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Abstract
In this study, a new Linguistic Pythagorean Hesitant Fuzzy Set (LPHFS) is introduced by considering the notions of linguistic
fuzzy set and Pythagorean hesitant fuzzy set. LPHFS is a suitable path to deal with the hesitant situation in decision making,
which is characterized by linguistic membership and non-membership degrees. Multi-Criteria Decision Making (MCDM)
process determines multiple competing criteria in decision making. The traditional decision making approaches assume
that each player is independent. But in real world competitive situation, the real fact is that each player tries to maximize
individual benefit which causes a negative impact on other player. Here we propose a Linguistic Pythagorean Hesitant
Fuzzy (LPHF) distance measure based on game theoretical framework to terminate the cross-influence problem. So our
intention is to explore the generalized hybrid Euclidean distance measures of LPHFS. Then we analyze the application of
LPHFS to MCDM game by using Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The LPHFS
is assumed to explore the uncertainty of Decision Makers (DMs), and the game theory is used to optimize the combination
of criteria in interactive conditions. A modified version of TOPSIS and Ambika method are designed in the context of
MCDM game with LPHFS. Finally, two real-life problems are considered to illustrate the applicability and feasibility of our
proposed method, and then a comparison analysis is drawn among the obtained results with the existing methods to depict
the usefulness of it.
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1 Introduction

Game theory is the study of conflict and competitive inter-
action among the DMs. It has been applied in various areas
such as politics, business model, social sciences, economics,
international relations, computer sciences, etc. Game theory
depicts with how DMs make decision when they resist with
exact payoffs. Because of this, the idea of game theory is
graceful in business world, international relations and poli-
tics. Furthermore, several kinds of real-life decision making
applications are constituted as a game problem. In a decision
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making problem, when a DM does not cooperate, the situ-
ation lies into the realm of non-cooperation. The DMs are
taken here as the players. In real-life problem, players are
usually unable to calculate the value of the game due to lack
of available information. A two-person zero-sum game is
the simplest game including two players, where the payoffs
are represented as crisp values. Then player I wins whereas
player II loses, although two players consider pure strate-
gies S1 = {αi : i = 1, 2, . . . , m} and S2 = {βj : j =
1, 2, . . . , n}, respectively.

The equipments of MCDM comprise a set of alternatives,
a set of criteria and evaluation values. With the help of
MCDM methods, the DMs select appropriate alternatives
or obtain their ranking orders according to various criteria.
At present, it has been successfully applied in several fields
of Operational Research, such as an energy project, an air-
condition system selection problem, talent introduction and
so on. In real-life decision making process, the DMs cannot
give their own ratings for each alternative with respect
to each criterion in advance. So there is always occur an
uncertain environment. In these situations, the imprecise
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parameters may be associated with uncertainty of various
types such as Fuzzy Sets (FSs) (Zadeh [52]), Intuitionistic
Fuzzy Sets (IFSs) (Atanassov [1]), Hesitant Fuzzy Sets
(HFSs) (Torra and Narukawa [40]), Dual Hesitant Fuzzy
Sets (DHFSs) (Zhu et al. [59]) and Type-2 Fuzzy Sets
(T2FSs) (Mendel [24]).

Literature survey reveals that Pythagorean Fuzzy Sets
(PFSs) were proposed by Yager ([47, 48]), which are a
new rating format. Based on the outcomes of Yager [49],
PFSs are differentiated both by a membership degree and
a non-membership degree. On the one hand, PFS as a new
extension of IFSs, succeed the duality property of IFSs.
Contrariwise, PFSs have more potential than IFSs to solve
the real-life decision making problems under uncertain
environment. It satisfies the condition that the square sum
of its membership degree and non-membership degree is
equal to or less than 1. For example, the membership
degree and the non-membership degree of one alternative
in a criterion are 0.8 and 0.6. It is easy to see that 0.8 +
0.6 � 1, so this situation cannot be stated by considering
the IFSs but (0.8)2 + (0.6)2 ≤ 1. As a novel evaluation,
PFSs have been used in several areas such as service
quality of domestic airlines, candidate selection in new
development bank and investment problem. In traditional
concept of PFSs, there are single valued membership and
non-membership degrees. But in MCDM the rating format
may be few values rather than a single value. In these
circumstances, HFSs are a useful tool. For example, three
DMs assess the membership of x intoAwith anonymity and
they assign 0.5, 0.6 and 0.7, respectively. In this situation,
the outcome {0.5, 0.6, 0.7} can be constituted as a set of
Hesitant Fuzzy Elements (HFEs) rather than the aggregation
of 0.5, 0.6, and 0.7, or an interval between 0.5 and 0.7.
So, HFSs employ various opinions of the DMs. These
studies can deal with the imprecise information that defined
only in quantitative situations. But, in a practical situation,
several decision making problems represent the qualitative
aspects to present the imprecise information. For example,
when rating the “aggregate marks” of a candidate in an
examination, DMs prefer to consider the linguistic variables
such as “excellent”, “very good”, “good”, “medium”, “bad”,
“poor”, etc. To describe it, Xu [45] offered a method
for group decision making problem based on linguistic
aggregation operators. Zhang [53] analyzed the Linguistic
Intuitionistic Fuzzy sets (LIFSs) by combining the concepts
of linguistic approach and IFS. Based on the advantages of
PFSs, HFSs and LFSs, we introduce the concept of LPHFSs,
which is differentiated by linguistic hesitant membership
degree and linguistic hesitant non-membership degree.

