
https://doi.org/10.1007/s10489-022-03503-6

Towards better generalization in quadrotor landing using deep
reinforcement learning

Jiawei Wang1,2 · TengWang3 · Zichen He1 ·Wenzhe Cai3 · Changyin Sun2,3

Accepted: 13 March 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
In recent years, the autonomous landing of unmanned aerial vehicles (UAVs) has attracted extensive attention due to
the widespread applications of UAVs. With the rapid improvements in machine learning and artificial intelligence, recent
research has begun to explore deep reinforcement learning (DRL) to learn the landing policy directly from raw observation
data. However, current DRL-based solutions tend to suffer poor generalization to unseen environments. To deal with this
issue, we formulate the landing problem as a two-stage DRL problem and bootstrap the DRL procedures by augmenting
regular DRL loss with an auxiliary localization task. The auxiliary localization task provides dense supervision signals that
aid in landing-relevant representation learning. In particular, two marker localization approaches are delicately designed
based on deep classification and regression models, and differences between the two configurations are explored, aiming to
answer the fundamental question of how to exploit localization better for representation learning. Furthermore, we propose
a novel and flexible sampling strategy called Dynamic Partitioned Experience Replay to stabilize and accelerate the training
procedure. Experimental results show that the auxiliary localization tasks combined with the improved sampling strategy
aid the trained model to generalize in unseen environments. In addition, the trained model can be seamlessly transferred to
the real-world quadrotors and has achieved outstanding landing performances.

Keywords Deep reinforcement learning · Auxiliary task · Partitioned experience · Quadrotor landing · Generalization

1 Introduction

Unmanned aerial vehicles (UAVs), which can fly without
the presence of onboard pilots, are finding applications
in a broadening number of fields, especially in those
occupations that require to execute boring, dirty, or
dangerous missions, such as search and rescue [1], remote
sensing [2], precision agriculture [3], surveillance [4],
delivery of goods [5], cable detection [6] and small object
detection [7]. Landing a UAV is acknowledged as the last
and most critical stage for navigation in these applications.
This work targets at the applications of goods delivery and

� Changyin Sun
cysun@seu.edu.cn

1 College of Electronics and Information Engineering, Tongji
University, Shanghai 201804, China

2 Peng Cheng Laboratory, Shenzhen, 518055, China

3 Department of Automation, Southeast University, Nanjing
210018, China

focuses on the specific task of landing a quadrotor on a
desired ground marker with a high level of accuracy.

To solve the landing task, previous works rely on
numerous airborne sensors [8–10] or ground support
equipment [11–13] to estimate the UAV attitude. However,
airborne sensors are usually expensive or power-consuming,
and ground support equipment is not always available.
Recently, various vision-based UAV landing methods have
been developed since UAV platforms usually include a
monocular camera as standard equipment. For example,
[14] designed a neural network to locate the marker in the
captured images. [15] designed a novel form of fiducial
marker and used it to estimate the relative location of the
UAV camera with regard to the marker. However, these
methods are susceptible to illumination and UAV attitude
changes, or they are only suitable for specially designed
landing markers.

Inspired by the notable breakthroughs of deep rein-
forcement learning (DRL) in the fields of games [16,
17] and robotics control [18, 19], researchers started to
employ DRL to solve the problem of autonomous quadro-
tor landing. Learning to land directly in three-dimensional

/ Published online: 7 July 2022

Applied Intelligence (2023) 53:6195–6213

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-022-03503-6&domain=pdf
http://orcid.org/0000-0001-9269-334X
mailto: cysun@seu.edu.cn


environments by DRL is not trivial and faces the chal-
lenge of sparse and delayed rewards. To address these
challenges, Polvara et al. [20] decomposed the quadrotor
landing problem into marker alignment and vertical descent
sub-tasks, with each solved by one specifically designed
sequential deep Q-network (SDQN), and introduced a new
partitioned experience replay to alleviate the issue of sparse
and delayed rewards. Xu et al. [21] employed the deep
Q-network (DQN) [17] in dueling architecture to further
improve the stability of the training process. These DRL-
based solutions can learn to land a quadrotor on a ground
marker using raw RGB images from the down-looking cam-
era, and achieve impressive performance comparable to
human pilots. However, the learned landing policies can not
be well generalized to unseen environments with diverse
background appearances.

The poor generalization capability of previous DQN-
based methods is because end-to-end training does not
guarantee the model learns the accurate marker features.
These methods neglected the valid information in the
environment during training, such as the relative position
between the marker and the quadrotor. The auxiliary tasks
provide additional training signals and improve the data
efficiency. In addition, the auxiliary tasks have been proven
to facilitate domain adaptation by reducing the domain
gap between the seen and unseen environments [22, 23].
Motivated by this, we designed auxiliary tasks to leverage
the valid information in the environment and help the model
to learn better features.

To achieve better generalization, we proposed a novel
marker localization-assisted deep reinforcement learning
model for each of the marker alignment and vertical landing
tasks. This model jointly learns the goal-driven DRL prob-
lem with an auxiliary task to improve the learned landing
policy’s generalization capability. The marker localization
shares the common feature representations with the landing
policy, so that it could help the DRL agents to build useful
features for localizing the landing marker with high accu-
racy, bootstrapping the model’s generalization capability in
unseen environments. In particular, we delicately formulate
the marker localization as a classification and a regres-
sion task to facilitate representation learning and explore
the difference between two configurations through feature
visualization. Unfortunately, the sparse and delayed rewards
make the vertical landing task in the form of Blind Clif-
fwalk[24]. To address this problem, we propose a novel and
flexible sampling method called dynamic partitioned expe-
rience replay, which samples transition experiences from
different partitions with varying sampling ratios. This sam-
pling method is proved to make learning from experiences
more efficient while maintaining low computational com-
plexity compared with the previous sampling methods. The
models are trained in the Gazebo simulator which includes

a failure-and-recovery mechanism, and the models can be
seamlessly transferred to a real quadrotor. Our contributions
are summarized as follows.

1. We propose a novel marker localization-assisted deep
reinforcement learning solution to learn the landing
policy from raw observations. The auxiliary localiza-
tion is designed to facilitate learning better feature
representations for marker localization. Experimental
results show that our proposed solution dramatically
improves the learned policy’s landing performance and
generalization capability.

2. We propose a novel and flexible sampling method
called dynamic partitioned experience replay to stabi-
lize and accelerate the training procedure. Compared
with the previous sampling methods, our method makes
learning from experiences more efficient while remain-
ing low computational complexity.

3. The model trained from simulation can be seamlessly
transferred to a real-world quadrotor, and real-world
experiments have shown the outstanding performance
of our method.

The remainder of this article is organized as follows.
Section 2 introduces the basics of reinforcement learning.
Section 3 reviews the related work of autonomous landing.
Section 4 describes the proposed method in detail. Section
5 presents the experiment. Section 6 discusses the results
and limitations, which is followed by conclusions in
Section 7.

2 Background

In the reinforcement learning (RL) problems, an agent
learns the optimal policy that maximizes the expected
rewards by interacting with the environment. The environ-
ment can be modeled as a Markov Decision Process (MDP)
defined by a tuple < S,A, P , R, γ >. S denotes the state
space and represents the set of environment states; while A
denotes the action space and represents the set of available
actions; P : S ×S×A → [0, 1] is the state transition prob-
ability function; R : S × A → R is the reward function,
which serves as the feedback signal to the agent from the
environment; γ ∈ (0, 1) is the discount factor, which quan-
tifies the present value of future rewards [25]. The agent is
in a state st ∈ S at each time step t , it performs an action
at ∈ A according to the policy π . Based on the reward
function R(st , at ), the agent receives a reward rt from the
environment and enters the next state st+1 according to the
state transition function P(st+1|st , at ). The agent repeats
the above process until the end. The final goal is to find an
optimal policy π∗ that maximizes the expected discounted
cumulative reward E[∑∞

t=0 γ t rt ].

