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Abstract
As a biological feature that can be recognized from a distance, gait has a wide range of applications such as crime prevention,
judicial identification, and social security. However, gait recognition is still a challenging task with two problems in the
typical gait recognition methods. First, the existing gait recognition methods have weak robustness to the pedestrians’
clothing and carryings. Second, the existing temporal modeling methods for gait recognition fail to fully exploit the
temporal relationships of the sequence and require that the gait sequence maintain unnecessary sequential constraints. In this
paper, we propose a new multi-modal gait recognition framework based on silhouette and pose features to overcome these
problems. Joint features of silhouettes and poses provide high discriminability and robustness to the pedestrians’ clothing
and carryings. Furthermore, we propose a set transformer model with a temporal aggregation operation for obtaining set-
level spatio-temporal features. The temporal modeling approach is unaffected by frame permutations and can seamlessly
integrate frames from different videos acquired in different scenarios, such as diverse viewing angles. Experiments on two
public datasets, CASIA-B and GREW, demonstrate that the proposed method provides state-of-the-art performance. Under
the most challenging condition of walking in different clothes on CASIA-B, the proposed method achieves a rank-1 accuracy
of 85.8%, outperforming other methods by a significant margin (>4%).

Keywords Gait recognition · Multi-modal · Transformer

1 Introduction

Gait recognition is a human recognition technology based
on a walking pattern of a person. Compared with other
human biometric information used in human recognition
methods, such as fingerprint, iris, and face, gait information
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is easy to obtain, hard to fake, and suitable for long-distance
human recognition. Due to such advantages, it has been
an active research topic in the fields of biometrics and
computer vision, targeting a wide application perspective
in public security and crime investigation. Most of the
existing gait recognition methods extracted gait features
from a human silhouette. Especially with the development
of the deep convolutional network, the silhouette sequence-
based method has been widely studied and used. Silhouette
sequence has low computation cost but can effectively
describe the gait of a person. However, the recognition
accuracy is significantly affected by various external factors
such as clothing and carrying conditions [1, 2]. For example,
a recent state-of-the-art method, MT3D [3], achieved
accuracies of 96.7% under different viewpoints with a
normal walking condition on the CASIA-B gait dataset [4].
However, the accuracy was dropped to 81.5% for a clothing
changes condition.

In order to reduce the influence of clothing and
carrying conditions on gait recognition, we propose a
multi-modal gait recognition method combining silhouettes
and pose heatmaps. The silhouettes and pose heatmaps
describe the pedestrian from different perspectives. The
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silhouette sequence describes the changes in pedestrian
appearance during the gait cycle and contains rich
pedestrian information. Hence, the silhouette gait features
have strong discriminability. However, the silhouettes are
susceptible to interference from the pedestrians’ clothing
and belongings, significantly affecting gait recognition
accuracy. In contrast, the pose sequence describes the
changes of the pedestrian’s internal joints in the gait cycle.
Thus, it does not contain the interference information
of the pedestrian’s clothing and carrying and is robust
to the cloth change and carryings [5]. As shown in
Fig. 1a, the silhouettes of the same pedestrian in different
clothing conditions are considerably different because of
the clothing information, but the pose heatmaps are similar
across different clothing conditions. However, the pose
heatmaps contain less information and are insufficient to
distinguish different pedestrians. As shown in Fig. 1b, the
pose heatmaps are very similar for different pedestrians
under the same walking condition, but the silhouettes are
of significant difference. It indicates that the silhouette and

Fig. 1 Examples of silhouettes (top) and poses (bottom).(a) The same
pedestrian in different clothing conditions: the silhouettes are distinct,
but the pose heatmaps are similar. (b) The different pedestrians:
the pose heatmaps are similar across different pedestrians, but the
silhouettes are dissimilar

pose information are supplementary and can be combined to
describe pedestrian gait accurately. The silhouettes have rich
appearance information that is useful to distinguish different
pedestrians, thus increasing inter-class discrimination. The
pose heatmaps are robust to the changes of clothing
and carryings. Accordingly, the influence of interference
information is reduced in gait recognition, reducing the
intra-class difference. Experiments on the CASIA-B dataset
and the GREW demonstrate that the combination of
silhouette and pose heatmap can improve the accuracy of
gait recognition, and the multi-modal method is required.