The rest of the paper is constructed as follows: The liter-
ature survey to our related work is presented in Section 2.
Section 3 provides some basic backgrounds of LFSs, PFSs
and HFSs. In Section 4, we introduce the definition of

LPHFSs with some operations and properties. Section 5
explores the LPHFSs based on game theoretical frame-
work. Solution procedure for LPHF-MCDM game with
the aid of extended TOPSIS is described in Section 6.
In Section 7, two real-life problems are considered to
elaborate the feasibility and effectiveness of our proposed
method. In Section 8, we sum up the discussion and com-
parison analysis of our proposed method with the method
of Zhang and Xu [55] and Ambika method (Xue et al.
[46]). Finally, conclusions are described in Section 9 with
suggestions of future study.

2 Literature review

Over the last decades, many researchers have paid great atten-
tion toMCDMgames under Pythagorean Fuzzy (PF) environ-
ment. For instance, Yager [48] proposed Pythagorean mem-
bership grades inMCDM.Yager andAbbasove [49] described
Pythagorean membership grades, complex numbers and
decision making. Garg [12] proposed a new generalized
Pythagorean fuzzy information by using Einstein oper-
ations. Peng and Yang [28] described some results for
PFSs. Ren et al. [29] unfolded Pythagorean fuzzy TODIM
approach to MCDM. Song and Kandel [38] analyzed a
fuzzy approach to strategic games. Reneke [30] unfolded
a game formulation of decision making under condition of
uncertainty and risk. Monropy and Fernandez [25] offered
the Shapley-Shubik index for multi-criteria simple games.
Furthermore, Rodriguez et al. [27] proposed hesitant fuzzy
linguistic term sets for decision making. Garg [13] analyzed
linguistic PFSs and its applications in Multi Attribute Deci-
sion Making (MADM) process. Liao et al. [21] proposed
the application of distance and similarity measures for hes-
itant fuzzy linguistic term sets in MCDM. Xu and Xia [43]
studied distance and similarity measures for HFSs. Based on
similarity measure, Zhang [54] described a novel approach
for Pythagorean fuzzy multiple criteria group decision mak-
ing. Several methods have been investigated for solving
MCDM games by many researchers. Zhang and Xu [55]
described an extension of TOPSIS to MCDM with PFSs.
Beg and Rashid [3] offered the concept of hesitant fuzzy
linguistic-TOPSIS. Roy [31] worked on MCDM and fuzzy
set theory in game environment. Singh [37] developed a new
method to solve the dual hesitant fuzzy assignment prob-
lems with restrictions by using similarity measure. Yang
et al. [50] unfolded a note on extension of TOPSIS to
MCDM with PFSs. Jana and Roy [17] studied solution of
matrix games with generalized trapezoidal fuzzy payoffs.
Xue et al. [46] described matrix games based on Ambika
method with hesitant fuzzy information and its application
in the counter-terrorism issue. Bhaumik et al. [4] ana-
lyzed (α, β, γ )-cut set based ranking approach to solving
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bi-matrix games in neutrosophic environment. Furthermore,
Xia et al. [42] presented hesitant fuzzy information aggrega-
tion in decision making. Bector et al. [2] formulated matrix
games with fuzzy payoffs on duality in linear programming
with fuzzy parameters. Roy and Bhaumik [33] unfolded
intelligent water management problem with the help of tri-
angular type-2 intuitionistic fuzzy matrix games approach.
Campos [8] analyzed fuzzy matrix games with the help
of fuzzy linear programming approach. Bhaumik and Roy
[6] proposed different aggregation operators in intuitionis-
tic interval-valued hesitant fuzzy matrix games for solving
management problems. Nishizaki and Sakawa [26] studied
on fuzzy and multi-objective games for conflict resolution.
Chen and Larbani [9] presented a problem on fuzzy MADM
based on zero-sum game approach. Roy and Mula [32] dis-
cussed the solution of matrix game with rough payoffs using
genetic algorithm. Sakawa and Nishizaki [36] proposed a
maximin solution for fuzzy multiobjective matrix games.
Bhaumik et al. [7] described a real-life application into
multi-objective linguistic-neutrosophic matrix game. Jana
and Roy [18] offered dual hesitant fuzzy matrix games with
the help of a new similarity measure. Bhaumik et al. [5]
studied Prisoners’ dilemma game theory by using TOPSIS
with the help of hesitant interval-valued intuitionistic fuzzy-
linguistic term set approach. Jana and Roy [19] worked on
soft matrix game by using hesitant fuzzy MCDM approach.
Roy and Maiti [34] discussed a reduction method of type-
2 fuzzy variables and its applications to Stackelberg game.
Moreover, Yang et al. [51] proposed a simple noncooper-
ative games with intuitionistic fuzzy information and its
application in ecological management. Liang and Xu [22]
discussed the new extension of TOPSIS method for MCDM
with hesitant PFSs. Recently, Roy and Jana [35] analyzed
the multi-objective linear production planning games in
triangular hesitant fuzzy set.

The goal of this study is to develop the MCDM game
under LPHF environment and to find the best alterna-
tive for the real-life problems simultaneously. Motivated
by this concept, we present here a research work in these
directions. An extensive comparison of different character-
istics between the present study and related works in these
directions is shown in Table 1. The following points are
considered as the challenges through this work.

• Literature review shows that a few number of researchers
have been done on MCDM game under uncertain envi-
ronments.

• The key drawback of game theory is considered by
one dimension situation to make a decision. However,
multiple factors are often required to choose by the
players in real-life situation.

• Moreover, it often does not envisage the behaviours
of the players in decision making process by MCDM

method. Actually, the behaviours of the players will
influence the rating of alternatives in decision making
process. So the best path is to combine MCDM with
game theory to successfully develop a decision making
model.

• From the above mentioned research works, we for-
mulate an LPHF-MCDM game based on two real-life
problems. Two players in this game are considered as
DM and Nature (collective risks). The DM guesses that
the Nature is an opponent, standing against him, and
the DM tries to maximize his desired payoffs, whereas
Nature tries to play with opposite actions to minimize
them.