6196 J. Wang et al.



With the development of deep learning, researchers use
deep neural networks as function approximators to solve
problems with high-dimensional inputs. This approach
is known as deep reinforcement learning. DQN is a
remarkably stable and flexible DRL algorithm that has
shown success in tackling a wide range of problems
with discrete action space [26–28]. DQN learns the
optimal action-value function Q∗

π (st , at ) by utilizing deep
convolutional neural network (CNN). DQN constructs
a CNN architecture, consisting of a feature embedding
network and a policy network parameterized by θ and
α, respectively, to approximate the optimal action-value
function Q∗(s, a). DQN trains the whole CNN model by
minimizing the loss function:

Lp(θ, α) = E(s,a,r,s′)∼U(D)

[(
Y − Q(s, a; θ, α)

)2
]
, (1)

where D is the experience replay buffer and contains
a collection of experience tuples, usually denoted as
(s, a, r, s′) with states, actions, rewards, and successor
states; Q(s, a; θ, α) is the Q-value estimated by the current
CNN approximator given the state s and action a; Y is
the target for estimated Q-value. Standard DQN performs
action selection and evaluation by using the same Q
values, resulting in overoptimistic value estimations. To
avoid this, Double Q-learning (DDQN) [29] decouples the
action selection from action evaluation. This is achieved by
learning two sets of network weights (θ, α) and (θ−, α−),
one for action evaluation and the other for action selection.
The network weights (θ−, α−) for action selection are
synchronized with (θ , α) every C time steps. Therefore, the
target Y could be expressed as follows based on the Bellman
equation:

Y = r + γQ
(
s′, argmax

a′ Q(s′, a′; θ, α); θ−, α−)
. (2)

In order to improve the sample efficiency, Haarnoja et
al. [30] provided the Soft Actor-Critic (SAC) algorithm
based on the maximum entropy reinforcement learning
framework. SAC-Discrete is the discrete version of the
SAC algorithm, and it is well suited for the UAV landing
task with discrete actions. SAC-Discrete maximizes both
the expected return and action entropy to extensively
explore the environment while maximizing the rewards.
By adding a temperature parameter to the entropy term,
SAC-Discrete balances exploration and exploitation. SAC-
Discrete improves the sample efficiency and performs
competitively with the state-of-the-art algorithms on the
Atari games.

3 Related work

Autonomous landing has been studied for many years and
many approaches have been proposed. We focus on the
vision-based methods which have shown unprecedented
results. The vision-based methods can be split into four
categories: classic vision based methods, special marker
based methods, Kalman filter based methods, and deep
learning based methods.

Classic vision based methods The classic vision based
methods use feature-based extraction or homography-based
approaches to estimate the relative position between the
UAV and the landing marker. Olivares-Méndez et al. [31]
used the homography of a specific helipad to predict the
UAV’s 3D position. The visual input was then processed
by a fuzzy controller to generate control signals. Keipour
et al. [32] designed a landing marker detector to recognize
and track the circular shape in the images. They employed
a visual servoing controller to land the UAV on the moving
vehicle. Saavedra-Ruiz et al. [33] used a feature-based
detector to compute the homography matrix between the
image and marker template. They employed Kalman filter
estimation to track the marker and used a PID-based
controller to complete the landing task. However, the classic
vision based methods are susceptible to illumination and
UAV attitude changes, making them lack robustness.

Special marker based methods The special marker based
methods use artificial landmarks which contain rich spatial
information. In [34], a special landing pad was constructed,
and a vision-based detection algorithm was proposed for
predicting the UAV’s 3D position relative to the landing pad.
In [35], a special color marker was created. Also, a method
that combined the Levenberg-Marquardt with the vanishing
point was employed to estimate the UAV’s position and
relative position quickly and accurately. In [36], the on-
image search algorithm and the accurate landing algorithm
were combined. Special ArUco-marker was employed
to estimate the UAV camera’s position and orientation
relative to this special marker. In [37], multiple-scale Quick
Response-codes were utilized to determine the relative
distance and direction between the ground vehicle and
UAV. A quadratic programming problem was formulated
to design the velocity controller. In [15], based on the
original ArUco marker, a novel form of fiducial marker
called e-ArUco was designed to predict the UAV camera’s
relative position with regard to the marker. Nevertheless,
these methods need special landing markers, limiting the
model’s capability to generalize to new environments with
different markers.

6197Towards better generalization in quadrotor landing using deep reinforcement learning



Kalman filter based methods Kalman filter based methods
employed Kalman filters to combine extra information from
multiple sensor sources and estimate the UAV states more
accurately. Vankadari et al. [38] employed the perspective-
n-point algorithm to estimate the 6-DOF pose of the
quadrotor utilizing marker images captured by both front
and bottom cameras as input. They also used Extended
Kalman Filter to fuse the data from downward-facing
sonar and the inertial odometry to better estimate the
pose of the UAV. Then, they adopted the least-squares
policy iteration method to minimize the error between the
UAV’s current state and target state, thereby controlling
the UAV to land on the marker. In [39], images captured
by the UAV camera were utilized to generate the helipad’s
pixel coordinates. The measurements from the Inertial
Navigation System and laser rangefinder were combined by
the Kalman filter to generate the speed measurement value.
Kim et al. [40] used YOLOv4-tiny network to detect the
moving platform. To estimate the relative location of the
landing site precisely, they developed the Extended Kalman
Filter to fuse multiple sensors’ measurements including
encoder, inertial odometry, and ultra wide band. However,
the Kalman filter based methods have the drawback
of requiring the UAV to be equipped with numerous
sensors. These sensors are usually expensive or power-
consuming, resulting in higher costs and shorter endurance
times.

Deep learning based methods Deep learning based meth-
ods use CNN-based architectures to detect and track the
landing marker in images. In [14], the images captured by
the UAV camera were processed by a simple neural network
to locate the landing marker, and a PID controller was used
to calculate the UAV’s kinematic control vector. Zhang et al.
[41] designed an adaptive learning-based CNN controller to
locate the position of the autonomous surface vehicle and
lead the UAV to land on the target region. They used GPS for
horizontal tracking and UAV camera for vertical regulation.
In [42], CNN was utilized to detect the landing marker and
estimate the UAV state. A model predictive control based
controller was designed to plan the entire landing trajec-
tory and a cascade incremental nonlinear dynamic inversion
control method was adopted to track the planned trajec-
tory. However, the CNN-based methods require thousand
of human-labeled images based on the task. In contrast,
DRL does not require labeled data. DRL is more robust and
it also generates control commands using only images as
input. Xu et al. [21] employed the DQN in dueling architec-
ture to achieve autonomous landing, however, the landing
task was greatly simplified. They fixed the quadrotor’s z-
axis speed and placed the landing marker on the floor with
no texturing. The aforementioned simplifications make this

method impractical. Polvara et al. [20] used two DQN to
achieve autonomous landing. The model trained in the sim-
ulator could be seamlessly transferred to the real quadrotor
without extra tuning. However, this method has limited gen-
eralization capability when the training set is insufficient. To
improve generalization, our proposed method adds an aux-
iliary task to recognize the landing marker, which aids the
convolutional layer in extracting better marker features and
accurately locating the marker under diverse background
textures.

4 Proposedmethod

4.1 Problem definition

Solving the quadrotor landing problem directly in three-
dimensional space faces the challenge of huge state space,
we therefore decompose the autonomous quadrotor landing
problem into two sub-tasks: marker alignment and vertical
landing. In both phases, we consider discrete actions
although the action space of UAVs is continuous in the
real world. Introducing high-level discrete actions makes
it much easier to transfer a policy learned in a simulation
domain to a real-world domain or learned in one platform
to a different platform. In the marker alignment phase, the
quadrotor moves only on the x-y plane aiming to align
itself with the ground marker, and enters the vertical landing
phase by a “trigger” action. In the vertical landing phase,
the quadrotor descends along the z-axis to approach the
ground marker and shifts on the x-y plane at the same time
to maintain accurate alignment with the landing marker.

