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Abstract
A brain network can be constructed from various imaging modalities such as magnetic resonance imaging (MRI),
representing the functional or structural connectivity between brain regions. The challenge of brain network analysis is
efficient dimensionality reduction while retaining feature interpretability. We propose a new method to extract features from
graph-structured data based on maximum mutual information (MMI-GSD). First, we develop a novel equation for the feature
extraction from GSD and evaluate the interpretability of the features. We establish a framework to optimize the extracted
features using the MMI. We conduct experiments on synthetic networks to validate the effectiveness of the proposed MMI-
GSD. Next, we conduct experiments on 119 cognitively normal (CN), 105 mild cognitive impairment (MCI), and 36
Alzheimer’s disease (AD) individuals from the Alzheimer’s Disease Neuroimaging Initiative. The classification performance
of the proposed method is significantly better than using traditional network metrics and existing feature extraction methods.
In the clinical interpretation, we discover discriminative brain regions showing significant differences between the MCI and
AD groups and identify significant abnormal connections concentrated in the left hemisphere.
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1 Introduction

Alzheimer’s disease (AD) is the most frequent type of
neurodegenerative dementia and a growing health problem.
Approximately 5.8 million Americans age 65 and older had
AD in 2020, and the figure is expected to grow to 13.8
million by 2050 [1]. Nearly $244 billion worth of care was
provided by family members and caregivers in 2019 [2].
The latest statistics of 2018 indicate that 122,019 deaths
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have been attributed to AD, making it the sixth leading
cause of death in the United States [3]. There is an urgent
need to discover the abnormal changes in the patient’s
brain as early as possible to implement a timely treatment
and slow down the disease progression. Extensive studies
have been conducted to develop diagnostic technology with
reliable biomarkers. One example is diagnostic imaging,
e.g., magnetic resonance imaging (MRI), a noninvasive
examination of brain structure, function, and connectivity.
The physiological changes in the brain caused by AD can
be quantitatively analyzed with MRI to detect and monitor
the progression of the disease.

The human brain is an extremely complex structure com-
posed of neurons and connections. Therefore, researchers
have studied brain functions from the perspective of brain
networks, where nodes represent brain regions, and edges
connect the regions. Graph analysis is often used to detect
connectivity patterns among brain regions to diagnose AD
[4–8]. Two data types represent the brain network in a
graph: the graph signal and graph weight. A graph sig-
nal refers to the attribute of each node, which is typically
the brain region of interest (ROI). The node attributes can
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be quantitative measures (e.g., volume, thickness, area) of
the brain structures detected using segmentation techniques
[9–12] or fused features. Magnin et al. [13] parcellated T1-
weighted magnetic resonance (MR) images of the brain into
116 ROIs and used a histogram to determine the propor-
tion of gray matter, white matter, and cerebrospinal fluid
in the ROIs. The results were input into a support vector
machine (SVM) for AD classification. The graph weight
describes the connectivity between each pair of nodes.
Khazaee et al. [14] parcellated the resting-state functional
MR images of the brain into 90 ROIs. A representative sig-
nal of each region was acquired by averaging the time series
of voxels in the ROI. Functional connectivity networks were
constructed, and the edges were defined using Pearson’s
correlation coefficients of the signals of all pairs of brain
regions. An SVM model was developed using the features
derived from the local and global graph measures (e.g.,
node degree) to differentiate AD individuals from healthy
controls.

Using a graph model to describe brain networks
is a straightforward approach. However, extracting the
features from the graph in a meaningful way for AD
diagnosis is challenging. Researchers have used some
common graph features, including the node degree,
clustering coefficient, and the small world. For example,
Wee et al. [15] computed the clustering coefficients
(common metrics used in brain networks to measure the
connectivity among brain regions) as features for SVMs to
differentiate mild cognitive impairment (MCI) individuals
from cognitively normal (CN) individuals. Prasad et al.
[16] developed two connectivity networks. One quantified
the pairwise connectivity strength as the relative proportion
of fibers connecting the two brain regions. The other
quantified the maximum flow between brain regions by
interpreting the diffusion image as a flow graph. An
SVM classifier was used to differentiate CN, MCI, and
AD individuals, and the performance was evaluated using
global efficiency, transitivity, path length, modularity, and
small world [16]. These methods are based on prior
brain network information using domain knowledge (e.g.,
using a pre-defined brain atlas). In the analysis of mental
disorders, domain knowledge improves the classification
performance of small sample tasks and the interpretability
of experimental results. Although this approach has been
successful, studies have mainly focused on deriving features
without considering the stochastic nature of the data. This
approach may be problematic as data stochasticity prevails
due to patient heterogeneity and variability.