As a traditional MCDMmethod, TOPSIS can give a ranking
method, which is measured by the smallest distance from
the Positive Ideal Solution (PIS) and the largest distance
from the Negative Ideal Solution (NIS). By considering the
TOPSIS method (Hwang and Yoon [16]) and the general-
ized hybrid distance measures, we also discuss the appli-
cations of LPHFSs to MCDM game. This paper proposes
an idea of LPHFSs and defines their basic operators. To
address the challenges, at first, we analyze the normaliza-
tion method offered by Zhu and Xu [60] and generalized
hybrid distance measures for LPHFSs. In the framework of
TOPSIS, we introduce an extended TOPSIS method under
LPHF environment. We also introduce a modified Ambika
method (Xue et al. [46]) for solving LPHF-MCDM game.
Compared with the existing works, the LPHFSs can validly
depict more general decision making situations. So, this
work gives a new direction for the evaluation of MCDM
game and also makes our decision by adopting a more com-
plex scenario. This paper provides a five-fold contribution
to the ongoing research in LPHF-MCDM games.

• We combine Linguistic Fuzzy Sets (LFSs) and Hesitant
FSs into Pythagorean FSs and propose the new
Linguistic Pythagorean Hesitant FSs (LPHFSs).

• Considering MCDM game with LPHFSs, we study the
generalized hybrid distance measure.

• We propose a LPHF distance measure based on game
theoretical framework to terminate the cross-influence
problem.

• A modified version of TOPSIS and Ambika method are
designed in the context of MCDM game with LPHFS.

• Two real-life examples are discussed, and thereafter
comparisons are drawn.

3 Preliminaries

In the following, we briefly review the basic concepts of
LFSs, PFSs and HFSs over the universal set X and the
concept of MCDM game.
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Table 1 Comparisons of different authors’ contributions

Author(s) Linguistic Approximation Hesitancy Interval Environment

scale space characteristic

Du et al. [11] � � Interval-valued Pythagorean fuzzy linguistic

Garg [13] � PFS

Liang and Xu [22] � � Hesitant Pythagorean fuzzy set

Liu et al. [23] � � Uncertain linguistic set

Yager [47] PFS

Zhang [56] � Interval-valued PFS

Zhang and Li [57] � Rough set

This investigation � � LPHFS

Herrera and Martinez [15] introduced the idea of LFSs,
which is an extension of fuzzy set in qualitative situation
rather than quantitative situation, shown as follows:

Definition 3.1 (Linguistic fuzzy set [15]) Let S = {s0,
s1, s2, . . . , sτ } be a finite linguistic term set with odd
cardinality, where si states a probable linguistic term for
a linguistic variable. For example, a seven point linguistic
scale S = {s0 = none, s1 = very low, s2 = low, s3 =
medium, s4 = high, s5 = very high, s6 = perfect} which
satisfies the subsequent conditions as:

• The set is ordered si > sj ⇔ i > j ;
• Negation operator: Neg(si) = sj where j = τ − i;
• Max operator: max(si , sj ) = si ⇔ i ≥ j ;
• Min operator: min(si , sj ) = sj ⇔ i ≤ j .

After that Xu [43] emerged the discrete term set S to a
continuous linguistic term set S̄ = {sα : s0 ≤ sα ≤ sτ ,

α ∈ [0, τ ]}, whose elements also satisfy all the conditions
mentioned above. If sα ∈ S̄, then we call the key term;
otherwise, it is called the virtual term.

The concept of PFSs was initiated by Yager [47] which is
an extension of FSs and IFSs. Here we introduce some basic
concepts of PFSs and their operations.

Definition 3.2 Pythagorean fuzzy sets (Zhang and Xu
[55]) Let X be a reference set. A PFS P on X can be
disclosed as:

P = {< x, P (μp(x), νp(x)) >: x ∈ X},
where the functions μp(x) : X → [0, 1] and νp(x) : X →
[0, 1] are the membership degree and non-membership
degree of x to P, respectively. For every x ∈ X, it
satisfies the condition: 0 ≤ (μp(x))2 + (νp(x))2 ≤ 1.
The degree of indeterminacy of x to P is πp(x) =√
1 − (μp(x))2 − (νp(x))2. To easily understand, Zhang

and Xu [53] called P(μp(x), νp(x)) as a Pythagorean
Fuzzy Number (PFN), denoted by η = P(μη, νη), where

μη, νη ∈ [0, 1], πη =
√
1 − (μη)2 − (νη)2 and (μη)

2 +
(νη)

2 ≤ 1.
Based on the outcomes of Zhang and Xu [55], we

consider PFNs to depict our decision. Considering three
PFNs η = P(μη, νη), η1 = P(μη1 , νη1) and η2 = P(μη2 ,

νη2), then their basic operations are characterized as:

• η1 ⊕ η2 = P(
√

μ2
η1

+ μ2
η2

− μ2
η1

μ2
η2

, νη1νη2);
• η1 ⊗ η2 = P(μη1μη2 ,

√
ν2η1 + ν2η2 − ν2η1ν

2
η2

);
• kη = P(

√
1 − (1 − μ2

η)
k, (νη)

k).

HFS is an extremely valuable tools to handle the circum-
stances where there are some problems to determine the
membership function of an element to a set. The idea of
HFS was introduced by Torra and Narukawa [40] and later
on developed by Torra [39].

Definition 3.3 Hesitant fuzzy set (Torra and Narukawa
[40]) Let X be a fixed set, an HFS A on X is in term of a
function that when it is applied to an element of X, then it
returns an element of a subset of [0, 1], which can be stated
as follows: A = {< x, hA(x) >: x ∈ X}, where hA(x)

is a set of various values in [0, 1], identifying the probable
membership degrees of the element x ∈ X to the set A.
For suitability, hA(x) is considered as an HFE, indicated by
h. Assume that h, h1 and h2 be three HFEs and then some
operations among them are depicted as:

• kh = ∪γ∈h{1 − (1 − γ )k},
• h1 ⊕ h2 = ∪γ1∈h1,γ2∈h2{γ1 + γ2 − γ1γ2},
• h1 ⊗ h2 = ∪γ1∈h1,γ2∈h2{γ1γ2}.