Temporal modeling is one of the key tasks in gait
recognition since the gait is inherently of motion. The
gait was commonly temporally modeled using LSTM
and 3DCNN in the existing methods. The LSTM can
model the long-term temporal feature in the gait cycle.
However, the LSTM cannot be trained in parallel. On
the other hand, 3DCNN often requires a large number
of parameters. Fan et al. [6] selected short-term temporal
features as the most discriminative features to model
human gait. However, only short-term temporal information
is insufficient to extract discriminative characteristics of
human gait. Although above methods preserve more
temporal information, a significant degradation could
be induced from discontinuous input frames and a
different frame rate. This is because these methods retain
unnecessary order constraints. Thus, we introduce the
set transformer module (STM) into the gait recognition
framework to model motion patterns on various time scales.
First, STM imposes no constraints on the order of elements
of the gait sequence to enable modeling interactions among
gait frames under different viewpoints. Second, STM
adaptively learns different motion patterns contained in the
gait sequence, including short-, medium-, and long-term
temporal information of the gait cycle. Each multi-head
attention operator in the transformer focuses on a different
movement pattern. Our main contributions are summarized
as follows:

• We combine silhouettes and pose heatmaps to mine the
robust and discriminative gait feature of a pedestrian.
We construct part-based multi-modal features generated
by assembling split deep features derived from silhou-
ettes and pose heatmaps. Those multi-modal features
corresponding to a specific part describe the part-level
motion characteristics in a walking period.

• We propose the STM that is a novel temporal modeling
module for gait recognition. The multi-modal feature
sequence corresponding to a part is input into an
STM to extract multiple motion features for gait
recognition. The proposed STM network fuses multi-
modal visual information, part-based fine-grained
features, and temporal relativity of gait sequences.
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Unlike the transformer model used in other vision
tasks, STM is flexible due to its robustness to frame
permutations.

• The proposed method outperforms the state-of-the-art
gait recognition methods for the CASIA-B and GREW
datasets.

2 Related works

2.1 Body representation in gait recognition

In terms of human body representation, gait recognition
can be divided into silhouette-based methods [3, 6–13]
and pose-based methods [14–19]. The silhouette has been
the most commonly used body representation in literature.
The silhouettes can effectively describe the changes in
pedestrians’ appearance during the gait period due to the
advantage that unrelated information, such as color, to gait
recognition is not described in the silhouettes [2]. However,
it is very sensitive to the change of clothing and carryings
because it describes pedestrians’ appearance. Pose-based
gait recognition methods commonly adopted 3D skeleton as
human body representation since 3D skeleton is not easily
affected by the clothing and carryings. However, there are
two problems in the 3D pose estimation method: i) The 3D
skeleton-based method heavily relies on accurate detection
of body joints and is more sensitive to occlusion. ii) The 3D
skeleton only describes the changes of the body joints in the
gait period, which cannot fully reflect the pedestrians’ gait.

In recent years, 2D pose estimation has made a great
progress with the development of deep learning. Since
pose information is of great importance in human gait
recognition, 2D pose is a more feasible and lower cost
technical solution than 3D pose. Feng et al. [20] used the
human body joint heatmap extracted from a RGB image to
extract temporal feature. However, the recognition rates of
using only poses are not satisfactory when the silhouettes
are completely ignored. Li et al. [21] integrated 3D joints,
2D joints and silhouettes of the human body. This method
achieved state-of-the-art results but is relatively complex.
Zhao et al. [22] extracted the unimodal gait features of
silhouettes and poses respectively, rather than concatenating
silhouettes and poses as a multimodal body representation to
extract multimodal gait features. In this work, we are aiming
at addressing the robustness of gait recognition to clothing
and carryings. We propose a multi-modal gait recognition
method using silhouette-pose body representation. The
silhouette-pose body representation is more comprehensive
to describe the change of pedestrian’s gait. It is also robust
to the change of pedestrian’s clothing and carryings. In
this paper, we choose 2D pose heatmaps to describe the
change of pedestrian joints. Since the 2D pose heatmap is a

probability map of human body joints, it is more robust to
pose estimation error than the 3D skeleton.