In both marker alignment and vertical landing phases,
the next state of the agent (quadrotor) is determined only
by the current state, and therefore the two sub-tasks can be
considered as Markov Decision Processes where the agent
is interacting with environments with a monocular down-
looking camera. During both phases, the agent interacts
with the environment through a down-looking camera, and
therefore the input to the deep model (i.e., state st ) is the
monocular RGB image. In the marker alignment phase,
the agent moves only on the X-Y plane, and the feasible
actions at available at each time step t are “go forward”,
“go backward”, “turn left”, “turn right”, and “trigger”. In
particular, taking the “trigger” action will lead the agent
to enter the vertical landing phase. The agent receives a
positive reward of +1.0 if it performs “trigger” in the pre-
defined target area, and receives a negative reward of −1.0
if it performs “trigger” outside the target area. Besides,
the agent receives a negative reward of −0.01 if it takes
other actions, which encourages the agent to accomplish
the marker alignment as soon as possible. Thus, the reward

6198 J. Wang et al.



function for the marker alignment task can be written as
follows:

r1(s, a) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

+1.0, if a = trigger

& agent in the target area

−1.0, if a = trigger

& agent out of the target area

−0.01, if a �= trigger

.

(3)

In vertical landing phase, the agent moves in a limited
3D space, and the action space consists of “go forward”,
“go backward”, “turn left”, “turn right”, “descend”, and
“landing”. The agent receives a positive reward of +1.0 if it
accomplishes landing in the pre-defined target area centered
on the marker, and receives a negative reward of −1.0 if
it misses the landing. To avoid collision with the ground,
a negative reward of −1.0 is given if the altitude h of the
agent is lower than a pre-defined threshold hmin. Besides,
a negative reward of −0.01 is given if the agent takes other
actions except “landing”, which encourages the agent to
finish landing as soon as possible. Thus, the reward function
for the second phase can be expressed as follows:

r2(s, a) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+1.0, if a = land & h ≥ hmin

& agent in the target area

−1.0, if a = land & h ≥ hmin

& agent out of the target area

−0.01, if a �= land & h ≥ hmin

−1.0, if h < hmin

.

(4)

DQN is chosen as the basic framework of our proposed
method, considering that DQN is easier to learn the
optimal policy and it has been successfully applied to
autonomous landings [20, 21]. The previous DQN-based
landing methods have suffered from poor generalization due
to the inability to accurately extract the marker features.
The auxiliary tasks have been proven to facilitate domain
adaptation and improve statistical efficiency. Inspired by the
impact of auxiliary tasks, we bootstrap the RL procedure
by augmenting the policy gradient loss with an auxiliary
localization task. The relative position between the marker
and the quadrotor is used since it is vitally important
for the landing task and can be easily derived from
the simulator. The auxiliary localization task infers the
location of the marker relative to the quadrotor and
provides dense supervision signals that aid in landing-
relevant representation learning. Specifically, we attach the
auxiliary deep localization network on the top of the feature
embedding network, such that the deep features extracted
by the feature embedding network are used as intermediate

representations shared by the marker localization network
and policy network. In this way, the localization loss
could guide the feature embedding network to learn
efficient feature representations for marker detection and
recognition, thus facilitating the learning of a better landing
policy. In summary, the whole training objective of our
end-to-end model could be described as follows:

L(θ, α, β) = Lp(θ, α) + ωLa(θ, β), (5)

where La(θ, β) is the loss for marker localization; β are
learnable parameters from our marker localization network;
ω is a scalar that weights the marker localization loss against
the policy gradient loss. The following subsection describes
the design of auxiliary tasks in detail.

4.2 Auxiliary marker localization

In both phases, we explore two different variants for the
marker localization task. We first consider a classification
task, where the marker location at each time step is
discretized into different cells. The other choice is to
consider marker localization as a regression task, which
develops a deep model to directly predict the relative
position between the quadrotor and the landing marker.

The marker localization problem could be formulated as
a classification task by discretizing each observation image
into different cells and assigning a unique cell label to each
image to identify which cell the marker is located. In the
marker alignment phase, the flight altitude of the quadrotor
remains unchanged and the size of the marker on the image
is the same. Therefore, in this phase, we divide the captured
image at each time step evenly into M = n × n cells, with
each cell representing a unique class, as shown in Fig. 1 (a).
Here, n is set to 23 since the width (height) of the image is
about 23 times of the marker under the given flight altitude.
However, in the vertical landing phase, the quadrotor is
allowed to move in a limited 3D space. The varying flight
altitudes of the quadrotor result in an obvious change in the
marker scales on the observation image, i.e., the lower the
flight altitude, the larger the marker. To handle the dramatic
changes in marker scales, we delicately divide the current
observation image into M = 7 cells, which are organized
in a radial structure, as shown in Fig. 1 (b). Performing
discretization in such a way allows the index of the cell
where the marker is located not to change dramatically
when flight altitude changes, and eliminates the impact
of altitude changes on the classification results. For each
phase, we build a simple localization network consisting
of two fully connected (FC) layers. The last FC layer’s
output is sent into a M-way Softmax which generates a
probability distribution over the M class labels. We attach
the localization network on top of the last convolutional
layer of the backbone feature embedding network, such

6199Towards better generalization in quadrotor landing using deep reinforcement learning



Fig. 1 Formulating the marker localization as a classification task. (a) In marker alignment phase, the captured image is evenly discretized into
23 × 23 cells; (b) In vertical landing phase, the captured image is delicately discretized into 7 cells, organized in radial structure

that the localization network and policy network share
the intermediate feature representations from the backbone
network. The overall structure of our CNN network with
auxiliary localization task is shown in Fig. 2. Optimizing
the localization network will guide the backbone network
to learn a more efficient feature embedding for marker
detection and recognition, thus facilitating the learning of a
better landing policy. Here, we employ the following cross-
entropy loss [43] to train our marker localization network
parametrized by β:

Lc
a(θ, β) =

M∑

i=1

[
− yi log(P (xi; θ, β)) − (1 − yi)

log(1 − P(xi; θ, β))
]
. (6)

To make a fair comparison between the classification
and regression agents, we employ different classification
networks for the two sub-tasks to guarantee that each
classification agent has similar model complexity with the
corresponding regression agent.

For each phase, we also regard the marker task as a
regression problem, aiming to directly predict the relative
position between the marker and the quadrotor on the X-
Y plane. Since introducing the auxiliary localization task is
to help the agent better capture the features of the marker
and thus accurately locate the marker in its field of view,
we perform predictions on the 2D plane. We build a simple
CNN structure consisting of one Spatial Softmax layer
followed by a FC layer to solve the regression problem.
The FC layer’s output is sent into a linear layer to produces
a 2D vector, which encodes the relative coordinates of the
marker to the quadrotor on the X-Y plane. Similarly, we

attach the regression network on top of the backbone feature
embedding network to facilitate the learning of a better
landing policy. The overall structure of our CNN network
with auxiliary localization regression is shown in Fig. 3.
We employ the following L2 loss to optimize the marker
localization network:

Lr
a(θ, β) =

bs∑

i=1

(
(Δx∗

i − Δxi)
2 + (Δy∗

i − Δyi)
2
)
, (7)

where bs is the batchsize; Δxi and Δyi are predicted
values of the relative coordinates in X and Y dimensions,
respectively; Δx∗

i and Δy∗
i are ground-truth values for Δxi

and Δyi , respectively.

