for gNSGA-II are
0, because all obtained solutions do not form a supervolume
with the lowest point.

Fig. 5 The solutions obtained by the five compared algorithms on 15-objective DTLZ5
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Fig. 6 The solutions obtained by the five compared algorithms on 6-objective DTLZ7

4.4.2 Real world problem

To verify the performance of the proposed algorithm on real
problems, we also conduct a comparative analysis of this
algorithm on the multipoint distance minimization problem
(M-DMP) [40]. The problem of minimizing the distance
between a point and a set of predetermined fixed target points
has many advanced applications in navigation and layout
optimization [30]. In this section, the D value of the problem
is set to 2, and the upper and lower bounds are 100 and -
100 [40], respectively. The other experimental parameters
are the same as above. For real problems, we usually choose
HV to measure the quality of the solution set.

The experimental results for versions of M-MDP with
different numbers of dimensions are shown in Table 7.
It can be seen that the proposed algorithm performs very
well on this real problem, and the experimental results of
gNSGA-II are also surprisingly good, perhaps because the
changes to the traditional concept of dominance introduced
by the g-dominance concept applied in this algorithm allow
it to perform only slightly worse than θ -DEA-TSP on this
problem. In contrast, because θ -DEA* and ANSGA-III
sacrifice their convergence to preserve the diversity of the
solution set, their solution sets do not form a hypervolume
with the reference point of the HV metric for 15-objective
M-DMP, resulting in a result of 0.

Fig. 7 Boxplots of the IGD values of the five compared algorithms on the 8-objective DTLZ5, 10-objective DTLZ5, 8-objective DTLZ6, and
10-objective DTLZ7 test problems
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Table 5 The average IGD values of the θ -DEA-TSP algorithm and other algorithms on other many-objective test problems

Problem M θ -DEA-TSP Mean(std) θ -DEA* Mean(std) RVEA Mean(std) ANSGA-III Mean(std) gNSGA-II Mean(std)

DTLZ5IM 6 3.9123e-2 (4.80e-2) 1.1640e-1 - (7.86e-2) 1.4799e-1 - (1.95e-1) 4.0074e-2 = (3.00e-2) 1.9450e+0 - (1.15e+0)

DTLZ5IM 8 9.2284e-2 (1.01e-1) 1.0393e-1 - (6.40e-2) 3.6694e-1 - (2.92e-1) 1.1781e-1 - (9.19e-2) 6.2592e+1 - (3.69e+1)

DTLZ5IM 10 1.6796e-1 (1.51e-1) 1.8885e-1 - (1.22e-1) 2.2170e-1 = (1.95e-1) 3.9733e-1 - (1.57e-1) 9.1263e+1 - (3.13e+1)

DTLZ5IM 15 3.1388e-1 (4.14e-2) 3.2713e-1 = (1.54e-1) 6.0368e-1 - (2.25e-1) 4.9579e-1 - (2.16e-1) 1.4307e+2 - (4.61e+1)

IDTLZ1 6 1.4453e-1 (3.05e-2) 1.2669e-1 + (6.15e-3) 2.3069e-1 - (3.48e-2) 1.1759e-1 + (3.32e-3) 5.1524e-1 - (4.63e-1)

IDTLZ1 8 1.6993e-1 (1.68e-2) 1.6479e-1 = (4.51e-3) 2.7067e-1 - (2.43e-2) 1.5655e-1 = (1.51e-3) 7.5478e-1 - (5.47e-1)

IDTLZ1 10 1.6084e-1 (4.72e-3) 1.8035e-1 - (7.78e-3) 3.1158e-1 - (3.63e-2) 1.6826e-1 - (7.27e-3) 7.3982e-1 - (5.12e-1)

IDTLZ1 15 1.8314e-1 (4.48e-3) 1.8668e-1 = (9.20e-3) 3.4481e-1 - (5.03e-2) 1.9139e-1 - (8.08e-3) 7.6855e-1 - (5.61e-1)

IDTLZ2 6 3.7507e-1 (1.17e-2) 4.6668e-1 - (1.52e-2) 4.7025e-1 - (1.01e-2) 4.0559e-1 - (1.21e-2) 7.2202e-1 - (8.31e-2)

IDTLZ2 8 6.6488e-1 (1.63e-2) 6.3489e-1 + (1.44e-2) 7.7892e-1 - (3.42e-2) 5.8464e-1 + (1.31e-2) 7.6956e-1 - (4.99e-2)