Definition 3.4 (MCDM game) The development scenario
for game theory is to integrate MCDM to tackle the decision
making problems. Game theory plays a significant role in
various collective negotiation among various participants.
As for example, various negotiations take place when
a company (DM) wants to expand their policy but the
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collective risks are taken together. Then by using game
theory, the DM and Nature (collective risks) can arrive at
the optimal solution of this issue. The concept of MCDM
game is to combine the MCDM with game for developing a
decision making model.

4 Linguistic Pythagorean hesitant fuzzy set

Motivated by the ideas of LFSs and HFSs, we extend the
definition of PFSs in this Section. Considering the linguistic
membership degree and linguistic non-membership degree
of PFN with various values, we introduce LFSs and HFSs
into PFSs and propose new LPHFSs. Particularly, the
LPHFSs return two sets of linguistic hesitant membership
degrees and linguistic hesitant non-membership degrees,
respectively. So the membership and the non-membership
degrees of PFN are Linguistic Hesitant Fuzzy Elements
(LHFEs). Here, the definition of LPHFS is developed as
follows:

Definition 4.1 (Linguistic Pythagorean hesitant fuzzy
set): Let X be a universal set and S̄ = {sα : s0 ≤ sα ≤
sτ , α ∈ [0, τ ]} be a continuous linguistic term set. Then a
LPHFS A on X is represented as:

A = {< x, A(hsθ (x), gsσ (x)) >: x ∈ X},

where hsθ (x) = ∪sβq∈hsθ

{
sβq : q = 1, . . . , #hsθ

}
(#hsθ is

the length of linguistic term in hsθ (x)) and gsσ (x) =
∪sγq∈gsσ

{
sγq : q = 1, . . . , #gsσ

}
(#gsσ is the length of

linguistic term in gsσ (x)) are the linguistic Pythagorean
hesitant membership degrees and linguistic Pythagorean
hesitant non-membership degrees of the element x to the set
A, respectively, with the conditions:

0 ≤ βq, γq ≤ 1 and 0 ≤ (β+)2 + (γ +)2 ≤ 1, (4.1)

where β+ = max
sβq∈hsθ (x)

{βq} and γ += max
sγq∈gsσ (x)

{γq} for all x ∈X.

According to Definition 4.1, the LPHFSs are attached of
two elements i.e., the linguistic Pythagorean membership
hesitancy function and linguistic Pythagorean non-member-
ship hesitancy function. Actually hsθ (x) and gsσ (x) are
LHFEs. As the statement of DHFSs, LPHFSs also tackle
two kinds of hesitancy functions and also provide a better
way to assume values for each element in the domain. Com-
paring with the concepts of PHFSs, DHFSs and LPHFSs,
we summarize the utility of these fuzzy sets (see Table 1).
From Table 1, PHFSs, DHFSs and LPHFSs can be consid-
ered as the extensions of PFSs, HFSs and PHFSs, respec-
tively. The basic difference among PHFSs, DHFSs and
LPHFSs is their different constraint conditions, see (4.1).

Specifically, the space of the linguistic Pythagorean hes-
itant membership degree (or the linguistic Pythagorean
hesitant non-membership degree) is greater than the space
of the PHFSs and DHFSs. To easily understand, the pair
A(hsθ (x), gsσ (x)) is called a LPHFE identified by a =
A(hsθ , gsσ ). For example, when the DM figures out that
the probable values for the linguistic membership hesitant
degree of x to the set A are s0.5 and s0.7, for the linguistic
hesitant non-membership degrees are s0.3, s0.35 and s0.4, we
can express it as a = A({s0.5, s0.7}, {s0.3, s0.35, s0.4}). In this
case, β+ = 0.7, γ + = 0.4 and (β+)2 + (γ +)2 ≤ 1. Hence,
this environment cannot be stated by using the HFSs and
DHFSs. Now we define the LPHFE in the following:

Definition 4.2 Considering LPHFE a = A(hsθ , gsσ ), the
minimum and maximum of each element are determined as:

β− = min
sβq∈hsθ

{βq}, γ − = min
sγq∈gsσ

{γq} (4.2)

β+ = max
sβq∈hsθ

{βq}, γ + = max
sγq∈gsσ

{γq} (4.3)

where β− and β+ are the minimum and maximum of the
element hsθ . Likely, γ − and γ + are the minimum and
maximum of the element gsσ .

Definition 4.3 (Operations) Let us consider that three
LPHFEs are as a = A(hsθ , gsσ ),

a1 = A(hsθ1 , gsσ1), a2 = A(hsθ2 , gsσ2), then some
operations among them are stated as follows:

• a1 ⊕ a2 = ∪sβ1∈hsθ1 ,sγ1∈gsσ1 ,sβ2∈hsθ2 ,sγ2∈gsσ2
s{{√β1+β2−β1β2},{γ1γ2}},

• a1 ⊗ a2 = ∪sβ1∈hsθ1 ,sγ1∈gsσ1 ,sβ2∈hsθ2 ,sγ2∈gsσ2
s{{β1β2},{√γ1+γ2−γ1γ2}},

• ka = ∪sβ∈hsθ ,sγ ∈hsθ s{{
√

1−(1−β)k},{γ k}} where k ∈ R

and k ≥ 0.