4.3 Dynamic partitioned experience replay

In addition to inaccurate feature extraction, both the marker
alignment and the vertical landing tasks have sparse and
delayed rewards and are thus in the form of Blind Cliffwalk
[24]. A positive reward is given to the quadrotor only when
it successfully reaches the pre-defined target zone. Since
the target zone is relatively tiny compared with the entire
state space, it is extremely hard for the quadrotor to obtain a
positive reward. This issue is severe for the vertical landing
phase due to its 3D state space. As a result, there are few
positive samples in the replay buffer D. Performing uniform
sampling from such a replay buffer will miss the more
useful positive-reward transitions with a high probability,
making the policy learning unstable and less efficient. To
alleviate this issue, Narasimhan et al. [44] considered such
positive-reward transitions to have higher priority and used
prioritized sampling to sample a fixed portion of transitions

6200 J. Wang et al.



Fig. 2 The entire structure of the network with classification auxiliary task (AsDDQN-Cla). The input is four consecutive 84 × 84 grayscale
images. The structures within the blue and red dotted line are used in the marker alignment phase and vertical landing phase respectively

from the higher priority pool at each learning step. Polvara
et al. [20] employed three pools to keep track of positive,
neutral and negative transitions separately. At each learning
step, a fixed portion of transitions are sampled from each
experience pool to ensure that there are enough more useful
positive and negative transitions in each batch. Schaul et
al. [24] measured the importance of the transitions by their
temporal-difference (TD) error, and improved the learning
efficiency by utilizing prioritized sampling to replay critical
transitions more frequently. These replay methods have
their limitations although they have achieved impressive
performances. On one hand, these partition-based replay
methods [20, 44] sample a fixed portion of transitions from

each partition across the whole learning process. However,
as learning proceeds, the importance of different partitions
changes. Therefore, fixing the sampling probability will
slow down the learning process. On the other hand, the
TD-based replay method [24] updates the TD values of all
experiences at each learning step, and thus suffers from high
computational complexity.

To tackle the above challenge, we propose a new
experience replay method called dynamic partitioned
experience replay, as shown in Fig. 4. We follow [20] to
employ three pools, denoted as (D+, D∼, D−) to separately
keep track of positive, neutral, and negative transitions.
Different from [20], we dynamically adjust the sampling

Fig. 3 The entire structure of the network with regression auxiliary task (AsDDQN-Reg) for both landing phases. Both the marker alignment and
vertical landing share the same deep regression model

6201Towards better generalization in quadrotor landing using deep reinforcement learning



Fig. 4 The working principle of
dynamic partitioned experience
replay

ratio of each experience pool based on their average
absolute TD errors during batch sampling. Our approach
could be seen as a combination of partition based and
TD based experience replay. Specifically, at each update
step, we first compute the average absolute TD error of
each partition and normalize the set of TD errors to make
sure that their sum is equal to 1. Then, the transition
selection is performed by a novel two-layer hierarchical
sampling strategy. At a higher layer, we determine how
many experiences are selected from each partition based on
their normalized average TD error. Denote the normalized
average absolute TD error of each partition as ρi, i ∈ {+, ∼
, −}, a total of bs × ρi transitions will be selected from
each partition i when the batch size is set to bs . At a lower
layer, we measure the importance of the transitions in each
partition by the magnitude of their TD error, and utilize
prioritized sampling to replay important transitions more
frequently. Once a set of bs transitions D = (e1, ..., eN) are
sampled from the above three pools, we update the policy
network using these transitions. After updating the policy

network, we further update the TD errors of the bs selected
transitions instead of all samples, which helps to reduce
computational complexity, and another new iteration starts.

5 Experiments

We first describe the implementation details in Section 5.1,
then present the experimental results obtained with
localization-assisted DQN in the marker alignment phase
and vertical landing phase in Section 5.2, and finally pro-
vide an in-depth analysis of the experimental results through
feature visualization in Section 5.3. We used the same
quadrotor (Parrot BeBop 2) and simulation environment
(i.e., Gazebo 7.7x, ROS Kinetic) in both training and testing.
The control command sent to the quadrotor was transformed
to a continuous speed vector ∈ [−1, 1] that allows the
quadrotor to move in the corresponding direction with a
specific velocity. It is worth noting that the physics of the
quadrotor had not been simplified.

Fig. 5 Initialization area (blue)
and target area (green) for (a)
marker alignment and (b)
vertical landing

6202 J. Wang et al.



5.1 Implementation details

5.1.1 Quadrotor

A 100 × 100m uniform background texture was placed in
the simulation environment, with the ground marker located
in the center. In the marker alignment phase, the agent
moves only on the X-Y plane. We defined two bounding
boxes, with the larger blue and the smaller green bounding
boxes representing the exploration space and target zone,
respectively, as shown in Fig. 5(a). We spawn the quadrotor
at 20m of flight altitude with a random position inside the
blue bounding box at the start of each episode. For each
episode, the quadrotor is expected to perform a sequence
of actions to reach the goal. Here, discrete action was used
to stabilize the flight. Specifically, the quadrotor repeats
each movement action for 2 seconds at a speed of 0.5m/s,
leading to a displacement of 1m in the corresponding
direction. The quadrotor receives a positive reward of +1.0
when it performs “trigger” inside the green bounding box
and receives a negative reward of −1.0 when it performs
“trigger” outside the green bounding box. The maximum
episode length was 20 time steps. In the vertical descending
phase, the quadrotor was allowed to move in 3D space,
and thus the state space is considerably larger than that
in the marker alignment phase. At the beginning of each
episode, we spawn the quadrotor within a blue cube of
size 3 × 3 × 20m and expected the quadrotor to reach the
target zone, represented by the small green cube of size
1.5 × 1.5 × 1.5m, within a given time limit, as shown in
Fig. 5(b). hmin was set to 0.3m. Here, the maximum episode
length was 40 time steps.

5.1.2 Datasets

We used 10 different uniform asphalt background textures to
train the proposed deep model, and used another 3 different
asphalt background textures to test the trained model.
The materials in these background textures are visually
similar. As mentioned before, the variety of ground textures
in real-world environments poses a high requirement for
the generalization capability of the learned landing policy
to unseen environments. Here, we considered 6 different
types of background textures to test the generalization
capability of the learned landing policy, with each type
containing 13 different samples. The materials in these
texture backgrounds were completely different from those
used in training, and they were not involved in the training
process. Figure 6 shows the training background textures
and part of the testing background textures. The complete
test background textures are shown in the Appendix.

5.1.3 Training

In the training phase, we replaced the asphalt background
texture every 50 episodes by randomly choosing one from
the 10 training samples. The target network and policy
network were synchronized every C time steps. In marker
alignment phase, we employed partitioned buffer replay,
and choosed ρ+ = 0.25, ρ− = 0.25 and ρ∼ = 0.5.
However, in the vertical landing phase, we employed our
proposed dynamic partitioned experience replay to further
improve learning efficiency. Here, we followed [24] to
set the priority exponent as 0.6, and linearly anneal the
importance sampling exponent from 0.4 to 1; the values
of ρ+, ρ− and ρ∼ were dynamically determined based
on the average absolute TD error of the corresponding
partition. Moreover, we collected a certain amount of
preliminary experiences using a random policy before
training. However, using the random policy generated very
few positive-reward transitions. We employed the data
augmentation technique to alleviate this issue. Specifically,
we rotated each image by 90◦, 180◦, and 270◦, and then
flipped the original image and the three rotated images
to expand the positive-reward examples by eight times.
Finally, we put N experiences into the replay buffer,
with N+ positive experiences, N− negative experiences,
and N∼ neutral experiences. The whole network was
trained for Nt steps by using ε − greedy exploration
strategy with ε decreasing from εb to εe over the first
Ng steps and keeping εe unchanged afterwards. The L2

loss weight ω decreased from 1 to 0 over the first
Ng steps. Values of all hyperparameters are listed in
Table 1. RMSProp was used as the optimizer. Xavier
uniform initialization was utilized to initialize the network
weights. The simulation was implemented on the platform
with an i7-9700K CPU, RTX2080Ti GPU, and 32GB of
RAM.