2.2 Temporal representation in gait recognition

Temporal representation in gait recognition can be divided
into template-based methods and sequence-based methods.
The template-based approaches aggregated gait information
into a single image using statistical functions, which can
be divided into two sub-categories: temporal template
and convolutional template. Temporal template aggregated
gait information before inputting to the network, such
as gait energy image (GEI) [23] and gait entropy image
(GENI) [24]. The convolutional template aggregated the
gait information after several layers of convolution and
pooling operations, including set pooling [9] and gait
convolution energy map (GCEM) [25]. Sequence-based
methods learned the temporal relationship in gait sequences
instead of aggregating them. Sequence-based methods can
be divided into three sub-categories: LSTM-based methods
[7, 25, 26], 3DCNN-based methods [3, 27] and micro-
motion based methods [6]. Zhang et al. [7] divided the
human body into several parts, where each part extracted
spatio-temporal features of gait using the LSTM temporal
attention model. Lin et al. [3] proposed a multi-time scale
3DCNN (MT3D) model, which improved the 3D pooling
layer to aggregate the time information of each local
temporal fragment. Fan et al. [6] proposed a micro-motion
capture module (MCM), which consisted of a micro-motion
template builder and a temporal pooling module. The micro-
motion template generator uses the attention mechanism
and statistical function to aggregate local adjacent frames
and obtains several local micro-motion templates. Then,
those micro-motion templates were aggregated to obtain
gait features via a temporal pooling module. This method
proves that micro-motion is effective for gait recognition.
However, the micro-motion patterns are only considered
without consideration of other movement patterns in this
method. For example, the relationship between the starting
motion and the future landing motion is beneficial to gait
recognition. Therefore, we use the set transformer module
to model interactions among elements in the input set,
where each head in Multi-head attention in the transformer
learns different motion patterns in gait sequences and then
aggregate these motion pattern features for gait recognition.

2.3 Transformer

Transformer showed outstanding performance for
sequence-based tasks, especially for natural language pro-
cessing (NLP) tasks [28, 29]. It was originally designed to
solve the problem that RNN cannot be trained in parallel
[30]. The transformer consisted of a self-attention module
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and a feed-forward neural network. The self-attention mod-
ule learned the relationship between any two frames in an
attention mechanism, providing better parallelism. Multi-
head attention was composed of multiple self-attention.
Each head extracted sequence features of different patterns,
which helps capture richer sequence information. The trans-
former has been used in many computer vision tasks, such
as action recognition [31, 32], and frame synthesis [33]. In
recent years, the transformer has also been used for image
spatial feature extraction [34, 35]. Dosovitskiy et al. [34]
introduced a transformer instead of CNN for image space
modeling for the first time. Liu et al. [35] proposed a hierar-
chical transformer structure based on the shifted windowing
scheme, which had the flexibility to model at various scales
with linear computational complexity with respect to image
size. Yao et al. [36] used the transformer to model the spa-
tial relationship of pedestrian joints in gait recognition. In
this paper, we use the transformer for temporal modeling in
gait recognition. As a permutation invariant attention-based
neural network module, the STM is proposed to learn and
aggregate different motion patterns in the gait cycle.

3 Proposedmethod

The overall structure of the proposed gait recognition model
is depicted in Fig. 2. First, the silhouettes and pose heatmaps
are obtained from the input gait sequence. Then, they are fed
into the corresponding feature extraction modules, denoted
as Es and Ep, to extract frame-level features. Then, the
silhouette and pose feature maps are concatenated to get
the silhouette-pose multi-modal frame-level body features.
The multi-modal frame-level body features are horizontally
split into part-level features by a Horizontal Pooling (HP)
module. For each part, we use an STM to extract movement

patterns on different time scales of the gait sequence
and obtain spatio-temporal fine-grained features through
temporal aggregation. Finally, the extracted set-level part
motion features are used to recognize human gait.