Other studies used a data-driven approach for feature
extractions that does not require a priori brain network
topology. Principal component analysis (PCA) is a common
technique for dimensionality reduction; it transforms the
data into principal components with fewer dimensions

[17–19]. Salvatore et al. [20] used PCA to reduce the
dimensions of white matter and gray matter density
maps. The results were fed into an SVM for classifying
patients who were likely or unlikely to develop AD. Data-
driven approaches have the advantages of computational
efficiency, addressing the curse of dimensionality, and
being less dependent on domain knowledge. However, we
contend that ignoring the inherent topological properties
may be problematic because the extracted features may be
difficult to interpret. Here we argue that studies on the
connectivity among brain ROIs should focus on improving
clinical interpretation and using domain knowledge (e.g.,
brain atlas).

The challenge of AD diagnosis is efficient feature dimen-
sion reduction while retaining feature interpretability. High
interpretability of features will promote the use of machine
learning methods for clinical diagnosis. However, the lat-
est research in brain network analysis has not addressed
this issue adequately. In this paper, we propose a novel fea-
ture extraction method for graph-structured data based on
maximum mutual information (MMI-GSD). The proposed
MMI-GSD can efficiently reduce the dimensionality of
GSD while retaining the interpretability of the extracted fea-
tures. This method has promising application prospects in
pathological interpretation. We develop a Gaussian graph-
ical model (GGM) for neuroimaging data. We utilize the
scale of attention (SOA) concept, describing the range of
connection weights for a specific node in the network. Infor-
mation entropy is employed to quantify the uncertainty of
the variables, and mutual information is used as a decision
criterion to reduce the degree of uncertainty with respect
to (w.r.t.) the knowledge from other variables [21]. Specif-
ically, an optimization problem on the mutual information
is constructed to select the salient features with different
SOAs. Since the features are derived from the ROIs defined
by domain knowledge, they provide meaningful clinical
interpretations, enabling biomarker studies to discover new
biomarkers. A synthetic dataset and a real AD dataset are
used to validate the proposed method. Our method out-
performs traditional network metrics and existing feature
extraction methods.

2 Related work

Mutual information is a measure of the statistical depen-
dency between random variables. It has also been used
as a key measure to evaluate the effectiveness of feature
extraction in some recent studies. Marinoni and Gamba [22]
proposed a method for identifying affinity patterns using
mutual information maximization and validated the method
using remote sensing images. Özdenizci and Erdoğmuş
[23] presented an MMI linear transformation and a
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nonlinear transformation framework. The proposed method
was applied to a brain–computer interface task and was
assessed with electroencephalographic data. However, the
above feature extraction methods based on the MMI were
not specially designed for graph-structured data, which is
the most common form of data in the task of brain network
analysis.

In addition, neural networks have also been used
for automatic feature extraction [24–27], and graph
convolutional networks (GCNs) were recently designed
for non-Euclidean data [28, 29]. However, there are two
problems when applying GCNs to neuroimaging-related
tasks [30–32]. First, the feature extraction processes in
GCN are automatic, and spectral graph convolutional
layers are typically used. Thus, the internal high-level
features of the model are difficult to interpret. Second,
the GCN inputs are graph signals (i.e., node features).
However, we can only obtain graph weights (i.e., adjacency
matrices) after preprocessing the diffusion tensor images
(DTI). In previous studies, graph weights have represented
the similarity between individuals. Graph signals were
constructed from the vectorized adjacency matrices or
measures of the brain regions without considering the
topological properties of individual brain networks. Table 1
lists the characteristics of traditional methods and our
proposed method for an intuitive comparison.

We propose the MMI-GSD, which is inspired by graph
convolutional layers and considers mutual information. We
extract the features from the adjacency matrices spatially,
retaining the flexibility of the graph convolutional layer
and enhancing the interpretability of the extracted features.
The main contributions of this paper are as follows: (1)
We develop a novel feature extraction method for GSD
and discuss its interpretability. (2) We develop a framework
to optimize the extracted features based on MMI. (3) We
carry out experiments to verify the performance of the
proposed method. We verify its applicability on a real AD
dataset and analyze the interpretability of the features. The
remainder of the paper is organized as follows. Section 2

Table 1 Comparison of the Characteristics of Different Methods

Flexibility Interpretability Topology

Graph metric methods ↓ ↑ ◦
PCA methods ↑ ↓ ×
Existing mutual
information
methods

↑ ↑ ×

GCN methods ↑ ↓ ◦
Our proposed
MMI-GSD

↑ ↑ ◦

presents the feature extraction method and the optimization
framework. Section 3 describes experiments using synthetic
and real data. In Section 4, we discuss the physiological
meaning of the experimental results. Section 5 concludes
the paper.

3Methodology

The aim of feature extraction is to reduce the dimensionality
of the data. In this study, the data dimension is D × D,
where D is the number of nodes in the individual brain
network. The proposed MMI-GSD derives the M (M < D)
feature vectors of dimension D. This section introduces the
proposed MMI-GSD. As shown in Fig. 1, given a graph
describing the brain network, the features are derived from
the adjacency matrix and are fit to multivariate distributions.
Next, a GGM is developed based on the observations.
The entropy is calculated to consider the uncertainty of
the variables. The mutual information obtained from the
GGM is used as the criterion to evaluate the quality
of the extracted features. An optimization problem is
constructed to maximize the mutual information. The MMI-
GSD identifies the salient network features, which are input
into the classifiers.