According to the operations of Definition 4.3, we easily
prove the following theorem:

Theorem 4.1 (Zhang and Xu [55]) Let a1 = A(hsθ1 , gsσ1),

a2 = A(hsθ2 , gsσ2) be two LPHFEs, then we have

• a1 ⊕ a2 = a2 ⊕ a1,
• a1 ⊗ a2 = a2 ⊗ a1,
• k(a1 ⊕ a2) = k(a1) ⊕ k(a2),

• k(a1 ⊗ a2) = k(a1) ⊗ k(a2).

Based on the outcomes of Zhang and Xu [55], we also define
a score function and accuracy function for the LPHFEs as:

Definition 4.4 Let us consider that a = A(hsθ , gsσ ) be a
LPHFE, then the score function of a is S(a) = (1/#hsθ )∑
sβq ∈hsθ

(βq)2 − (1/#gsσ )
∑

sγq ∈gsσ

(γq)2 and the accuracy
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function of a is p(a) = (1/#hsθ )
∑

sβq ∈hsθ

(βq)2 + (1/#gsσ )

∑
sγq ∈gsσ

(γq)2, where #hsθ and #gsσ are the number of

elements in hsθ and gsσ respectively.

According to the accuracy function of Definition 4.4, we
state the following property:

Property 1 Let a = A(hsθ , gsσ ) be a LPHFE, the degree
of indeterminacy of a is

π = √
1 − p(a) (4.4)

=

√√√√√1−
⎛
⎝(1/#hsθ )

∑
sβq ∈hsθ

(βq)2+(1/#gsσ )
∑

sγq ∈gsσ

(γq)2

⎞
⎠

Now we analyze the comparison of LPHFEs due to the
number of their corresponding element may not be same.
For example, assume that two LPHFEs as a1 = A(hsθ1 ,

gsσ1) = A({s0.2, s0.3}, {s0.5, s0.6}) and a2 = A(hsθ2 , gsσ2)

=A({s0.2, s0.25, s0.4}, {s0.7, s0.8}), we obtain #hsθ1 �= #hsθ2 .
Zhu and Xu [60] also faced the same situation during the
analysis of DHFEs. To solve this situation, Zhu anx Xu [60]
analyzed the DHFES by adding some constant values. Its
definition is shown as:

Definition 4.5 Considering that a = A(hsθ , gsσ ) be a
LPHFE, then we assume β̄ = tβ+ + (1 − t)β− and
γ̄ = tγ + + (1 − t)γ − as added linguistic membership and
non-membership hesitant degrees, respectively, where β+
and β− are the maximum and minimum elements of hsθ ,

respectively, γ + and γ − are the maximum and minimum
elements of gsσ and t (0 ≤ t ≤ 1) is a parameter considered
by the DM according to his/her risk preference.

For Definition 4.5, it gives a principle to add linguistic
hesitant membership degree and linguistic hesitant non-
membership degree for the normalization of LPHFE. The
various values of t can generate various outcomes for the
added linguistic membership and non-membership degrees.
Based on Definition 4.4 and the outcomes of Zhu and Xu
[60], the bigger values of t correspond with optimistic DM.
As discussed earlier and the outcomes of Zhu and Xu [60],
we have three particular cases of the preference of the DM.

• When the value of t = 1, the optimistic DM may
add the maximum linguistic membership degree β+ and
maximum non-membership degree γ +.

• When the value of t = 0.5, the unbiased DM can
include the linguistic membership term 0.5(β+ + β−)

and the non-membership term 0.5(γ + + γ −).

• When the value of t = 0, the pessimistic DM may
add the linguistic membership term β− and maximum
non-membership degree γ −.

Given a value of t, we use the result of Definition 4.5 to
add the linguistic membership and linguistic non-member-
ship degrees for the LPHFEs. The algorithm of the normal-
ization of LPHFEs is depicted in Algorithm 1. Algorithm
1, depicted the normalization process of LPHFEs in detail.
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The normalization of LPHFEs has two major steps: (i) find
the objects which need to add their elements and (ii) cal-
culate the added value for the corresponding objects. To
easily understand, we consider an Example 1 to explain the
normalization process of Definition 4.5.

Example 4.1 Assuming that, we have two LPHFEs as
a1 = A(hsθ1 , gsσ1) = A({s0.3, s0.4}, {s0.6, s0.7, s0.75}) and
a2 = A(hsθ2 , gsσ2) = A({s0.35, s0.4, s0.5}, {s0.65, s0.75}).
Here, #hsθ1 = 2, #gsσ1 = 3, #hsθ2 = 3 and #gsσ2 = 2.
By comparing the elements of a1 and a2, it is clear that
#hsθ1 �= #hsθ2 and #gsσ1 �= #gsσ2 . So the membership
degree of a1 and non-membership degree of a2 need to be
analyzed.

• If the value of t is 1, then we can add the maximum
membership degree or the maximum non-membership
degree for the target element. For the LPHFE a1, the
linguistic hesitant membership degree of a1 can be
received as {s0.3, s0.4, s0.4}. In this circumstance, a1 is
analyzed as a1 = A({s0.3, s0.4, s0.4}, {s0.6, s0.7, s0.75}).
For the LPHFE a2, the linguistic hesitant non-member-
ship degree can be obtained as {s0.65, s0.75, s0.75}, i.e.,
a2 is modified asA({s0.35, s0.4, s0.5}, {s0.65, s0.75, s0.75}).

• If the value of t is 0, then we can include the minimum
membership degree or the minimum non-membership
degree for the target element. For the LPHFE a1,

the linguistic hesitant membership degree of a1 can
be obtained as {s0.3, s0.3, s0.4}. In this circumstance,
a1 is analyzed as a1 = A({s0.3, s0.3, s0.4}, {s0.6, s0.7,
s0.75}). For the LPHFE a2, the linguistic hesitant non-
membership degree can be received as {s0.65, s0.65,
s0.75}, i.e., a2 is modified as A({s0.35, s0.4, s0.5}, {s0.65,
s0.65, s0.75}).