3.1 Pipeline

Let denote the RGB image sequence of the subjects in
the data set as {Ii | i = 1, . . . , t} where t is the number of
frames in the sequence. The background subtraction method
and the pre-trained pose estimation network (CPM) [37]
are used to extract the corresponding silhouette sequence
and 2D pose heatmap sequence from the RGB image
sequence, respectively, denoted as {Si | i = 1, . . . , t} and
{Pi | i = 1, . . . , t}. Then, we extract the spatial features of
the silhouette and 2D pose heatmap sequences by Es and
Ep.

si = Es (Si) (1)

pi = Ep (Pi) (2)

The silhouette feature map si and the pose feature map pi

are concatenated to obtain the silhouette-pose multi-modal
feature map mi , as follows:

mi = [si, pi] (3)

where [·] represents the concatenate operation. The multi-
modal feature is taken as the body representation feature,
which is more robust to the pedestrians’ cloth and
carryings and stronger discriminability, respectively, than
the silhouette feature and the pose feature.

Recent person re-identification methods generated deep
representation from local parts for fine-grained discrimina-
tive features of a person [38–40]. Inspired by these works,
we use the Horizontal Pooling (HP) module to extract the

Fig. 2 The overall framework of TransGait. The Es and Ep represent silhouette feature extractor and pose feature extractor, respectively. c denotes
concatenate operation. The HP represents Horizontal Pooling and STM represents set transformer module
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discriminative part-informed features of the partial human
body. As shown in Fig. 3, the HP module horizontally splits
the multi-modal feature map mi into n parts (we choose
n = 16 in the experiment). Then, the HP module downsam-
ples each part of mi by a global average and max pooling to
generate column feature vector, mpj,i .

mpj,i = Avgpool2d
(
mj,i

) + Maxpool2d
(
mj,i

)
(4)

where j ∈ 1, 2, . . . , n. We transform the multi-modal
feature sequence into n part-level feature vectors and
get the multi-modal part representation matrix MP =(
mpj,i

)
n×t

. The corresponding row vector of the multi-
modal part representation matrix is denoted as MPj,· ={
mpj,i | i = 1, . . . , t

}
. Then, for part j of MP, the STM

extracts the set-level spatio-temporal features vj . Note that
STM does not require strictly sequential inputs, and the
same output can be obtained even with mess-up inputs.

vj = STMj

(
MPj,

)
(5)

Finally, we use several separate FC Layers to map the
feature vectors extracted from the STM to the metric space
for gait recognition.

3.2 Multi-head attention

As an integral component of the transformers, the self-
attention mechanism explicitly models the interactions
between all entities of a sequence. The self attention is
defined on receiving the tuple input (query, key, value) and
performs the scaled dot-product as

Attention (Q, K, V ) = softmax

(
QKT

√
dq

)

V (6)

where Q = XWQ (WQ ∈ R
n×dq ), K = XWK (WK ∈

R
n×dk ), V = XWV (WV ∈ R

n×dv ) and X represents input
sequence embeddings.

The multi-head attention comprises multiple self-
attention blocks, where each self-attention head seeks dif-

Fig. 3 The structure of the HP (n = 4 as an example)

ferent relationships among the sequence elements. The
multi-head attention module is formulated as follows:

MultiHead (Q, K, V ) = Concat (head1, . . . , headh) W 0

(7)

where head i = Attention
(
QW

Q
i , KWK

i , V WV
i

)
(8)

3.3 Set transformermodule (STM)

In this paper, we propose the STM, an attention-based
module that extends the standard transformer network [28]
to learn interactions between elements in the gait set. Note
that, we use the temporal pooling (TP) suitable for gait
recognition tasks for feature aggregation instead of [cls]
tokens used by other transformers. And unlike the original
transformers, the positional embedding is not added to the
input. According to Gaitset [9], the silhouettes and pose
heatmaps of each position in the gait sequence have a unique
appearance and therefore contain their position information
themselves.