3.1 Data acquisition and preprocessing

The data used in the experiments were obtained from the
Alzheimer’s Disease Neuroimaging Initiative 3 (ADNI3)
database (adni.loni.usc.edu) [33, 34]. The ADNI3 began
in 2016 and includes scientists at 59 research centers in
the United States and Canada. The primary goal of the
ADNI is to measure the progression of MCI and early
AD. In this study, the selected subjects included three
cohorts: CN, MCI, and AD. We used T1-weighted MR
images and DTI. We selected imaging scans from the
same manufacturer (SIEMENS) to avoid data discrepancy.
Images from baseline visit, initial visit, and screening
visit of 260 subjects (119 CN, 105 MCI, and 36 AD)
were used.

The DTI data processing and white matter network
construction were performed using the PANDA toolbox
[35]. Fiber Assignment by Continuous Tracking (FACT),
a deterministic fiber-tracking algorithm, was used with an
angle threshold of 45◦ and a fractional anisotropy (FA)
range of 0.2-1. The brain was segmented into 90 ROIs using
the automated anatomical labeling (AAL) atlas [36]. The
nodes in the network were defined by the ROIs, and the
edges were defined by the number of fibers connecting two
ROIs. The construction of the white matter brain network is
shown in Fig. 2.
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Fig. 1 The framework of the MMI-GSD. (A) A brain network with
D nodes (Fig. 1A top), D × D adjacency matrix of the network
(Fig. 1A bottom). (B) The adjacency matrix of different powers is
multiplied by a direction vector bm to obtain several column vectors

(Fig. 1B bottom). The greater the power, the more connection infor-
mation is contained in the column vector. The adjusted brain network
after the multiplication operation (Fig. 1B top). (C) Fitting the GGM;
the mutual information is used to optimize b∗

m

3.2 Feature extraction from the graph using
direction vectors

Given N weighted undirected graphs Gn (n = 1, · · · , N),
let Gn = (Vn, En,Wn), where Vn is a set of nodes (vertices),
and |Vn| = D, En is a set of edges. Wn is the adjacency
matrix, and element Wn,kl is the connection weight between
node k and node l (k �= l). Let (Wn)

m be the mth power

of Wn, indicating the connectivity between any two nodes
within m hops. With a direction vector bm, we obtain:

xn,m = (Wn)
m bm. (1)

The kth component in xn,m represents a linear combina-
tion of weights of the m-hop pathways connected to the kth

node. According to the concept of “hop” in a network, an

Fig. 2 Construction of the white matter brain network. (1) Regis-
tration of DTI image (B) to T1-weighted image (A) in the native
space. (2) Deterministic fiber tracking (C). (3) Registration (T) of T1-
weighted image in the native space to the ICBM152 T1 template in
the Montreal Neurological Institute (MNI) space [37] (D). (4) Inverse

transformation (T−1) to the AAL atlas in the MNI space. (5) The brain
connectivity matrix (F) is calculated by counting the fiber numbers
between each pair of brain regions defined by the AAL atlas. (6) Data
dimensionality reduction (R) is performed on the brain connectivity
matrix, and the feature vectors are obtained as the input of the classifier
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increase in m indicates that a broader region of the network
is being explored. Here we call m the SOA. For example,
when m is 1, b1 = [1 1 · · · 1]T ,

xn,1 = (Wn)
1 b1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∑D
l=1 Wn,1l

...∑D
l=1 Wn,kl

...∑D
l=1 Wn,Dl

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (2)

where xn,1 is a column vector. The features xn,m are
extracted independently from different SOAs. Next, we
create matrix Xn = [

xn,1 xn,2 · · · xn,M

] ∈ R
D×M where

M < D. The matrix Xn contains the extracted features
with reduced dimensionality. Note that M is the number of
direction vectors bm; it is related to the scale of the network
and is determined empirically.

3.3 Gaussian graphical model fitting with direction
vector as a prior

Without loss of generality, we remove subscript m for
simplification. With respect to the direction vector b, we
obtain the column feature vector xn. We use the GGM to fit
the observations {xn}. Specifically, the vector x ∈ R

D with
a multivariate Gaussian (MVG) distribution ND(μ, �) has
the following density function:

f (x; μ,�)= 1

(2π)
D
2 |�| 1

2

exp

{
−1

2
(x−μ)T �−1(x−μ)

}
,

(3)

where μ is the mean, � is the covariance matrix, |�| is the
determinant of �, and �, � = �−1 is the precision matrix.

Let GN = (V, E) be an undirected graph where each
node represents a component of the vector x ∈ R

D (|V| =
D). Vector x satisfies the (undirected) GGM with graph GN
if it has an MVG distribution ND(μ, �) with the following
constraint:

(�)i,j =
(
�−1

)
i,j

= 0 for all (i, j) /∈ E . (4)

The constraint means that the variables on nodes i and j are
conditionally independent given the variables on the other
nodes if there is no edge between nodes i and j . If the
two variables are independent, the element in the precision
matrix � is equal to 0.