5.2 Experimental results

5.2.1 Baselines and evaluation matrics

We consider the sequential deep Q-network (SDQN, 2020)
[20] and Soft Actor-Critic for discrete action settings (SAC-
Discrete, 2019) [45] as the baselines. It is worth pointing out
that in [20] Polvara et al. further enhanced the SDQN model
using domain randomization (SDQN-DR) by training the
model on more groups of environments. However, SDQN-
DR contradicts our original intention of generalizing the
trained model to novel environments using a single type
of training data, and therefore we do not consider SDQN-
DR for performance comparison. Following previous works

6203Towards better generalization in quadrotor landing using deep reinforcement learning



Fig. 6 Background textures
used for training: (a) asphalt.
Background textures used for
testing: (b)-(d): asphalt, (e)
brick, (f) grass, (g) pavement,
(h) sand, (i) snow, (j) soil. (k)
Marker

[20, 21], we adopt the mean episode reward as the
evaluation metric. To facilitate explanation, we denote
DDQN with auxiliary classification task and regression task
as AsDDQN-Cla and AsDDQN-Reg, respectively.

5.2.2 Marker alignment

We present the learning curves of our proposed models
AsDDQN-Cla and AsDDQN-Reg, as well as the baselines

Table 1 Parameter settings for simulation

Parameter Value

Marker Alignment Vertical Landing

Synchronization frames(C) 10000 10000

Positive experience ratio(ρ+) 0.25 -

Negative experience ratio(ρ−) 0.25 -

Neutral experience ratio(ρ∼) 0.5 -

Replay buffer size(N) 6 × 104 3 × 105

Positive experiences(N+) 1.5 × 104 7.5 × 104

Negative experiences(N−) 1.5 × 104 7.5 × 104

Neutral experiences(N∼) 3 × 104 1.5 × 105

Training frames(Nt ) 4.5 × 105 5 × 105

ε start value(εb) 1.0 1.0

ε stop value(εe) 0.1 0.1

ε change frames(Ng) 2 × 105 2 × 105

Discount factor(γ ) 0.99 0.99

Batch size(bs ) 32 32

6204 J. Wang et al.



Fig. 7 Learning curves of all
agents in marker alignment
phase (Sampling using
partitioned experience replay
method). The abscissa is the
number of training steps. The
ordinate is mean episode reward,
averaged every 10 episodes

in Fig. 7. We note some particular results from these learn-
ing curves. First, as compared to the SDQN, the average
rewards of AsDDQN-Cla and AsDDQN-Reg increase faster
and more stable, and the ultimate convergence results are
better. This proves the advantage of adding marker localiza-
tion as an auxiliary task. The advantage can be explained by
the fact that the auxiliary task helps the feature embedding
network to learn better feature representations for marker
recognition, thus facilitating the learning of a better pol-
icy faster. Second, Figure 7 also explores the difference
between the two formulations of marker localization, as
a classification or a regression task. We can see that the
regression agent (AsDDQN-Reg) performs better than the
one that does classification (AsDDQN-Cla) in terms of con-
vergence speed. Third, SAC-Discrete converges to −0.2
quickly, which means the quadrotor hovers in the air until
a maximum number of 40 steps is finished. This can be
explained by insufficient exploration. In the initial training
phase, the agent receives a large negative reward for per-
forming “trigger” action incorrectly. In order to maximize

the expected return of the policy, the probability of taking
“trigger” action is reduced in later period. At the same time,
minimizing the error between the action entropy and the
target entropy causes the temperature parameter to be grad-
ually reduced to zero as training procedure proceeds. Due to
the above two facts, there are few “trigger” action samples in
the replay buffer. Without enough “trigger” action samples,
the SAC-Discrete algorithm fails to converge to the optimal
solution. In comparison, other algorithms use ε −greedy for
exploration and are not affected by policy updates. Besides,
we further enhance the best-performing agent AsDDQN-
Reg by using the dueling network architecture [46], named
as AsD3QN-Reg. Experimental results show that using the
dueling framework brings slight improvements compared to
AsDDQN-Reg. This proves that the auxiliary task improves
the stability and convergence speed of the model, making
the dueling framework unnecessary.

Test on alignment After training, we test the five models
on three other asphalt background textures as shown in

Fig. 8 Test results of marker alignment under different background
textures. Asphalt is used to test the performance of the trained model.
Brick, grass, pavement, sand, snow and soil are used to test the gen-
eralization capability of the trained model, and ‘Avg’ is the average

success rate of these 6 background textures. The model performance
test is represented by bar chart with bubbles, and the generalization
capability test is represented by bar chart with solid color. The content
of the following test result figures has the same meaning

6205Towards better generalization in quadrotor landing using deep reinforcement learning



Fig. 6(b)-(d)), which are not involved in training. We test
100 times on each background texture. Every time we spawn
the agent inside the pre-defined flying space with a random
position and orientation. The bar chart with bubbles in
Fig. 8 compares the average success rates of the AsDDQN-
Cla, AsDDQN-Reg, SDQN, and AsD3QN-Reg. Here, we
do not show the results of SAC-Discrete because it has a
success rate of zero in all three environments. We observe
that AsDDQN-Cla, AsDDQN-Reg and AsD3QN-Reg all
outperform the baseline SDQN, which is consistent with the
earlier results obtained from the training procedure. We also
notice that the average success rate of the AsDDQN-Reg
exceeds the AsDDQN-Cla by a large margin, about 27%,
although they achieve similar performances during training.
This suggests that the regression agent performs much
better in unseen environments compared to the classification
agent.

Test on generalization To provide a comprehensive anal-
ysis of the generalization capabilities of these different
agents, we further test the five models on six different types
of background textures, including brick, grass, pavement,
sand, snow, and soil, as shown in Fig. 16, all of which
are entirely different from the asphalt ones used for train-
ing. Each type of texture contains 13 instances, and we test
each agent 100 times on each background sample (i.e., 7800
tests in total). The marker alignment performances of all
the agents are reported in Fig. 8. Here, we do not show
the results of SAC-Discrete because it has a success rate
of zero in all test environments. We make the following
two observations. First, the addition of marker localization
as an auxiliary task significantly enhances the generaliza-
tion capability of the learned policy. Second, formulating
the marker localization as a regression problem (AsDDQN-
Reg) further improves the generalization capability of the
learned policy by a large margin. In detail, the average suc-
cess rates of the regression agent on all background textures
are all above 0.85. We explain the observation by the fact

that formulating the marker localization as a regression task
provides stronger supervision signals on the marker’s loca-
tion, thus helping the agent better infer the relative position
between the marker and itself. Furthermore, the average suc-
cess rate of the AsDDQN-Reg model has almost reached its
success rate on asphalt. This means that the model learns
the marker’s characteristics more quickly and accurately by
adding the auxiliary task.

5.2.3 Vertical landing

Figure 9 shows the learning curves of SDQN, AsDDQN-
Cla, AsDDQN-Reg and SAC-Discrete in the vertical
landing phase when the partitioned experience replay
is employed for sampling. We note from these curves
that the convergence of SDQN is fast but not stable,
especially in the latter part of its training procedure.
SAC-Discrete doesn’t converges to the optimal results
due to insufficient exploration of “descend” action like
in the marker alignment phase. The convergence of
the classification agent AsDDQN-Cla is unstable, but it
converges to a better policy than SDQN. Among the three
agents, the regression agent AsDDQN-Reg performs the
best during training. Its convergence process is stable,
and it converges to a pretty good solution. Besides, we
further enhance AsDDQN-Cla by using the dueling network
architecture, named as AsD3QN-Cla. Experimental results
show that the convergence of AsD3QN-Cla becomes more
stable than AsDDQN-Cla, but it converges to a worse
solution. This could be explained by the fact that different
actions lead the quadrotor to reach the target state faster
or slower, having a significant impact on the Q values. In
contrast, the dueling framework better suits scenes where
the state determines the Q values.