IDTLZ2 10 7.1381e-1 (5.89e-3) 7.4165e-1 - (1.48e-2) 7.4738e-1 - (2.01e-2) 7.0176e-1 + (1.23e-2) 7.9541e-1 - (4.75e-2)

IDTLZ2 15 8.5849e-1 (9.53e-3) 8.5484e-1 = (1.17e-2) 9.4955e-1 - (3.34e-2) 8.5090e-1 = (6.53e-3) 8.2826e-2 + (3.41e-2)

+/-/= 2/6/4 0/11/1 3/6/3 1/11/0

For each instance, the best average value among the algorithms is indicated in bold

Table 6 The average HV values of the θ -DEA-TSP algorithm and other algorithms on other many-objective test problems

Problem M θ -DEA-TSP Mean(std) θ -DEA* Mean(std) RVEA Mean(std) ANSGA-III Mean(std) gNSGA-II Mean(std)

DTLZ5IM 6 1.4278e-3 (4.69e-4) 1.5674e-3 + (4.33e-4) 1.5375e-3 + (1.44e-3) 1.4196e-3 = (4.89e-4) 0.0000+0 - (0.00e+0)

DTLZ5IM 8 1.8510e-5 (8.26e-6) 2.0041e-5 + (6.47e-6) 2.8678e-5 + (1.60e-5) 1.6030e-5 - (2.55e-6) 0.0000e+0 - (0.00e+0)

DTLZ5IM 10 6.2954e-8 (2.37e-8) 6.4827e-8 + (1.92e-8) 3.2441e-8 - (5.00e-8) 5.9923e-8 - (1.05e-8) 0.0000e+0 - (0.00e+0)

DTLZ5IM 15 6.6912e-17 (4.33e-17) 7.8683e-17 + (5.29e-17) 1.6674e-16 + (1.86e-16) 8.9989e-17 + (3.99e-17) 0.0000e+0 - (0.00e+0)

IDTLZ1 6 2.5564e-5 (2.39e-5) 2.1445e-5 - (8.34e-6) 4.8517e-6 - (6.28e-6) 2.9778e-5 + (8.87e-6) 1.9836e-5 - (6.58e-5)

IDTLZ1 8 8.9610e-8 (5.74e-8) 1.3295e-7 + (4.28e-8) 9.4814e-9 - (7.13e-9) 1.5796e-7 + (7.09e-8) 0.0000e+0 - (0.00e+0)

IDTLZ1 10 7.8832e-10 (8.95e-10) 3.9173e-10 - (1.38e-10) 1.6812e-11 + (2.70e-11) 5.5478e-10 - (2.82e-10) 0.0000e+0 - (0.00e+0)

IDTLZ1 15 3.1001e-16 (4.63e-16) 1.0787e-16 - (1.59e-16) 2.3351e-18 - (3.31e-18) 2.0367e-16 - (5.45e-16) 0.0000e+0 - (0.00e+0)

IDTLZ2 6 5.6369e-2 (1.57e-2) 4.2315e-2 - (1.01e-2) 1.8627e-2 - (8.79e-3) 2.5565e-2 - (1.15e-2) 2.3267e-4 - (5.44e-4)

IDTLZ2 8 5.6218e-3 (1.19e-3) 5.5051e-3 - (1.18e-3) 7.3479e-4 - (7.15e-4) 3.9949e-3 - (2.11e-3) 4.6283e-6 - (1.22e-5)

IDTLZ2 10 4.9093e-4 (9.72e-5) 4.2846e-4 - (6.13e-5) 2.6033e-4 - (1.42e-4) 4.5314e-4 - (1.02e-4) 5.5942e-7 - (9.43e-7)

IDTLZ2 15 4.7652e-7 (1.17e-7) 4.5133e-7 - (1.30e-7) 1.5472e-8 - (1.88e-8) 4.5781e-7 - (1.21e-7) 8.4903e-11 - (2.52e-10)

+/-/= 5/7/0 4/8/0 3/8/1 0/12/0

For each instance, the best average value among the algorithms is indicated in bold

Table 7 The average HV values of the θ -DEA-TSP algorithm and other algorithms on M-DMP

Problem M θ -DEA-TSP Mean(std) θ -DEA* Mean(std) RVEA Mean(std) ANSGA-III Mean(std) gNSGA-II Mean(std)

M-DMP 6 8.6271e+0 (2.49e+0) 7.7359e+0 - (1.76e+0) 5.3380e+0 - (3.28e+0) 7.1251e+0 - (2.36e+0) 8.0056e+0 - (8.89e-1)