As shown in Fig. 4, the STM consists of three sub-
modules: the multi-head attention block (MAB), feed-
forward module, and temporal pooling module. The MAB
utilizes the multi-head attention mechanism to find different
motion patterns of gait sequences on the time scales, which
is formulated as follows:

MAB (X) = MultiHead
(
XWQT

, XWKT
, XWVT

)
(9)

Fig. 4 The block diagram of the STM

1539TransGait: Multimodal-based gait recognition with set transformer



The feed-forward module contains a layer of MLP and
ReLU activation functions. The temporal pooling module
extracts the most discriminative motion feature vectors in
the sequence, where max(·) is used as the instance function
of temporal pooling. The set transformer is formulated as
follows:

O
[0]
j, = MPj , (10)

Ô
[i]
j,· = MABj(O

[i−1]
j, ) + O

[i−1]
j, (11)

O
[i]
j,· = Ô

[i]
j,· + ReLU

(
f θ

j

(
Ô

[i]
j,·

))
(12)

vj = TP
(
O

[DT ]
j,·

)
= max

(
O

[DT ]
j,·

)
(13)

where f θ
j represents the feed-forward module correspond-

ing to part j , and θ is the parameter. DT is the number of
layers in the set transformer.

3.4 Implementation details

Network hyper-parameters. The Es and Ep have the
same structure but different parameters, which are com-
posed of three convolution modules. Each convolution
module comprises two 3×3 convolutional layers, a max-
pooling layer [41], and a Leaky ReLU activation. The
part number n of the HP module is set to 16. The num-
ber of layers in STM is set to 2 and the number of heads
is set to 8. STM can extract discriminative temporal fea-
tures without deep stacking due to the advantage of the
set transformer that can observe the whole sequence at
the low-level layer. The ablation study for setting the
hyper-parameter DT is discussed in Section 4.4.

Loss and Sampler. The separate batch all (BA+) triplet
loss [42] is adopted to train the network. The correspond-
ing column feature vectors among different samples are
used to compute the loss. The batch size is set to (p,k),
where p indicates the number of persons and k indicates
the number of samples for each person in a batch.

Testing. At the test phase, the distance between gallery
and probe is defined as the average euclidean distance of
the corresponding feature vectors.

4 Experiments

4.1 Datasets and evaluation protocol

CASIA-B [4] is the most widely used gait data set,
including RGB images and silhouettes of 124 subjects.
An example of subjects in CASIA-B is shown in Fig. 5.
Each subject contains 11 views, and each view contains

ten sequences. The ten sequences are obtained under
three different walking conditions; the first six sequences
are obtained under normal conditions (NM), the second
two sequences contain subjects carrying a bag (BG), and
the last two sequences contain subjects wearing a coat or
jacket (CL).

In our experiments, we use average Rank-1 accuracies to
evaluate the performance of the gait recognition methods,
excluding identical-view cases. Rank-1 accuracy indicates
the probability of the correct matches in the first trial within
galleries.

GREW [43] is the latest and most complex gait
dataset. GREW is a more challenging dataset due to
being constructed in the wild. It consists of 26,345
subjects and 128,671 sequences, which come from
882 cameras in wild environments. Moreover, GREW
provides silhouettes and human poses data. This dataset
is selected to verify the effectiveness of our method in
gait recognition in the wild.

4.2 Training details

1) Common configuration: The input size of the silhouettes
was 64×44. The joints with confidence greater than 0.1
synthesize the 2D pose heatmaps. We then cropped and
resized the 2D pose heatmaps to match the size of the
silhouettes. We randomly took 30 frames of silhouettes
and their corresponding pose heatmaps from the sequence
during each training epoch. Adam optimizer was used with

Fig. 5 An example of RGB images, silhouettes and pose heatmaps
from CASIA-B
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Table 1 Averaged Rank-1 accuracies on CASIA-B, excluding identical-view cases