With observations {x1, x2, · · · , xN }, the likelihood func-
tion is defined as:

L (μ, �; x1, x2, · · · , xN) =
N∏

n=1

f (xn; μ, �)

= 1

(2π)
ND

2 |�|N
2

exp

{
−1

2

N∑
n=1

(xn−μ)T �−1(xn−μ)

}
. (5)

The log-likelihood function of (5) is:

l (μ, �) = log L (μ, �; x1, x2, · · · , xN)

= −ND

2
log (2π) − N

2
log |�|

−1

2

N∑
n=1

(xn − μ)T �−1 (xn − μ) . (6)

We remove the first term, which is a constant, and
re-write the log-likelihood function as:

l (μ, �)=−N

2
log |�| − 1

2

N∑
n=1

(xn − μ)T �−1 (xn − μ)

= N

2

(
− log |�|−Tr

(
�−1S

)
−(μ−x̄)T �−1(μ−x̄)

)
, (7)

where x̄ and S are the empirical mean and covariance,
respectively [38].

The maximum likelihood estimation (MLE) of GGM is
called the covariance selection [39]. It is expressed with
constraints as:

maximize log |�| − Tr (�S) − (μ−x̄)T �(μ−x̄)

subject to �ij = 0, if (i, j) /∈ E, (8)

with the domain {(μ, �) ∈ R
N × R

N×N |� � 0, � = �T }
Since � is a positive definite matrix, the third term of the
objective function (μ−x̄)T �(μ−x̄) > 0 if and only if
μ − x̄ �= 0. To maximize the log-likelihood function, we
have

μ̂ = x̄ = 1

N

N∑
n=1

xn. (9)

The problem construct can be simplified as:

maximize l (�) = log |�| − Tr (�S)

subject to �ij = 0, if (i, j) /∈ E . (10)

This equality-constrained convex optimization problem
can be solved using a modified regression algorithm due
to its simplicity and computational efficiency [40]. The
outcome of this process is a GGM with a given direction
vector b. Next, we will discuss the use of the entropy and
mutual information to assess the quality of the extracted
features.
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3.4 Mutual informationmaximization for director
vector identification

The selection of the direction vector b affects the
distribution of the observations {xn}. In this research,
we utilize information entropy to assess the impact
of b quantitatively. Information entropy describes the
uncertainty of a random variable, and mutual information
measures the dependence between two random variables.

The entropy is defined as follows for a single discrete
random variable:

H(X) = −
∑
x

p(x) log p(x), (11)

where p(x) is the probability mass function. For continuous
variables, the entropy is:

H(X) = −
∫

x

f (x) log f (x)dx. (12)

For a vector of random variables with density
f (x1, · · · , xD), the joint entropy is:

H(X1, X2, · · · , XD) = −
∫

f (xD) log f (xD)dxD . (13)

The conditional entropy is denoted by H(X|Y ), which
measures the entropy of a random variable X conditional
on the knowledge of the random variable Y . Mutual
information is defined as:

I (X; Y ) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)

= H(X) − H(X|Y )

= H(Y) − H(Y |X). (14)

We consider a classification task where X are the
observations and Y are the labels (responses) of the
observations. Mutual information can be used to evaluate
the features extracted from the observations. If H(Y) is
constant, H(Y |X) decreases as I (X; Y ) increases. We can
extract a set of features to maximize I (X; Y ) and minimize
the uncertainty Y .

When graph GN is a complete graph, we first consider
the MLE of GGM (in (10)) without constraints, which is
similar to an MVG distribution:

maximize l (�) = log |�| − Tr (�S) . (15)

The gradient of the objective function is a log-likelihood
function:

∇l (�) = �−1 − S. (16)

For MLE, we have ∇l (�) = 0:

�̂ = �̂−1 = S. (17)

Considering (12) and (13), the entropy of MVG [21] is:

H (X1, X2, · · · , XD) = H (ND (μ, �))

= 1

2
log

[
(2πe)D |�|

]

= 1

2
log

[
(2πe)D |�|−1

]

= D

2
log (2πe) − 1

2
log |�|. (18)

The mutual information between XD = (X1, · · · , XD)

and Y is:

I
(
XD; Y

)
= H

(
XD

)
− H

(
XD|Y

)
, (19)

and it can be calculated by

H
(
XD|Y

)
=

∑
c

P (Y = yc)H
(
XD|Y = yc

)

=
∑

c

Nc

N
H

(
ND

(
μc, �c

))

=
∑

c

Nc

N

(
D

2
log (2πe) − 1

2
log |�c|

)

= D

2
log (2πe) − 1

2
log

(∏
c

|�c|Nc
N

)
, (20)

where

N =
∑

c

Nc

�c = �c
−1. (21)

By substituting (18) and (20) into (19), we obtain:

I
(
XD; Y

)
= 1

2
log

(∏
c

|�c|Nc
N

)
− 1

2
log |�|

= 1

2
log

∏
c |�c|Nc

N

|�| . (22)