M-DMP 8 1.4214e+1 (6.14e+0) 1.4136e+1 = (5.83e+0) 6.1359e+0 - (5.18e+0) 1.0914e+1 - (4.60e+0) 1.3143e+1 - (3.49e+0)

M-DMP 10 2.6582e+1 (2.13e+1) 1.6852e+1 - (9.97e+0) 6.9134e+0 - (9.28e+0) 1.4776e+1 - (1.16e+1) 2.2878e+1 - (6.12e+0)

M-DMP 15 3.2693e+1 (9.78e+1) 0.0000e+0 - (0.00e+0) 1.0481e+1 - (1.46e+1) 0.0000e+0 - (0.00e+0) 5.9407e+1 + (3.81e+1)

+/-/= 0/3/1 0/4/0 0/4/0 1/3/0

For each instance, the best average value among the algorithms is indicated in bold
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5 Conclusion

We propose the TSP strategy to balance the convergence and
diversity of the population during evolution and correspond-
ingly propose the θ -DEA-TSP algorithm. The proposed
algorithm has a lower computational cost on MaOPs, and
can better solve problems with complex PFs and balance the
convergence and diversity of the solution set throughout the
whole execution of the algorithm. For classic test problems,
recent test problems and a real world problem with differ-
ent numbers of objectives, the GD, IGD and HV values are
better than those of other algorithms on at least half the
tested problem instances, although some of the algorithms
considered for comparison already perform extremely well
on MaOPs, thereby confirming the effectiveness of the pro-
posed MOEA. However, as described by Aggarwal [41], in
the case of high dimensions, the Euclidean distance is not
a good metric. Therefore, we must admit that in MaOPs,
the proposed TSP strategy will still have shortcomings. In
future work, we need to find another method of measur-
ing the diversity and convergence between individuals to
replace the calculation of the Euclidean distance in the TSP
strategy.

Acknowledgements This work was supported in part by Natural
Science Foundation of Zhejiang Province (LQ20F020014), in part
by the National Natural Science Foundation of China (61472366,
61379077), in part by the Natural Science Foundation of Zhejiang
Province (LY17F020022), in part by Key Projects of Science and
Technology Development Plan of Zhejiang Province (2018C01080).

Declarations

Human participants This study does not contain any studies with
human participants or animals performed by any of the authors.

Conflict of Interests The authors declare that they have no conflict of
interest.

References

1. Alkebsi K, Du W (2021) Surrogate-assisted multi-objective
particle swarm optimization for the operation of co2 capture using
vpsa. Energy 224(3):120078

2. Tawhid MA, Savsani V (October 2018) A novel multi-objective
optimization algorithm based on artificial algae for multi-objective
engineering design problems. Appl Intell 48(10):3762?3781.
https://doi.org/10.1007/s10489-018-1170-x

3. Mirjalili S, Jangir P, Saremi S (January 2017) Multi-objective
ant lion optimizer: A multi-objective optimization algorithm for
solving engineering problems. Appl Intell 46(1):79?-95. https://
doi.org/10.1007/s10489-016-0825-8

4. Khan I, Maiti MK, Basuli K (2020) Multi-objective traveling
salesman problem: an abc approach. Appl Intell, 2

5. Li H, Deb K, Zhang Q, Suganthan PN, Chen L (2019) Comparison
between moea/d and nsga-iii on a set of many and multi-objective
benchmark problems with challenging difficulties. Swarm and
Evolutionary Computation

6. Bugingo E, Zhang D, Chen Z, Zheng W (2020) Towards
decomposition based multi-objective workflow scheduling for big
data processing in clouds. Clust Comput, pp 1–25

7. Panagant N, Pholdee N, Bureerat S, Yildiz AR, Mirjalili S (2021)
A comparative study of recent multi-objective metaheuristics
for solving constrained truss optimisation problems. Archives of
Computational Methods in Engineering, pp 1–17

8. Lu C, Gao L, Pan Q, Li X, Zheng J (2019) A multi-objective
cellular grey wolf optimizer for hybrid flowshop scheduling
problem considering noise pollution. Appl Soft Comput 75:728–
749

9. Liang Z, Hu K, Ma X, Zhu Z (2019) A many-objective evolu-
tionary algorithm based on a two-round selection strategy. IEEE
Transactions on Cybernetics, PP(99)

10. Zhou J, Yao X, Gao L, Hu C (2021) An indicator and adaptive
region division based evolutionary algorithm for many-objective
optimization. Appl Soft Comput 99:106872