Gallery NM#1-4 0◦-180◦

Probe 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ Mean

NM#5-6 GaitSet [9] 90.8 97.9 99.4 96.9 93.6 91.7 95.0 97.8 98.9 96.8 85.8 95.0
GaitPart [6] 94.1 98.6 99.3 98.5 94.0 92.3 95.9 98.4 99.2 97.8 90.4 96.2
GLN [8] 93.2 99.3 99.5 98.7 96.1 95.6 97.2 98.1 99.3 98.6 90.1 96.9
MT3D [3] 95.7 98.2 99.0 97.5 95.1 93.9 96.1 98.6 99.2 98.2 92.0 96.7
TransGait(ours) 97.3 99.6 99.7 99.0 97.1 95.4 97.4 99.1 99.6 98.9 95.8 98.1

BG#1-2 GaitSet [9] 83.8 91.2 91.8 88.8 83.3 81.0 84.1 90.0 92.2 94.4 79.0 87.2
GaitPart [6] 89.1 94.8 96.7 95.1 88.3 84.9 89.0 93.5 96.1 93.8 85.8 91.5
GLN [8] 91.1 97.7 97.8 95.2 92.5 91.2 92.4 96.0 97.5 94.9 88.1 94.0
MT3D [3] 91.0 95.4 97.5 94.2 92.3 86.9 91.2 95.6 97.3 96.4 86.6 93.1
TransGait(ours) 94.0 97.1 96.5 96.0 93.5 91.5 93.6 95.9 97.2 97.1 91.6 94.9

CL#1-2 GaitSet [9] 61.4 75.4 80.7 77.3 72.1 70.1 71.5 73.5 73.5 68.4 50.0 70.4
GaitPart [6] 70.7 85.5 86.9 83.3 77.1 72.5 76.9 82.2 83.8 80.2 66.5 78.7
GLN [8] 70.6 82.4 85.2 82.7 79.2 76.4 76.2 78.9 77.9 78.7 64.3 77.5
MT3D [3] 76.0 87.6 89.8 85.0 81.2 75.7 81.0 84.5 85.4 82.2 68.1 81.5
TransGait(ours) 80.1 89.3 91.0 89.1 84.7 83.3 85.6 87.5 88.2 88.8 76.6 85.8

Bold data the results with the highest recognition rate among the results of different methods

the learning rate of 1e-4. The margin of the triplet loss was
set to 0.2. 2) In CASIA-B: the batch size was set as (4,
16) following the manner introduced in Section 3.4, and the
number of training epochs was 80K. 3) In GREW: the batch
size was set to (64, 4), the iterations was set to 200K, and the
learning rate would be reduced to 1e-5 at 150k iterations.

4.3 Experimental result

CASIA-B. The proposed method is evaluated in compari-
son with several state-of-the-art gait recognition methods
on the CASIA-B dataset, including GaitSet [9], Gait-
Part [6], GLN [8], and MT3D [3]. In order to make a
systematic and comprehensive comparison, all the cross-
view and cross-walking-condition cases were included
in the comparison scope. As shown in Table 1, the pro-
posed method outperforms the compared methods. For
NM, the proposed method provides a 1.3% higher aver-
age accuracy than the best among compared methods,
MT3D, whose accuracy is 96.7%. For BG, the proposed
method achieves a 1% higher average accuracy than the
GLN, whose accuracy is 94.04%. For CL, the average

accuracy of the proposed method is 4% higher than the
MT3D, whose accuracy is 81.5%. The most improvement
is achieved for CL due to the introduction of pose infor-
mation, which makes the model more robust to changes
in pedestrian appearance.

GREW. In order to verify the generalization and robust-
ness in complex scenarios, the TransGait is evaluated
on the GREW dataset. As shown in Table 2, TransGait
meets a new state-of-the-art in gait recognition in the
wild. TransGait scores 56.27% in terms of Rank-1 met-
ric, which exceeds GaitSet and GaitPart by about 10%.
It is worth noting that GaitPart outperforms GaitSet on
CASIA-B, but it performs worse than GaitSet on GREW.
We believe that this is due to the lack of some frames
in the gait cycle caused by imperfect detection and seg-
mentation in the wild. GaitSet, which is not sensitive to
the input order, is more suitable for this complex sce-
nario than GaitPart, which is sensitive to the input order.
TransGait is also insensitive to the input sequence and
uses STM to mine the time relationship of multi-modal
features, thereby achieving high recognition accuracy in
complex natural environments.