• If the value of t is 0.5, then we may add the aver-
age membership degree or the average non-membership
degree for the target element. For the LPHFE a1, the

linguistic hesitant membership degree of a1 can be
obtained as {s0.3, s0.35, s0.4}. In this circumstance, a1 is
analyzed as a1 = A({s0.3, s0.35, s0.4}, {s0.6, s0.7, s0.75}).
For the LPHFE a2, the linguistic hesitant non-member-
ship degree can be received as {s0.65, s0.70, s0.75}, i.e.,
a2 is modified as A({s0.35, s0.4, s0.5}, {s0.65, s0.7, s0.75}).

However we only consider three cases of t in Example 1 but
the other values of t are also useful for the normalization
of LPHFEs. Distance measure is an important concept
for measuring the uncertain information in LPHFS. The
generalized hybrid distance measure is a measure that shows
the closeness among LPHFSs. Different distance measures
for PHFS are introduced in the literature (Zhang [54], Xu
and Xia [43], Liu et al. [23]). The common thread of
incompetence of these existing distance measures is their
inability to clearly distinguish highly uncertain PHFSs. To
handle this situation, we propose a new distance measure
for LPHFS to connect with TOPSIS method. Distance and
similarity measures are most important in the applications
of MCDM. By using our distance measure, we reduce
the MCDM game with LPHF payoffs to crisp payoffs.
Also, superiority and effectiveness of the prescribed hybrid
distance measure are demonstrated via TOPSIS through two
real-life problems. Xu [44] calculated the distance measures
of intuitionistic fuzzy numbers. According to the outcomes
reported by Xu [44], we define the idea of distance measures
of the LPHFEs as follows:

Definition 4.6 Let a1 = A(hsθ1 , gsσ1) and a2 = A(hsθ2 ,

gsσ2) be two normalized LPHFEs; furthermore, let hsθ1

= ∪s
β1q∈hsθ1

{
sβ1

q
: q = 1, . . . , #hsθ1

}
(#hsθ1 is the length of

linguistic term in hsθ1) and gsσ1 = ∪s
γ 1q ∈gsσ1

{sγ 1
q

: q =
1, . . . , #gsσ1}(#gsσ1 is the length of linguistic term in gsσ1).
Similarly, we consider the values of hsθ2 and gsσ2 . Then we
define a LPHF hybrid Euclidean distance between a1 and a2
as follows:

d1(a1, a2) =

√√√√√
1
2 (

1
#hs

∑#hs
q=1 |((β1

q )2 − (β2
q )2) + max

q=1,2,...,#hs
((β1

q )2 − (β2
q )2)|2 + 1

#gs∑#gs

q=1 |((γ 1
q )2 − (γ 2

q )2) + max
q=1,2,...,#gs

((γ 1
q )2 − (γ 2

q )2)|2 + |(π1)
2 − (π2)

2|2)
(4.5)

where #hs = #hsθ1 = #hsθ2 and #gs = #gsσ1 = #gsσ2 . π1
and π2 are the degrees of indeterminacy of a1 and a2, which
are determined as:

π1 =
√√√√1 − ((1/#hsθ1)

∑
s
β1q∈hsθ1

(β1
q )2 + (1/#gsσ1 )

∑
s
γ 1q

∈gsσ1

(γ 1
q )2),

π2 =
√√√√1 − ((1/#hsθ2 )

∑
s
β2q∈hsθ2

(β2
q )2 + (1/#gsσ2 )

∑
s
γ 2q

∈gsσ2

(γ 2
q )2).

Inspired by the generalized concept of Xu [44], we unify
the geometric distance measure. Then we generalize the
above distance of Definition 4.6 as:
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d(a1, a2) =
⎛
⎝

1
2 (

1
#hs

∑#hs
q=1 |((β1

q )2 − (β2
q )2) + max

q=1,2,...,#hs
((β1

q )2 − (β2
q )2)|λ + 1

#gs∑#gs

q=1 |((γ 1
q )2 − (γ 2

q )2) + max
q=1,2,...,#gs

((γ 1
q )2 − (γ 2

q )2)|λ + |(π1)
2 − (π2)

2|λ)

⎞
⎠

1
λ

(4.6)

where λ (> 0) is constant and satisfies the following
properties.

(i) 0 ≤ d(a1, a2) ≤ 1.
(ii) d(a1, a2) = d(a2, a1).
(iii) d(a1, a2) = 0 if and only if a1 = a2.

(iv) d(a1, a2) ≤ d(a1, a3) + d(a3, a2).

Proof It is easy to see that distance measure, d(a1, a2)

satisfies the first two properties (i) and (ii). So we only prove
that d(a1, a2) satisfies properties (iii) and (iv).
(iii) If a1 = a2, then we have

d(a1, a2) =
⎛
⎝

1
2 (

1
#hs

∑#hs
q=1 |((β1

q )2 − (β1
q )2) + max

q=1,2,...,#hs
((β1

q )2 − (β1
q )2)|λ + 1

#gs∑#gs

q=1 |((γ 1
q )2 − (γ 1

q )2) + max
q=1,2,...,#gs

((γ 1
q )2 − (γ 1

q )2)|λ + |(π1)
2 − (π2)

2|λ)

⎞
⎠

1
λ

= 0

where, π1
2 − π2

2 = 0.
Conversely, let d(a1, a2) = 0, then we get 1

#hs

∑#hs
q=1 |((β1

q )2 − (β2
q )2) + max

q=1,2,...,#hs
((β1

q )2 − (β2
q )2)|λ = 0, 1

#gs

∑#gs

q=1 |
((γ 1

q )2 − (γ 2
q )2) + max

q=1,2,...,#gs
((γ 1

q )2 − (γ 2
q )2)|λ = 0 and |(π1)

2 − (π2)
2| = 0, which means for any value sβ1

q
in hsθ1 , there

is always a certain value sβ2
q
in hsθ2 with sβ1

q
= sβ2

q
and vice versa.