Test on landing After training, we repeat the testing
procedure as described in Section 5.2.2 to test the five
models on 3 different asphalt background textures that

Fig. 9 Learning curves of all
agents in vertical landing phase
(Sampling using partitioned
experience replay method). The
abscissa is the number of
training steps. The ordinate is
mean episode reward, averaged
every 10 episodes

6206 J. Wang et al.



Fig. 10 Test results of vertical
landing under different
background textures

are not involved in the training. The bar chart with
bubbles in Fig. 10 shows the average success rates
of the five agents. We note that the average landing
success rates of AsDDQN-Cla and AsDDQN-Reg are
significantly improved compared with SDQN, especially
for AsDDQN-Cla. This proves the advantage of adding
marker localization as an auxiliary task in the vertical
landing phase. The incorporation of auxiliary localization
task provides additional guidance for the feature embedding
network to capture more efficient feature representations
for marker detection. The policy learned from such feature
embeddings could rely on the relative position to better infer
actions in different states. SAC-Discrete has a much lower
success rate, and the successful vertical landing happens
mainly when the initial position of the quadrotor is close to
the maker and there is no need to perform the “descend”
action. Another notable observation is that the average
landing success rate of AsD3QN-Cla is decreased due to
using the dueling framework. The dueling framework is
proved to be effective in tasks where the states mainly
determine the Q values. However, in our vertical landing
task, different actions have a significant impact on the Q
values.

Test on generalization In order to test the generalization
capability of the five agents, we further test them on 6
different types of textures as in the previous phase. The
average success rates of the five agents in these unseen
environments are shown in Fig. 10. We observe that the
regression agent AsDDQN-Reg outperforms the SDQN by a
large margin in all six types of environments, about 27% on
average. This suggests the strong generalization capability
of the learned landing policy from AsDDQN-Reg. However,
the classification agent performs worse than the SDQN in all
environments except for the grass ones, although it achieves
the best performance on the asphalt background textures.
The poor performance of AsDDQN-Cla could be explained
as follows. As the altitude of the quadrotor decreases, the
size of the captured marker becomes larger. When the
flight altitude of the quadrotor decreases to some extent,
the marker will occupy multiple cells on the observation
image. It is tough for the classification agent to recognize
which cell the marker locates in at these moments. As a
result, the agent will converge to a local optimal solution and
eventually overfit in subsequent training. The SAC-Discrete
agent shows bad generalization capability since it doesn’t
converge to good results. In addition, we find that in both

Fig. 11 Comparison of test
result of vertical landing under
different background textures.
AsDDQN-Cla and AsDDQN-
Reg use partitioned buffer replay
method for sampling, AsDDQN-
Cla+ and AsDDQN-Reg+ use
prioritized buffer replay method
for sampling, AsDDQN-Cla∗
and AsDDQN-Reg∗ use
dynamic partitioned experience
replay method for sampling

6207Towards better generalization in quadrotor landing using deep reinforcement learning



Fig. 12 The changes in
sampling ratios of different
partitions during training of
AsDDQN-Reg in the vertical
landing phase when dynamic
partitioned experience replay is
employed

marker alignment and vertical landing, adding the dueling
framework does not improve the model, and there is no need
to introduce the dueling framework.

Test on sampling In the vertical landing phase, the
quadrotor moves in 3D space. The vast state space makes
the problem of sparse and delayed rewards deteriorate.
To alleviate this problem, we use the dynamic partitioned
experience replay method to perform transition experience
sampling. We also compare it with the partitioned buffer
replay method and prioritized buffer replay method to
highlight the advantages of our dynamic partitioned
experience replay method. Both the prioritized buffer replay
and our method update the priorities of the sampled
experiences at each time step.

Figure 11 shows the landing performances of AsDDQN-
Cla and AsDDQN-Reg using different sampling strategies,
including partitioned buffer replay, prioritized buffer replay,
and our dynamic partitioned experience replay sampling
methods. Although the success rate of the model on the
asphalt background textures is reduced after using dynamic
partitioned experience replay compared with partitioned
buffer replay, the success rate on all other different
types of background textures that are not involved in the
training is improved by a large margin. By using the

dynamic partitioned experience replay sampling method,
the average success rate of the generalization capability
test of AsDDQN-Cla and AsDDQN-Reg is increased by
27% and 7% compared with partitioned buffer replay, and
53% and 31% compared with prioritized buffer replay. This
observation demonstrates the effectiveness of our proposed
dynamic partitioned experience replay method in improving
the landing accuracy and generalization of the learned
policy.

To gain a deeper insight into our dynamic partitioned
experience replay mechanism, for each partition we show
its changes in samples ratio as training proceeds in Fig. 12.
Here, X and Y axes represent the index of time steps and
the proportion of experiences sampled from the partition,
respectively. We make the following observations from the
Figure. In the initial training period, the negative partition’s
sampling ratio keeps increasing, and negative partition
occupies a large proportion of the selected samples. The
dominance of the negative partition lasts for an extended
period until the late part of the training. At this point,
the neutral partition’s sampling ratio starts to increase and
surpass that of the negative partition. Throughout the entire
training procedure, the sample ratio of the positive partition
is relatively small. This observation reveals that the learning
initially focuses on avoiding negative states with a large

Fig. 13 Visualization of
extracted features from different
models in the marker alignment
phase: (a) SDQN, (b) As-
DDQN-Cla, (c) As-DDQN-Reg,
(d) As-D3QN-Reg

6208 J. Wang et al.



Fig. 14 Visualization of
extracted features from different
models in the vertical landing
phase: (a) SDQN, (b) As-
DDQN-Cla, (c) As-DDQN-Reg,
(d) As-D3QN-Cla

penalty and then shifts to reaching the marker and landing
precisely.

5.3 Feature visualization

Experiment results have demonstrated that adding auxiliary
localization tasks improves the learned policy model’s
generalization capability. In this section, we provide an
in-depth explanation of the observation by visualizing the
features extracted by the convolutional layers of difference
models.

Figure 13 shows the visualization of the features
extracted by the convolutional layers of different models
in the marker alignment phase using heat maps. The red
area represents apparent features, while the blue area is the
opposite. Due to the limitations of the feature extraction
capability, the most apparent features extracted by the
SDQN model deviate from the marker. The area covered
by the features extracted by AsDDQN-Cla is too large, and
the deviation is significant. The region corresponding to the
classification label is too large, and the features extracted
by the trained model are not accurate enough, degrading
the robustness of the learned policy. The model cannot

accurately locate the marker under diverse background
textures, and the alignment success rate is low. The features
extracted by the regression agent are concentrated. As
shown in Fig. 13(c)-(d), the region where the maker is
located has the most apparent features, and the features
extracted by the model are accurate. The policy that is
further learned by using accurate features is more robust,
and the alignment success rate is higher under diverse
background textures.

Figure 14 is the visualization of the features extracted
from different models during the vertical landing phase. The
features extracted by the SDQN model are too scattered
and do not focus on the marker in the image. The features
extracted by the AsDDQN-Cla model are more concentrated
and distributed around the marker. However, adding the
dueling structure does not improve the feature extraction
capability. The features extracted by AsD3QN-Cla are
still scattered. The features extracted by the AsDDQN-
Reg model are most concentrated, and the most apparent
feature is from the marker. Due to the quadrotor’s altitude
change, the marker’s size in its field of view changes
significantly, which increases the complexity of feature
extraction. Compared with the features extracted by the

Fig. 15 Snapshots of the indoor
vertical landing phase flight.
The upper left corner is the
picture taken by the quadrotor.
At the bottom is the Q values of
each action predicted based on
the input image (the maximum
Q value is green). From left to
right, each action icon represents
“turn right”, “turn left”, “go
forward”, “go backward”,
“descend” and “landing”

6209Towards better generalization in quadrotor landing using deep reinforcement learning



model in the marker alignment phase, the accuracy of the
features extracted at this phase is still insufficient, resulting
in the landing success rate is not high enough.

5.4 Real-world experiments

We tested the trained model in the real-world environment,
using the Parrot Anafi quadrotor as the test platform.
As the AsDDQN-Reg model has the highest success rate
in the simulation environment, we used it both in the
marker alignment phase and vertical landing phase. We
conducted landing experiments in a variety of indoor and
outdoor environments with different background textures.
The quadrotor starts to land at a random location. The
quadrotor has seven executable actions like simulation: “go
forward”, “go backward”, “turn left”, “turn right”, “trigger”,
“descend”, and “landing”. When testing in an outdoor
environment, the “go forward”, “go backward”, “turn left”,
“turn right”, and “descend” actions respectively produce a
displacement of 1m in the corresponding direction; when
testing in an indoor environment, due to the limitation of the
movable space, we only test the vertical landing phase and
reduce the displacement generated by the actions to 0.25m.