11. Luo J, Huang X, Yang Y, Li X, Feng J (2019) A many-objective
particle swarm optimizer based on indicator and direction vectors
for many-objective optimization. Inf Sci, 514

12. Fellow, IEEE, Jain H, Deb K (2014) An evolutionary many-
objective optimization algorithm using reference-point based
nondominated sorting approach, part ii: Handling constraints and
extending to an adaptive approach. IEEE Trans Evol Comput
18(4):602–622

13. Zhang Q, Li H (2007) Moea/d: A multiobjective evolutionary
algorithm based on decomposition. IEEE Trans Evol Comput
11(6):712–731. https://doi.org/10.1109/TEVC.2007.892759

14. Cheng R, Jin Y, Olhofer M, Sendhoff B (2016) A reference vector
guided evolutionary algorithm for many-objective optimization.
IEEE Trans Evol Comput, 20(5)

15. Liu H-L, Gu F, Cheung Y (2010) T-moea/d: Moea/d with objective
transform in multi-objective problems. In: 2010 international
conference of information science and management engineering,
vol 2, IEEE, pp 282–285

16. Das BI, Dennis JE (1998) Normal boundary intersection: A
new method for generating pareto optimal points in multicriteria
optimization problems

17. Pan L, He C, Tian Y, Su Y, Zhang X (2017) A region divi-
sion based diversity maintaining approach for many-objective
optimization. Integrated Computer-Aided Engineering 24(3):279–
296

18. Jiang S, Yang S (2015) An improved multiobjective optimization
evolutionary algorithm based on decomposition for complex
pareto fronts. IEEE transactions on cybernetics 46(2):421–437

19. Dong Z, Wang X, Tang L (2020) Moea/d with a self-adaptive
weight vector adjustment strategy based on chain segmentation.
Inf Sci 521:209–230

20. Qi Y, Ma X, Liu F, Jiao L, Sun J, Wu J (2014) Moea/d with
adaptive weight adjustment. Evolutionary computation 22(2):231–
264

21. Gu F, Cheung Y-M (2017) Self-organizing map-based weight
design for decomposition-based many-objective evolutionary
algorithm. IEEE Trans Evol Comput 22(2):211–225

22. Wu M, Li K, Kwong S, Zhang Q, Zhang J (2018) Learning to
decompose: A paradigm for decomposition-based multiobjective
optimization. IEEE Trans Evol Comput 23(3):376–390

7436 L. Zhang et al.

https://doi.org/10.1007/s10489-018-1170-x
https://doi.org/10.1007/s10489-016-0825-8
https://doi.org/10.1007/s10489-016-0825-8
https://doi.org/10.1109/TEVC.2007.892759


23. Zhang Q, Zhu W, Liao B, Chen X, Cai L (2018) A modified pbi
approach for multi-objective optimization with complex pareto
fronts. Swarm and Evolutionary Computation 40:216–237

24. Liang Z, Hou W, Huang X, Zhu Z (2019) Two new reference
vector adaptation strategies for many-objective evolutionary
algorithms. Inf Sci 483:332–349

25. Jain H, Deb K (2013) An evolutionary many-objective optimiza-
tion algorithm using reference-point based nondominated sorting
approach, part ii: Handling constraints and extending to an adap-
tive approach. IEEE Transactions on evolutionary computation
18(4):602–622

26. Molina J, Santana LV, Hernández-Dı́az AG, Coello CAC,
Caballero R (2009) g-dominance: Reference point based dom-
inance for multiobjective metaheuristics. Eur J Oper Res
197(2):685–692

27. Deb K, Thiele L, Laumanns M, Zitzler E (2002) Scalable multi-
objective optimization test problems. In: Proceedings of the
2002 Congress on Evolutionary Computation. CEC’02 (Cat. No.
02TH8600), vol 1, IEEE, pp 825–830

28. Tian Y, Cheng R, Zhang X, Jin Y (2017) Platemo: A
matlab platform for evolutionary multi-objective optimization
[educational forum]. IEEE Comput Intell Mag 12(4):73–87

29. Yuan Y, Xu H, Wang B, Yao X (2015) A new dominance relation-
based evolutionary algorithm for many-objective optimization.
IEEE Trans Evol Comput 20(1):16–37

30. Tian Y, Cheng R, Zhang X, Su Y, Jin Y (2018) A strength-
ened dominance relation considering convergence and diversity
for evolutionary many-objective optimization. Evolutionary Com-
putation, IEEE Transactions on