When the graph structure of the GGM is complete,

I
(
XD; Y

)
= 1

2
log

∏
c |�̂c|Nc

N

|�̂|
= 1

2
log

|S|
∏

c |Sc|Nc
N

. (23)

Without loss of generality, let the power of Wn equal one;
then

x̄ = 1

N

N∑
n=1

xn = 1

N

N∑
n=1

Wnb = W̄b. (24)
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We substitute (24) into the empirical covariance matrix S
and obtain:

S = 1

N

N∑
n=1

(
Wnb − W̄b

) (
Wnb − W̄b

)T

= 1

N

N∑
n=1

(
Wn − W̄

)
bbT

(
Wn − W̄

)T
. (25)

Let b = λa, and λ be a scalar; we obtain:

S(b) = λ2

N

N∑
n=1

(
Wn − W̄

)
aaT

(
Wn − W̄

)T

= λ2S(a), (26)

and

I
(
XD; Y

)
= 1

2
log

|S(b)|
∏

c |S(b)|Nc
N

= 1

2
log

|λ2S(a)|
∏

c |λ2S(a)|Nc
N

= 1

2
log

λ2D|S(a)|
∏

c λ2D|S(a)|Nc
N

= 1

2
log

|S(a)|
∏

c |S(a)|Nc
N

. (27)

Equation (27) indicates that the mutual information
between XD and Y is not influenced by the scalar λ. Thus,
we can regard the direction vector b as a unit vector. By
restricting the space of b to a hypersphere, we can reduce
the range of the search space. The mutual information is not
affected when we scale the adjacency matrix to the range of
0 to 1.

Next, we revisit (10) with constraints. The optimization
problem construct is:

maximize I
(
XD; Y

)
= 1

2
log

∏
c |�̂c(b)|Nc

N

|�̂(b)|
subject to ‖ b ‖2 = 1, (28)

where the estimation of the precision matrix (�) is
a function of the direction vector b. This is a non-
convex optimization problem. We choose a particle swarm
optimization (PSO) solver due to its simplicity and high
convergence rate [41]. Interested readers are referred to [41]
for the technical details on PSO. Algorithm 1 describes the
MMI-GSD.

4 Experiments

4.1 Experiment on synthetic networks

We first conducted an experiment on synthetic networks to
analyze the properties of the MMI-GSD. They included two
patterns of networks; a two-class classification was carried
out. We evaluated multiple characteristics of the proposed
method by adjusting the hyperparameter settings. We also
compared the MMI-GSD with the traditional PCA method
to evaluate the feature extraction ability of the MMI-GSD
for graph data.

4.1.1 Synthetic network generation

We generated small networks with 6 nodes to evaluate the
impacts of the parameter settings (see Fig. 3). We assumed
that the two classes of networks share basic connection
patterns with noise of the same distribution. In addition,
the two classes of networks have different network-
dependent connection patterns (Pattern 0 vs. Pattern 1).
The shared basic patterns, network-dependent patterns,
and noise result in two classes of synthetic networks.
The network weights are constrained to non-negative
integers to represent the number of fiber connections
between two brain regions (note this research focuses on
neuroimaging and AD). The noise added to the weights
follows the Poisson distribution, and the weights have a
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Fig. 3 Generating the two
patterns of the networks

Gaussian distribution. As a result, two groups of networks
were generated: 2000 Class-0 samples and 2000 Class-1
samples. The synthetic network generation is described in
Algorithm 2.

4.1.2 Gaussian graphical model

The GGM was derived based on the number of synthetic
networks. Since the connection weights in the networks
contain noise, we first focused on the precision matrix
and used sparse constraints to identify zero elements. This
approach reduces the number of GGM parameters to be
estimated, which is crucial for studies with limited data.
We performed a two-sample t-test on each connection
weight in a set of network observations. A higher p-value
cutoff indicates more connections and a higher sparsity

rate (SR), which is the ratio of the number of existing
edges to the number of all possible edges. The edge
with a predetermined SR (see Section 4.1.3 describing the
experiments on different SRs) was removed from the graph.
Since the GGM estimation requires a connected graph
structure, we ensured that each node had at least one edge
connected to other nodes.

4.1.3 Feature extraction based onmaximummutual
information

Among the 4000 synthetic networks, 3600 samples were
used as the training set, and 400 samples were used
as the testing set. First, we performed feature extraction
on the training set. A PSO was employed as the solver
for the non-convex optimization problem (Section 3.4.).
We used different SRs (SR=0.2, 0.4, 0.6, 0.8, 1) during
preprocessing. The best performance was achieved for
SR=0.2. We report the results of SR=0.2 in the following
and summarize the overall performance at the end of the
section.