The model trained in Gazebo can be seamlessly trans-
ferred to a real quadrotor for testing, and the performance
is remarkable. Figure 15 shows some snapshots during the
test. The prediction of Q values conforms to the reward
design: the Q value of the action that can reach the marker
as soon as possible is the largest. Since we do not penalize
the non-shortest path too much, the Q values of some other
actions are also very close to the maximum Q value. Since
the “landing” action should only be taken within the target
zone, the Q value of the “landing” action is negative in most
cases due to the smaller area of the target zone.

6 Discussion

Based on the above experiment results, we conclude that
adding marker localization as an auxiliary task enhances the
convergence speed and helps to find a better policy. The
learned policy has proved to perform better in both seen and
unseen environments compared with SDQN. In particular,
the regression agent achieves the best performance, with
an average success rate over 0.9 and 0.62 in 78 unseen
environments in the marker alignment phase and vertical
landing phase, respectively. Feature visualization has been
performed to provide an in-depth explanation of the
experiment results. The visualization shows that adding
auxiliary tasks can help the agent better capture the features

related to the landing marker compared with SDQN. With
better features, the agent can locate the marker more accurately
thereby improving the robustness of the learned policy.

Besides, the dynamic partitioned experience replay
method further improves the model’s generalization capa-
bility by making learning from experiences more efficient.
The changes in sampling ratios of different partitions show
the model can focus on different types of samples dur-
ing training. With the more efficient sampling method, the
regression agent achieves the best performance with an aver-
age success rate above 0.66 in 78 unseen environments in
the vertical landing phase.

Despite the fact that the auxiliary localization tasks and
dynamic partitioned experience replay method have greatly
improved the model’s performance, our approach still has
limitations. The model is influenced by the environment
background when extracting marker features. As seen in the
feature visualization, the model will notice regions where
the color is close to the marker color. This may limit the
performance of the model in complex environments. In the
future, we hope to eliminate the influence of environment
background on model feature extraction, allowing the model
to work stably in complex environments.

7 Conclusions

In this paper, we use DDQN with auxiliary tasks to
achieve the quadrotor autonomous landing. Adding the
auxiliary regression task in the marker alignment and
vertical landing phases steadily improves the success
rate of the quadrotor landing under diverse background
textures. Adding auxiliary tasks also solves the unstable
convergence problem in SDQN and SAC-Discrete, allowing
the model to generalize better and perform stably in unseen
environments. Besides, we propose the dynamic partitioned
experience replay sampling method, which stabilizes the
training procedure and improves the efficiency of learning
from experiences. Future work will focus on eliminating the
effect of environment background on feature extraction so
that the model can work in more complex environments.

Appendix

To test the trained model’s generalization capability, the
ground background texture is replaced with textures not
involved in training for testing. As shown in Fig. 16, there
are 6 types of textures, each of which contains 13 different
instances.

6210 J. Wang et al.



Fig. 16 The background textures used in the model generalization test: (a) brick, (b) grass, (c) pavement, (d) sand, (e) snow, (f) soil

Declarations

Conflict of Interests The authors declare that they have no conflict of
interest.

References

1. Silvagni M, Tonoli A, Zenerino E, Chiaberge M (2017)
Multipurpose uav for search and rescue operations in mountain
avalanche events. Geomatics, Natural Hazards and Risk 8(1):18–
33

2. Whitehead K, Hugenholtz CH (2014) Remote sensing of the
environment with small unmanned aircraft systems (uass), part
1: A review of progress and challenges. Journal of Unmanned
Vehicle Systems 2(3):69–85

3. Yang S, Yang X, Mo J (2018) The application of unmanned
aircraft systems to plant protection in china. Precision agriculture
19(2):278–292

4. Yang T, Li Z, Zhang F, Xie B, Li J, Liu L (2019) Panoramic uav
surveillance and recycling system based on structure-free camera
array. IEEE Access 7:25763–25778

5. Tanaka S, Senoo T, Ishikawa M (2019) High-speed uav
delivery system with non-stop parcel handover using high-speed
visual control. In: 2019 IEEE Intelligent Transportation Systems
Conference (ITSC), IEEE, pp 4449–4455

6. Dai Z, Yi J, Zhang Y, Zhou B, He L (2020) Fast and accurate cable
detection using cnn. Appl Intell 50(12):4688–4707

7. Tian G, Liu J, Zhao H, Yang W (2021) Small object detection via
dual inspection mechanism for uav visual images. Appl Intell, pp
1–14

8. Lee S, Shim T, Kim S, Park J, Hong K, Bang H (2018)
Vision-based autonomous landing of a multi-copter unmanned
aerial vehicle using reinforcement learning. In: 2018 International

Conference on Unmanned Aircraft Systems (ICUAS), IEEE,
pp 108–114

9. Al-Sharman MK, Emran BJ, Jaradat MA, Najjaran H, Al-Husari
R, Zweiri Y (2018) Precision landing using an adaptive fuzzy
multi-sensor data fusion architecture. Applied soft computing
69:149–164

10. Talha M, Asghar F, Rohan A, Rabah M, Kim SH (2019)
Fuzzy logic-based robust and autonomous safe landing for uav
quadcopter. Arab J Sci Eng 44(3):2627–2639

11. Gui Y, Guo P, Zhang H, Lei Z, Zhou X, Du J, Yu Q
(2013) Airborne vision-based navigation method for uav accuracy
landing using infrared lamps. J Intelligent & Robotic Systems
72(2):197–218

12. Tang D, Hu T, Shen L, Zhang D, Kong W, Low KH (2016)
Ground stereo vision-based navigation for autonomous take-off
and landing of uavs: a chan-vese model approach. Int J Adv Robot
Syst 13(2):67

13. Kalinov I, Petrovsky A, Agishev R, Karpyshev P, Tsetserukou D
(2021) Impedance-based control for soft uav landing on a ground
robot in heterogeneous robotic system. In: 2021 International
Conference on Unmanned Aircraft Systems (ICUAS), IEEE,
pp 1653–1658

14. Almeshal AM, Alenezi MR (2018) A vision-based neural network
controller for the autonomous landing of a quadrotor on moving
targets. Robotics 7(4):71

15. Khazetdinov A, Zakiev A, Tsoy T, Svinin M, Magid E (2021)
Embedded aruco: a novel approach for high precision uav
landing. In: 2021 International Siberian Conference on Control
and Communications (SIBCON), IEEE, pp 1–6

16. Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou
I, Wierstra D, Riedmiller M (2013) Playing atari with deep
reinforcement learning. arXiv:1312.5602

17. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare
MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G et al
(2015) Human-level control through deep reinforcement learning.
nature 518(7540):529–533

6211Towards better generalization in quadrotor landing using deep reinforcement learning

http://arxiv.org/abs/1312.5602


18. Zhang F, Leitner J, Milford M, Upcroft B, Corke P (2015)
Towards vision-based deep reinforcement learning for robotic
motion control. arXiv:1511.03791

19. Tai L, Paolo G, Liu M (2017) Virtual-to-real deep reinforcement
learning: Continuous control of mobile robots for mapless
navigation. In: 2017 IEEE/RSJ International conference on
intelligent robots and systems (IROS), IEEE, pp 31–36

20. Polvara R, Patacchiola M, Hanheide M, Neumann G (2020) Sim-
to-real quadrotor landing via sequential deep q-networks and
domain randomization. Robotics 9(1):8

21. Xu Y, Liu Z, Wang X (2018) Monocular vision based autonomous
landing of quadrotor through deep reinforcement learning. In:
2018 37th Chinese control conference (CCC), IEEE, pp 10014–
10019