Table 2 Rank-1, Rank-5, Rank-10, Rank-20 accuracies on GREW

Method Rank-1 Rank-5 Rank-10 Rank-20

GEINet [44] 6.82 13.42 16.97 21.01
GaitSet [9] 46.28 63.58 70.26 76.82
GaitPart [6] 44.01 60.68 67.25 73.47
TransGait(ours) 56.27 72.72 78.12 82.51

Bold data the results with the highest recognition rate among the results of different methods
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Table 3 Ablation Study. Control Condition: w/ and w/o applying silhouette, w/ and w/o pose, w/ and w/o applying STM. Rank-1 accuracies
averaged on 11 views, excluding identical-view cases, are compared

Group Silhouette Pose STM NM BG CL

A � � 97.3 92.8 80.6

B � � 84.5 71.2 54.4

C � � 96.9 92.5 80.3

D � � � 98.1 94.9 85.8

4.4 Ablation study

Several ablation studies with various settings are conducted
on the CASIA-B dataset to verify the effectiveness of the
silhouette-pose multi-modal fusion and the STM. We set up
four groups of controlled experiments (denoted as A, B, C,
and D, respectively). The experimental results are shown in
Table 3, and the analysis is given in the following sections.

Analysis of silhouette-pose multi-modal fusion. In this
paper, we propose a multi-modal gait recognition based
on silhouette-pose fusion. The importance of silhouette-
pose multi-modal fusion is verified by comparing the
results for only silhouettes (group a), only pose heat
maps (group b), and integrating silhouettes and pose
heatmaps (group d). As summarized in Table 3, the
ablation study shows that the concatenating of silhouette
and pose features achieves better performance than a
single feature, validating the potential of multi-modal
fusion.

Effectiveness of STM. In order to validate the effective-
ness of STM, we compare group c (without STM) and
group d (with STM). Table 3 shows that STM signifi-
cantly improves the accuracy of gait recognition, espe-
cially for CL. Moreover, in order to demonstrate the
importance of STM, which generates temporal set fea-
tures by fusing frame features containing a variety of
different motion patterns on time scales for gait recog-
nition, we compare our method with GaitPart, which is
only based on short-term gait information. For a fair com-
parison, only the silhouettes and the STM (group a in
Table 3) are used. The results are summarized in Table 4.
As shown in Table 4, our model outperforms the Gait-
part, which proves that in addition to micro-motion, other
motion patterns are also critical for gait recognition.

Analysis of the layer number in STM. The ablation
experiment is designed to demonstrate the ability of the

STM that models multi-motion patterns without deeply
stacked structure. As shown in Table 5, the accuracy
of STM is better with the layer numbers: 1 and 2 than
the layer numbers: 3 and 4. This is because the multi-
head attention block in STM can extract multi-motion
(including short-, medium- and long-term motion) fea-
tures by using global information at the low-level layer.
The high-level layer of STM will model the relationship
between the short- or medium-term motion features,
which reduces the diversity of the motion information of
the final features.

Visualization of STM. STM extracts multi-motion fea-
tures by multi-headed attention. In order to observe the
inter-frame relationships found by the different heads
of STM, we further visualize the relationship between
frame 0 and other frames with attention weights. As
shown in Fig. 6, different heads find different inter-frame
relationships. For example, head 1 focuses on the rela-
tionship between adjacent frames, while head 3 focuses
on the relationship between distant frames. Due to the
space limitation, we only show the visualization results
of frame 0 and other frames in the three heads (24 frames
and 8 heads). Note that the results for other frames
are consistent with these results obtained by selecting
frame 0.

4.5 Practicality

TransGait has great potential in more complicated practical
conditions due to the invariance of the STM to frame
permutations. This section investigates the practicality of
TransGait through two novel scenarios. 1) Limited frames of
input, and 2) different viewpoints of input frames. It is worth
noting that our model was not retrained, and considering the
comparison with GaitSet, we only use the silhouettes and
the STM. All the experiments containing random selection
were repeated ten times.