As shown in Fig. 4, we used 20 particles for searching the
extrema and tracked the mutual information convergence
when m in Wm is equal to 1. The dotted red line represents
the MMI value of the particle group. The MMI reaches
99% (the global optimum obtained from PSO) at the 27th

iteration (black star). Although the focus of this research
is not PSO, it is noteworthy that the mutual information
trajectory of each particle fluctuates substantially at the
beginning, and most particles converge after 700 iterations.
Figure 5 shows the convergence of the mutual information
for different numbers of particles (5, 10, 20, and 30). The
four curves converge to the maximum after 25 iterations.
The convergence for 5 and 10 particles occurs at a lower
MMI value than for 20 and 30 particles, indicating that
the number of particles is insufficient for this search space.
In addition, the optimal solution is slightly better for 30
particles than for 20 particles, but a larger number of
particles results in greater computation and learning time.
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Fig. 4 Mutual information convergence (SR=0.2). The mutual
information value of a group of 20 particles increases during the
iterations of the particle swarm optimization algorithm. The dotted
red line shows the mutual information corresponding to the globally
optimal particle

The PSO algorithm balances the number of particles and the
learning performance.

We performed feature extraction on the network weights
using different SOA values, i.e., we changed the m in
Wm from 1 to 6. The bigger the value of m, the higher
the information level of the feature extraction is. Figure 6
illustrates the mutual information convergence for different
values of m. The curves converge after about 50 iterations.
The mutual information value is the highest value for
an SOA of 6 (mutual information: 1.77), followed by 3
(mutual information: 1.49), 2 (mutual information: 1.39),
1 (mutual information: 1.32), 4 (mutual information: 1.27),
and 5 (mutual information: 1.26). These results indicate
that features with different SOAs describe the different
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Fig. 5 Mutual information convergence with different numbers of
particles
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Fig. 6 Mutual information convergence with different scale of
attention (SOA) values (SR=0.2)

characteristics of the network. For example, some features
may describe the local graph features (the SOA m is small),
whereas some features may describe the connectivity at a
larger range (the SOA m is large). This result demonstrates
the need for optimization to identify the salient features at
different scales.

We visualized the extracted features for m=1 to 6
using 400 samples from the testing set (Fig. 7). We used
the t-distributed stochastic neighbor embedding (t-SNE)
method to map the high-dimensional samples into a two-
dimensional plane. Figure 7(A) – (F) are the visualization
maps for the six SOAs. Figure 7(G) shows all extracted
features from the six SOAs, and Fig. 7(H) depicts the sample
after PCA transformation. It is observed that the features
from different SOAs have different levels of discriminative
power to differentiate the two groups of networks.

4.1.4 Classification of synthetic networks

We used the extracted features and transformed each
original brain network Wn into a feature matrix Xn

composed of multiple feature column vectors (Wn)
m bm.

Each column vector corresponds to a different SOA.
Fisher’s scoring, a widely used supervised feature selection
method, was applied for feature selection. For a set of
labeled scalar observations O = {O1, O2, · · · , ON }, the
mean and variance of each class is μc and σc. The Fisher’s
score of this set of observations is defined as:

F (O) =
∑

c Nc (μc − μ)2

∑
c Nc (σc)

2
, (29)

where μ is the mean of all observations.
We obtain 36 features from the 6-node synthetic

networks with 6 SOAs. The Fisher’s scores were sorted
from large to small (Fig. 8). We observe that the features
with a larger Fisher’s score are distributed in different
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Fig. 7 Visualizations of 400 samples in the testing set (SR=0.2). (A)-(F) correspond to different SOAs from 1 to 6. (G) contains all extracted
features of different SOAs. (H) contains the features transformed by PCA

SOAs, confirming our hypothesis that the features from
different SOAs contribute to the classification. We used
Fisher’s score to select the top 10 features as inputs to
a classifier.

We adopted an SVM with a Gaussian radial basis
function kernel for classification. The SVM is a nonlinear
classifier that performs spatial partitioning of data with
high-dimensional complex features. The classification
accuracies for different SRs are listed in Table 2. The
highest accuracy (95.0%) is obtained for an SR of 0.2. As
the SR increases (the network becomes more connected),
the classification accuracy decreases. The accuracy is 92.0%
for a fully connected graph (SR=1). For comparison,
we implemented PCA. We chose to extract the same
number of features as 10, the final classification accuracy
rate is 92.8%.

N
od

e

Scale of Attention
1 2 3 4 5 6

Fig. 8 P-value ranks of the extracted features (SR=0.2)

4.2 Alzheimer’s disease classification experiments

4.2.1 Brain network preprocessing to reduce dimensionality

A brain network with 90 ROIs would be too computation-
ally expensive and may result in overfitting for our small
dataset. Similar to the experiment on the synthetic network,
we extracted a smaller brain network. Specifically, we first
performed a t-test for each edge weight in the network and
retained the edges with significant connectivity. We divided
the dataset into 10 parts to ensure the robustness of the
derived network. In each run, 9 parts were chosen to identify
which edges should be retained. 10 runs were conducted.
The nodes connected by the retained edges in all 10 runs
were used in the smaller brain network.