31. Guo X, Wang X, Wei Z (2015) Moea/d with adaptive weight
vector design. In: 2015 11th international conference on
computational intelligence and security (CIS), IEEE, pp 291–294

32. Tian Y, Cheng R, Zhang X, Cheng F, Jin Y (2017) An indicator-
based multiobjective evolutionary algorithm with reference point
adaptation for better versatility. IEEE Trans Evol Comput
22(4):609–622

33. Deb K, Saxena DK (2005) On finding pareto-optimal solutions
through dimensionality reduction for certain large-dimensional
multi-ob jective optimization problems

34. Van Veldhuizen DA, Lamont GB (2000) On measuring multiob-
jective evolutionary algorithm performance. In: Proceedings of the
2000 Congress on Evolutionary Computation. CEC00 (Cat. No.
00TH8512), vol 1, IEEE, pp 204–211

35. Zitzler E, Thiele L (1998) Multiobjective optimization using evo-
lutionary algorithms?a comparative case study. In: International
conference on parallel problem solving from nature, Springer,
pp 292–301

36. Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms:
a comparative case study and the strength pareto approach. IEEE
Trans Evol Comput 3(4):257–271

37. Jiang S, Ong Y, Zhang J, Feng L (2014) Consistencies
and contradictions of performance metrics in multiobjective
optimization. IEEE Transactions on Cybernetics 44(12):2391–
2404

38. Deb K, Thiele L, Laumanns M, Zitzler E (2006) Scalable test
problems for evolutionary multi-objective optimization

39. Wang L, Pan X, Shen X, Zhao P, Qiu Q (2020) Balanc-
ing convergence and diversity in resource allocation strategy
for decomposition-based multi-objective evolutionary algorithm.
Appl Soft Comput 100:106968

40. Xu J, Deb K, Gaur A (2015) Identifying the pareto-optimal solu-
tions for multi-point distance minimization problem in manhattan

space. Comput. Optim. Innov.(COIN) Lab., East Lansing, MI,
USA, COIN Tech. Rep. 2015018

41. Aggarwal CC, Hinneburg A, Keim DA (2001) On the surprising
behavior of distance metrics in high dimensional space. In:
International conference on database theory, Springer, pp 420–
434

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Lin Zhang received the B.S.
degree from Jiaxing Univer-
sity Nanhu college, Zhejiang,
China, in 2019. And now
pursuing the M.S degree from
Zhejiang University of Tech-
nology, Hangzhou, China.
His main research direction
is computational intelligence,
decision optimization.

Liping Wang received the
B.S. degree from East China
Normal University, Shang-
hai, China, in 1986, the M.S.
degree from Zhejiang Uni-
versity, Zhejiang, China, in
1997, and the Ph.D. degree
from Zhejiang University,
Hangzhou, China, in 2005.
She is currently a full profes-
sor with College of Computer
Science and Technology,
Zhejiang University of Tech-
nology, China. And she is
also the Director of Institute
of Information Intelligent and

Decision Optimization in Zhejiang University of Technology. She is
CCF member and No.98913M. Her main research interests include
computational intelligence with applications to optimization, learning,
data mining.

7437A reference vector adaptive strategy for balancing diversity and convergence...



Xiaotian Pan received the
B.S. degree from Nankai Uni-
versity Binhai college, Tian-
jin, China, in 2015, the M.S.
degree from Zhengzhou Uni-
versity of Aeronautics, Zheng-
zhou, Henan, China, in 2018.
And received the Ph.D. degree
from Zhejiang University of
Technology, Hangzhou, China,
in 2022. She is CCF stu-
dent member and No.97732G.
Her main research direction
is computational intelligence,
decision optimization.

Qicang Qiu received the B.S.
degree from Zhejiang Univer-
sity, Zhejiang, China, in 2015,
the M.S. degree from San Jose
State University, California,
United States of America, in
2018. He is currently an engi-
neer in Zhejiang Lab, China.
His main research direction
is computational intelligence,
network security.

7438 L. Zhang et al.


	A reference vector adaptive strategy for balancing diversity and convergence...
	Abstract
	Introduction
	Related work
	Methodologies
	Transformation of solution positions based on the ideal point solution
	The framework of -DEA-TSP
	Computational complexity

	Experiment study
	Parameter setting
	Performance metrics
	Sensitive analysis of parameter fr
	Comparison experience
	Test problems
	Real world problem


	Conclusion
	Declarations
	References