Table 4 The effectiveness of multi-motion modeling. §denotes that only silhouettes and the STM are used

method NM BG CL

GaitPart [6] 96.2 91.5 78.7

TransGait§ 97.3 92.8 80.6
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Table 5 Accuracy comparison (%) of different layer numbers of STM

The number of layers NM BG CL

1 98.2 94.2 85.4

2 98.1 94.9 85.8

3 97.8 94.3 84.3

4 97.6 93.8 83.8

Fig. 6 Visualization of the attention weight of the three heads of STM. Darker color means bigger weight
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Limited Frames. In practical forensic identification sce-
narios, the gait information is often limited, where only
some fitful and sporadic frames are available. This sce-
nario was simulated by randomly selecting a certain

number of frames from sequences to compose each sam-
ple in both gallery and probe. The proposed method is
compared with GaitSet that treats the input as a set. As
shown in Fig. 7, our model outperforms the GatSet on

Fig. 7 Average Rank-1
accuracies with constraints of
silhouette volume on the
CASIA-B dataset. The accuracy
values are averaged on all 11
views excluding identical-view
cases, and the final reported
results are averaged across ten
experimental repetitions.
§denotes that only silhouettes
and the STM are used
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Table 6 Multiview experiments on CASIA-B (%). §denotes that only silhouettes and the STM are used

View difference 18◦/162◦ 36◦/144◦ 54◦/126◦ 72◦/108◦ 90◦ Single view

NM GaitSet [9] 97.0 97.9 98.7 99.1 99.0 95.0

TransGait§ 98.9 99.3 99.4 99.3 99.5 97.3

BG GaitSet [9] 92.1 94.3 95.2 95.4 96.0 87.2

TransGait§ 95.1 96.7 97.1 97.5 97.8 92.8

CL GaitSet [9] 74.4 77.6 79.0 77.8 78.4 70.4

TransGait§ 85.2 87.5 87.7 87.0 86.9 80.6

most numbers of selected frame in all walking conditions.
This shows that STM is capable of efficiently exploit-
ing the temporal relationships of sequences even with a
limited number of frames.

Multiple Views. The experimental results in GaitSet
showed that not only does the amount of input probe
data improve the gait recognition effect, but also the
data containing more information about view angle help
to improve the accuracy of gait recognition. Similar
to GaitSet, in this section, we also study the scenario
where the gait is collected from different sequences
with different views but the same walking conditions.
We conducted the experiments on CASIA-B using the
same test settings as GaitSet, whose results are given in
Table 6.
The accuracy of each possible view difference is

averaged to summarize the results for many view pairs.
For example, the result of a 90◦ difference is averaged
by the accuracies of 6 view pairs (0◦&90◦,18◦&108◦,
...,90◦&180◦). Furthermore, the nine view differences are
folded at 90◦ and those larger than 90◦ are averaged
with the corresponding view differences of less than
90◦. For example, the results of 18◦ view differences
are averaged with those of 162◦ view differences. As
indicated in Table 6, regardless of the lack of different
views in the training set, STM can effectively model
interactions among gait frames from different views. And
our model outperforms GaitSet in all walking conditions
and view difference. Including multiple views in the
input-set provides more gait information, and STM can
use this information effectively to achieve better results.

5 Conclusion

In this work, we proposed a new gait recognition network,
TransGait, where multi-modal gait features can be extracted
with different movement patterns. Specifically, we combine
the features of two different modes, silhouette and pose. The
proposed multi-modal features are strongly discriminative
and robust to the pedestrians’ clothing and carryings. Also,
STM is used to extract various motion patterns from the

gait sequence. Unlike other existing temporal modeling
approaches, STM can adaptively learn different motion
patterns contained in gait sequences and is insensitive to
input order. The experimental results on the CASIA-B
dataset and the GREW dataset show that the proposed
method achieves the outperforming accuracy over the state-
of-the-art methods.
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