Consequently, d(a1, a2) satisfies the property (iii).
(iv) Here, d(a1, a2)

=
⎛
⎝

1
2 (

1
#hs

∑#hs
q=1 |((β1

q )2 − (β2
q )2) + max

q=1,2,...,#hs
((β1

q )2 − (β2
q )2)|λ + 1

#gs∑#gs

q=1 |((γ 1
q )2 − (γ 2

q )2) + max
q=1,2,...,#gs

((γ 1
q )2 − (γ 2

q )2)|λ + |(π1)
2 − (π2)

2|λ)

⎞
⎠

1
λ

=

⎛
⎜⎜⎝

1
2 (

1
#hs

∑#hs
q=1 |((β1

q )2 − (β3
q )2 + (β3

q )2 − (β2
q )2) + max

q=1,2,...,#hs
((β1

q )2 − (β3
q )2 + (β3

q )2 − (β2
q )2)|λ

+ 1
#gs

∑#gs

q=1 |((γ 1
q )2 − (γ 3

q )2 + (γ 3
q )2 − (γ 2

q )2) + max
q=1,2,...,#gs

((γ 1
q )2 − (γ 3

q )2 + (γ 3
q )2 − (γ 2

q )2)|λ
+|(π1)

2 − (π3)
2 + (π3)

2 − (π2)
2|λ)

⎞
⎟⎟⎠

1
λ

≤
⎛
⎝

1
2 (

1
#hs

∑#hs
q=1 |((β1

q )2 − (β3
q )2) + max

q=1,2,...,#hs
((β1

q )2 − (β3
q )2)|λ + 1

#gs∑#gs

q=1 |((γ 1
q )2 − (γ 3

q )2) + max
q=1,2,...,#gs

((γ 1
q )2 − (γ 3

q )2)|λ + |(π1)
2 − (π3)

2)|λ)

⎞
⎠

1
λ

+

⎛
⎝

1
2 (

1
#hs

∑#hs
q=1 |((β3

q )2 − (β2
q )2) + max

q=1,2,...,#hs
((β3

q )2 − (β2
q )2)|λ + 1

#gs∑#gs

q=1 |((γ 3
q )2 − (γ 2

q )2) + max
q=1,2,...,#gs

((γ 3
q )2 − (γ 2

q )2)|λ + |(π3)
2 − (π2)

2)|λ)

⎞
⎠

1
λ

≤ d(a1, a3) + d(a3, a2).

Based on the distance d(a1, a2) given in (4.6), we
deeply depict the comparison between some special cases
of LPHFEs by inspiring the outcomes of Zhang and Xu [58]
in Theorems 4.2 and 4.3.

Theorem 4.2 Let a1 = A(hsθ1 , gsσ1) and a2 = A({s1},
{s0}) be two LPHFEs, then we determine the generalized
distance d(a′

1, a2) as:

d(a′
1, a2) =

⎛
⎜⎜⎝

1
2 (

1
#hsθ1

∑
sβq∈hsθ1

((1 − (βq)2) + max
q=1,2,...,#hsθ1

(1 − (βq)2))λ + 1
#gsσ1

∑
sγq∈gsσ1

((γq)2

+ max
q=1,2,...,#gsσ1

(γq)2)λ + (1 − ( 1
#hsθ1

∑
sβq∈hsθ1

(βq)2 + 1
#gsσ1

∑
sγq ∈gsσ1

(γq)2))λ)

⎞
⎟⎟⎠

1
λ

(4.7)
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where a′
1 is the normalization result of a1 by the comparison

of a1 and a2.

Proof By considering the LPHF environment, we apply
Definition 4.5 to normalize a1. a2 can guide the normalization

results of a1, i.e., a′
1. Here #hs = #hs′

θ1
= #hsθ2 and #gs =

#gs′
σ1

= #gsσ2 . π1 and π2 are the degrees of indeterminacy
of a′

1 and a2. They are determined as:

(π1)
2 = 1 −

⎛
⎜⎝ 1

#hsθ1

∑
s
β1q∈hsθ1

(β1
q )2 + 1

#gsσ1

∑
s
γ 1q

∈gsσ1

(γ 1
q )2

⎞
⎟⎠ ,

(π2)
2 = 1 −

⎛
⎜⎝ 1

#hsθ2

∑
s
β2q∈hsθ2

(β2
q )2 + 1

#gsσ2

∑
s
γ 2q

∈gsσ2

(γ 2
q )2

⎞
⎟⎠ = 1 − (1 + 0) = 0.

According to (4.6) the generalized hybrid distance d(a′
1, a2) is determined as:

d(a′
1, a2) =

⎛
⎝

1
2 (

1
#hs

∑#hs
q=1 |((β1

q )2 − (β2
q )2) + max

q=1,2,...,#hs
((β1

q )2 − (β2
q )2)|λ + 1

#gs∑#gs

q=1 |((γ 1
q )2 − (γ 2

q )2) + max
q=1,2,...,#gs

((γ 1
q )2 − (γ 2

q )2)|λ + |(π1)
2 − (π2)

2|λ)

⎞
⎠

1
λ

=
⎛
⎝

1
2 (

1
#hs

∑#hs
q=1 |((β1

q )2 − 1) + max
q=1,2,...,#hs

((β1
q )2 − 1)|λ + 1

#gs

∑#gs

q=1 |(γ 1
q )2

+ max
q=1,2,...,#gs

(γ 1
q )2|λ + |(π1)

2 − 0|λ)