4.2.2 Feature extraction based onmaximummutual
information and graphmetrics

Three classification experiments were conducted: CN vs.
AD, CN vs. MCI, and MCI vs. AD. After preprocessing
the brain network, the original 90-node network was
reduced to a network with fewer nodes (16 for all
three comparisons). The MMI-GSD was implemented with
different SOAs. Based on our preliminary experiments, we

Table 2 Classification accuracy for Different Sparsity Rates (SRs)

Sparsity Rate (SR) Accuracy (%)

SR=0.2 95.0

SR=0.4 94.5

SR=0.6 93.2

SR=0.8 92.8

SR=1 92.0

PCA 92.8
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used SOAs ranging from 1 to 4. Four direction vectors were
obtained in each classification task after mutual information
optimization, as shown in Fig. 9. Each element in a direction
vector has values ranging from -1 to 1, indicating the impact
of the node on maximizing mutual information.

Similar to the synthetic network experiment, we com-
pared our method with the PCA and other state-of-the-art
methods. In addition, we selected the most commonly used
graph metrics to extract the network features: degree, aver-
age neighbor degree, and clustering coefficient. The metrics
are indicators of nodal centrality, network resilience, and
functional segregation [42]. The weighted degree of node
k is the sum of the edge weights for edges adjacent to that
node; it is defined as:

Deg(vk) =
∑

vl∈Vk

Wkl, (30)

where Vk is the set of neighbors of node k.
The average neighbor degree of node k is the average

degree of the neighbors of that node:

AvgDeg(vk) = 1

|Vk|
∑

vl∈Vk

Deg(vl). (31)

For unweighted graphs, the clustering coefficient of node
k is the fraction of the triangles passing through that node to
all possible triangles; it is defined as:

Cluster(vk) = 2T (vk)

Deg(vk)(Deg(vk) − 1)
, (32)

where T (vk) is the number of triangles passing through
node k. After calculating the graph metrics, we conducted
feature selection based on Fisher’s scoring to reduce the
dimensions of the learning model inputs.

We implemented the t-SNE method to visualize the
discriminative power from the features selected from the
proposed MMI-GSD, commonly used graph metrics and
PCA (see Fig. 10). The degree of separation indicates the dif-
ference between the two classes of the samples. The visual-
ization results are not necessarily consistent with the classi-
fication results since the samples may be discriminated with
higher dimensional features (see Section 4.2.3).

4.2.3 Classification results

Fisher’s scoring was used for feature selection. The selected
features were fed into classifiers for three tasks: CN
vs. AD, CN vs. MCI, MCI vs. AD. Ten-fold cross-
validation was implemented to prevent overfitting. Three
performance metrics were calculated: accuracy, sensitivity,
and specificity. We selected some samples from one group
to match with the other group with fewer samples to avoid
sample imbalance. Since the samples came from multiple
clinical sites, we gave priority to the subjects from the same
sites when matching samples, and we aimed for a similar
male to female ratio. We obtained 38/36 (CN vs. AD),
119/105 (CN vs. MCI), and 39/36 (MCI vs. AD) samples in
the three experiments.

Fig. 9 Visualization of the direction vectors. Four direction vectors are optimized in each classification task. The four pictures from left to right
correspond to SOAs from 1 to 4. Red indicates a value of 1, and blue indicates a value of -1 of the direction vector
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Fig. 10 Visualization of the
samples using three different
feature extraction methods in
three classification tasks

Table 3 Classification of CN vs. MCI vs. AD individuals

Group Method Acc. (%) Sens. (%) Spec. (%)

CN vs. AD MMI-GSD 77.03 72.22 81.58

(38/36) DRP-PCA 72.97 69.44 76.32

PCA 62.16 58.33 65.79

DRP-Metrics 71.62 63.89 78.95

Metrics 63.51 63.89 63.16

GCN [43] 66.22 69.44 63.16

MMI-LinT [23] 72.97 80.56 65.79

MMI-NonLinT [23] 70.27 61.11 78.95

CN vs. MCI MMI-GSD 63.39 56.19 69.75

(119/105) DRP-PCA 62.50 52.38 71.43

PCA 54.46 46.67 61.34

DRP-Metrics 60.71 49.52 70.59

Metrics 48.21 36.19 58.82

GCN 55.36 48.57 61.34

MMI-LinT 62.95 54.29 70.59

MMI-NonLinT 57.59 53.33 61.34

MCI vs. AD MMI-GSD 76.00 69.44 82.05

(39/36) DRP-PCA 70.67 72.22 69.23

PCA 61.33 41.67 79.49

DRP-Metrics 72.00 69.44 74.36

Metrics 66.67 63.89 69.23

GCN 62.67 61.11 64.10

MMI-LinT 69.33 69.44 69.23

MMI-NonLinT 65.33 52.78 76.92
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Fig. 11 Discriminative
connections between MCI and
AD. The blue balls represent
discriminative brain regions
selected by a two-sample t-test,
and the orange lines represent
discriminative connections
detected by the MMI-GSD

We compared the performances of the MMI-GSD and
other feature extraction methods. As the most commonly
used methods in brain network analysis, PCA and graph
metrics are selected for comparison; PCA and graph metrics
with dimensionality reduction preprocessing (DRP) are
selected to validate the effectiveness of the proposed DRP.
A GCN [43] was selected to compare the classification
performance of a deep learning network and the proposed
MMI-GSD. The MMI-LinT and MMI-NonLinT proposed
in [23], two mutual information-based methods, were
selected for comparison. As shown in Table 3, the MMI-
GSD achieved accuracies of 77.03%, 63.39%, and 76.00%
for the three classification tasks. We believe that the
MMI-GSD achieved the highest classification performance
because the edge weights in the graph have an inherent
connection pattern, which is not considered in other
methods.