22. Le L, Patterson A, White M (2018) Supervised autoencoders:
Improving generalization performance with unsupervised regular-
izers. Adv Neural Info Process Systems 31:107–117

23. Sun Y, Wang X, Liu Z, Miller J, Efros A, Hardt M (2020)
Test-time training with self-supervision for generalization under
distribution shifts. In: International conference on machine
learning, PMLR, pp 9229–9248

24. Schaul T, Quan J, Antonoglou I, Silver D (2015) Prioritized
experience replay. arXiv:1511.05952

25. Sutton RS, Barto AG (2018) Reinforcement learning: An
introduction. MIT press

26. Kavuk EM, Tosun A, Cevik M, Bozanta A, Sonuç SB, Tutuncu
M, Kosucu B, Basar A (2021) Order dispatching for an ultra-fast
delivery service via deep reinforcement learning. Appl Intell, pp
1–26

27. Hui TS, Ishak MK, Mohamed MFP, Fadzil LM, Ahmarofi AA
(2021) Balancing excitation and inhibition of spike neuron using
deep q network (dqn). In: Journal of physics: Conference series,
vol 1755, IOP Publishing, p 012004

28. Al-Gablawy M (2021) Optimal peak shifting of a domestic load
connected to utility grid using storage battery based on deep
q-learning network. Int J Energy Res 45(2):3269–3287

29. Van Hasselt H, Guez A, Silver D (2016) Deep reinforcement
learning with double q-learning. In: Proceedings of the AAAI
conference on artificial intelligence, vol 30

30. Haarnoja T, Zhou A, Abbeel P, Levine S (2018) Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a
stochastic actor. In: International conference on machine learning,
PMLR, pp 1861–1870

31. Olivares-Méndez MA, Mondragón IF, Campoy P, Martı́nez C
(2010) Fuzzy controller for uav-landing task using 3d-position
visual estimation. In: International conference on fuzzy systems,
Ieee, pp 1–8

32. Keipour A, Pereira GAS, Bonatti R, Garg R, Rastogi P, Dubey G,
Scherer S (2021) Visual servoing approach for autonomous uav
landing on a moving vehicle. arXiv:2104.01272

33. Saavedra-Ruiz M, Pinto-Vargas AM, Romero-Cano V (2021)
Monocular visual autonomous landing system for quadcopter
drones using software in the loop. IEEE Aerosp Electron Syst Mag

34. Lange S, Sunderhauf N, Protzel P (2009) A vision based onboard
approach for landing and position control of an autonomous
multirotor uav in gps-denied environments. In: 2009 International
conference on advanced robotics, IEEE, pp 1–6

35. Huang X, Xu Q, Wang J (2019) Vision-based autonomous
landing of uav on moving platform using a new marker. In: IOP
Conference series: Materials science and engineering, vol 646,
IOP Publishing, p 012062

36. Lebedev I, Erashov A, Shabanova A (2020) Accurate autonomous
uav landing using vision-based detection of aruco-marker. In:

International conference on interactive collaborative robotics,
Springer, pp 179–188

37. Niu G, Yang Q, Gao Y, Pun M-O (2021) Vision-based
autonomous landing for unmanned aerial and mobile ground
vehicles cooperative systems. IEEE robotics and automation
letters

38. Vankadari MB, Das K, Shinde C, Kumar S (2018) A reinforce-
ment learning approach for autonomous control and landing of a
quadrotor. In: 2018 International conference on unmanned aircraft
systems (ICUAS), IEEE, pp 676–683

39. Shim T, Bang H (2018) Autonomous landing of uav using vision
based approach and pid controller based outer loop. In: 2018
18th International conference on control, automation and systems
(ICCAS), IEEE, pp 876–879

40. Kim C, Lee EM, Choi J, Jeon J, Kim S, Myung H (2021) Roland:
Robust landing of uav on moving platform using object detection
and uwb based extended kalman filter. In: 2021 21st International
conference on control, automation and systems (ICCAS), IEEE,
pp 249–254

41. Zhang H-T, Hu B-B, Xu Z, Cai Z, Liu B, Wang X, Geng T, Zhong
S, Zhao J (2021) Visual navigation and landing control of an
unmanned aerial vehicle on a moving autonomous surface vehicle
via adaptive learning. IEEE Trans Neural Networks and Learning
Systems

42. Guo K, Tang P, Wang H, Lin D, Cui X (2022) Autonomous
landing of a quadrotor on a moving platform via model predictive
control, vol 9

43. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classi-
fication with deep convolutional neural networks. Adv Neural
Information Processing Systems 25:1097–1105

44. Narasimhan K, Kulkarni T, Barzilay R (2015) Language
understanding for text-based games using deep reinforcement
learning. arXiv:1506.08941

45. Christodoulou P (2019) Soft actor-critic for discrete action
settings. arXiv:1910.07207

46. Wang Z, Schaul T, Hessel M, Hasselt H, Lanctot M, Freitas
N (2016) Dueling network architectures for deep reinforcement
learning. In: International conference on machine learning,
PMLR, pp 1995–2003

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Jiawei Wang received the
B.S. degree from Southeast
University, Nanjing, China, in
2019. He is currently pursu-
ing the Ph.D. degree with the
Department of Control Sci-
ence and Engineering, Tongji
University, Shanghai, China.
His research interests include
pattern recognition, reinforce-
ment learning, and visual nav-
igation.

6212 J. Wang et al.

http://arxiv.org/abs/1511.03791
http://arxiv.org/abs/1511.05952
http://arxiv.org/abs/2104.01272
http://arxiv.org/abs/1506.08941
http://arxiv.org/abs/1910.07207


Teng Wang received Ph.D.
degree from Iowa State Uni-
versity, Ames, USA, in 2016.
She is currently an assistant
professor with the School of
Automation at Southeast Uni-
versity, Nanjing, China. Her
research interests including
pattern recognition, machine
vision, and visual navigation.

Zichen He received the
B.S. and M.S. degrees in
mechanical engineering from
the China University of
Petroleum, Beijing, China, in
2019. He is currently pursuing
the Ph.D. degree in control
science and engineering with
Tongji University, Shanghai,
China. His research inter-
ests include reinforcement
learning, multi-robot collabo-
rative navigation, and motion
planning.

Wenzhe Cai received the B.S.
degree from Southeast Uni-
versity, Nanjing, China, in
2019. He is currently a PhD
candidate in department of
automation at Southeast Uni-
versity. His research inter-
ests include machine learning,
pattern recognition, reinforce-
ment learning and visual navi-
gation.

Changyin Sun received the
B.S. degree in applied math-
ematics from the College of
Mathematics, Sichuan Uni-
versity, Chengdu, China, in
1996, and the M.S. and the
Ph.D. degrees in electrical
engineering from Southeast
University, Nanjing, China, in
2001 and 2004, respectively.
He is currently a Professor
with the School of Automa-
tion, Southeast University,
Nanjing, China. His current
research interests include
intelligent control, flight con-

trol, and optimal theory. Dr. Sun is an Associate Editor of the IEEE
Transactions on Neural Networks and Learning Systems, Neural
Processing Letters, and the IEEE/CAA Journal of Automatica Sinica.

6213Towards better generalization in quadrotor landing using deep reinforcement learning


	Towards better generalization in quadrotor landing using deep reinforcement learning
	Abstract
	Introduction
	Background
	Related work
	Classic vision based methods
	Special marker based methods
	Kalman filter based methods
	Deep learning based methods



	Proposed method
	Problem definition
	Auxiliary marker localization
	Dynamic partitioned experience replay

	Experiments
	Implementation details
	Quadrotor
	Datasets
	Training

	Experimental results
	Baselines and evaluation matrics
	Marker alignment
	Test on alignment
	Test on generalization

	Vertical landing
	Test on landing
	Test on generalization
	Test on sampling


	Feature visualization
	Real-world experiments

	Discussion
	Conclusions
	Appendix A 
	Declarations
	References