In summary, our proposed MMI-GSD can be used to
extract features from neuroimaging GSD and classify CN,
MCI, and AD. The classification results show that the MMI-
GSD considers the inherent network connections between

Table 4 Discriminative Brain Regions Between MCI and AD

Labels Regions Abbr.

1 Precental gyrus PreCG.L

10 Middle frontal gyrus, orbital part ORBmid.R

11 Inferior frontal gyrus, opercular part IFGoperc.L

17 Rolandic operculum ROL.L

48 Lingual gyrus LING.R

55 Fusiform gyrus FFG.L

56 Fusiform gyrus FFG.R

63 Supramarginal gyrus SMG.L

65 Angular gyrus ANG.L

71 Caudate nucleus CAU.L

73 Putamen PUT.L

83 Temporal pole: superior temporal gyrus TPOsup.L

85 Middle temporal gyrus MTG.L

87 Temporal pole: middle temporal gyrus TPOmid.L

88 Temporal pole: middle temporal gyrus TPOmid.R

89 Inferior temporal gyrus ITG.L

the data, resulting in better classification performance than
comparable methods.

5 Discussion

We focus on the discussion of distinguishing AD from MCI
because early detection is crucial for AD. We conducted
dimensionality reduction using a t-test to reduce the size
of the brain network. We obtained the brain regions
with the most significant differences between the MCI
and AD groups, as shown in Table 4. These abnormal
brain regions are consistent with the results of previous
studies, including inferior and middle frontal gyri [44–
46], Rolandic operculum [47], parieto-temporal cortex [48],
caudate nucleus [49], putamen [50], and parts of the
temporal lobe [51].

The MMI-GSD with the smaller network identified
important connectivity-related features to distinguish dif-
ferent groups of AD patients (see Table 5). In a previous
study [52], the local nodal attributes in the left temporal
lobe were significantly different between amnestic MCI
converters and amnestic MCI non-converters. Our results
agree with these findings, i.e., discriminative connections
exist for the direction vector with an SOA of 1 (Fig. 11).
For an SOA of 2, we found that the connection weights
between the left supramarginal gyrus and the left fusiform
gyrus were significantly different (p = 0.0473 < 0.05)
between the two groups. The connection weight between
two nodes with a distance of two hops is defined as the
sum of the weights of all possible two-hop pathways. The

Table 5 Discriminative Connections Between MCI and AD

Regions 1 Regions 2 p-value

SOA=1 ORBmid.R LING.R 0.0079

TPOsup.L CAU.L 0.0037

MTG.L SMG.L 0.0003

MTG.L ANG.L 0.0076

TPOmid.L FFG.L 0.0024

SOA=2 SMG.L FFG.L 0.0473
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Fig. 12 Two white matter connection pathways with significant
changes in AD group

weight of a two-hop pathway is defined as the product
of its two components. Within all possible two-hop path-
ways between the left supramarginal gyrus and the left
fusiform gyrus, we found two white matter connection path-
ways with significant differences, as shown in Fig. 12. One
pathway is “SMG.L-MTG.L-FFG.L”, and the other one is
“SMG.L-ITG.L-FFG.L”. The p-value of pathway “SMG.L-
MTG.L-FFG.L” is 0.0894, which has a certain trend toward
significance, and the p-value of pathway “SMG.L-ITG.L-
FFG.L” is 0.0535, which is close to being statistically
significant. We found that the connectivity of these two
pathways was substantially worse in the AD individuals
than the MCI individuals. The left supra-marginal gyrus
is crucial for writing [53], and the left fusiform gyrus is
required for visual word recognition [54]. The middle tem-
poral gyrus and inferior temporal gyrus are involved in
semantic memory processing. The impairment of these two
pathways may lead to dysfunction in reading and writing
in AD patients. Changes in these pathways also have the
potential for biomarkers to diagnose AD patients.

6 Conclusion

The challenge in AD diagnosis is efficient feature extraction
while preserving feature interpretability. We proposed
a novel feature extraction method and an optimization
framework based on mutual information to address this
problem. The result of experiments with synthetic networks
and AD classification showed that the proposed method
achieved higher classification accuracy than comparable
methods. The other advantage of our method is the high
interpretability of the extracted features. The AD patients
exhibited abnormal connections in the left hemisphere,
especially in the left temporal lobe. Two white matter
connection pathways had lower connectivity in the AD
group, indicating reading and writing dysfunction in AD
patients.

In future works, we intend to analyze whether the brain
white matter changes found in this study can be used
as a reliable biomarker for AD diagnosis. In addition,
investigating the form of the proposed method in the
nonlinear case is a way to improve performance.
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