⎞
⎠

1
λ

=
⎛
⎝

1
2 (

1
#hs

∑#hs
q=1 |(1 − (β1

q )2) + max
q=1,2,...,#hs

(1 − (β1
q )2)|λ + 1

#gs

∑#gs

q=1 |(γ 1
q )2

+ max
q=1,2,...,#gs

(γ 1
q )2|λ + |(π1)

2 − 0|λ)

⎞
⎠

1
λ

=

⎛
⎜⎜⎝

1
2 (

1
#hsθ1

∑#hsθ1
q=1 ((1 − (β1

q )2) + max
q=1,2,...,#hsθ1

(1 − (β1
q )2))λ + 1

#gsσ1

∑#gsσ1
q=1 |(γ 1

q )2

+ max
q=1,2,...,#gsσ1

(γ 1
q )2)|λ + (1 − ( 1

#hsθ1

∑
s
β1q∈hsθ1

(β1
q )2 + 1

#gsσ1

∑
s
γ 1q

∈gsσ1

(γ 1
q )2))λ)

⎞
⎟⎟⎠

1
λ

=

⎛
⎜⎜⎝

1
2 (

1
#hsθ1

∑
sβq∈hsθ1

((1 − (βq)2) + max
q=1,2,...,#hsθ1

(1 − (βq)2))λ + 1
#gsσ1

∑
sγq∈gsσ1

((γq)2

+ max
q=1,2,...,#gsσ1

(γq)2)λ + (1 − ( 1
#hsθ1

∑
sβq∈hsθ1

(βq)2 + 1
#gsσ1

∑
sγq ∈gsσ1

(γq)2))λ)

⎞
⎟⎟⎠

1
λ

.

This evinces the proof of the Theorem.

Theorem 4.3 Let a1 = A(hsθ1 , gsσ1) and a2 = A({s0},
{s1}) be two LPHFEs, then we calculate the generalized
distance d(a′

1, a2) as:

d(a′
1, a2) =

⎛
⎜⎜⎝

1
2 (

1
#hsθ1

∑
s
β1q∈hsθ1

((βq)2 + max
q=1,2,...,#hs

(βq)2)λ + 1
#gsσ1

∑
s
γ 1q ∈gsσ1

((1 − (γq)2)

+ max
q=1,2,...,#gsσ1

(1 − (γq)2))λ + (1 − ( 1
#hsθ1

∑
s
β1q∈hsθ1

(βq)2 + 1
#gsσ1

∑
s
γ 1q

∈gsσ1

(γq)2))λ)

⎞
⎟⎟⎠

1
λ

(4.8)

where a′
1 is the normalization result of a1 by the comparison

of a1 and a2.

Proof Proof of the Theorem 4.3 is same as Theorem 4.2.

From Theorems 4.2 and 4.3, the generalized hybrid dis-
tances of (4.7) and (4.8) mainly based on the linguistic
hesitant memberships degrees and the linguistic hesitant
non-membership degrees of a1 and a2, which do not main-
tain the order of the evaluation values of the elements.
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5 Linguistic Pythagorean hesitant fuzzy
based game theoretical framework

In this section, we analyze the games to define the elements
in matrix game, the set of DMs and the set of strategies when
they conflict with each other. The framework of this game
is developed as follows:

At first we offer some traditional backgrounds of non-
cooperative game theory. A two-person matrix game can
be expressed with the triplet G = < X, Y, A >, where
X, Y are the set of mixed strategies for the DM and
Nature, respectively. This means: X = {xi : i =
1, 2, . . . , m} and Y = {yj : j = 1, 2, . . . , n}. Furthermore,
A is an m × n payoff matrix for DM against Nature,
and -A is considered as the payoff matrix for Nature. A
matrix game A = [aij ]m×n has the maximin value and
minimax value which are described gradually, as v− =
max

i=1,2,...,m
min

j=1,2,...,n
aij , v+ = min

i=1,2,...,m
max

j=1,2,...,n
aij . Here,

v− is the DM’s gain floor, i.e., the minimum payoff DM
achieved, and v+ is the Nature’s loss celling, i.e., the
maximum payoff that Nature can loose. The matrix game
has a saddle point if and only if v− = v+. If the matrix
game has no saddle point, then we choose the mixed strategy
to solve the matrix game problems. In practical situation,
the elements are described in an imprecise form within a
matrix game. At this point, there is some fuzziness regarding
the payoffs. In real-life decision making problem, the DMs
may face that they partly know the idea to linguistic hesitant
membership degree and linguistic hesitant non-membership
degree of LPHFSs. For example, when the DM determines
the membership and the non-membership of x into A,

he/she can assess {0.5, 0.6} and {0.2, 0.3}, respectively.
In this case, there may exist one type of the hesitant
situation for PFSs. Since the criteria set is qualitative not
quantitative, then the DM cannot make a crisp judgement
values on the criteria. In this situation, it is suitable for the
DM to use linguistic terms to represent his/her preference
according to these criteria. As the preference systems are
very complex, it is not possible for the DM to apply
only one term to represent his/her view, due to the fact
that he/she may be hesitate when calculating the values
of alternatives along the criteria. Furthermore, DM may
guess that Nature is against him. In light of the context,
we choose an MCDM game with LPHF environment
under fuzziness of DM who provides no news about the
characteristics of the matrix. For example, when the DM
assesses criteria as linguistic hesitant fuzzy membership and
non-membership degrees, he/she can assign {s0.2, s0.3, s0.4}
and {s0.6, s0.7, s0.8}, respectively. In this case, it provides an
extra fact about the real-life situation. In the following, a
conflicting situation is chosen based on LPHF environment
for an MCDM game. An MCDM game can be adopted

as a decision matrix whose elements indicate the rating
values of all alternatives corresponding to each criterion. Let
A = {A1, A2, . . . , Am} be the set of alternatives and C =
{C1, C2, . . . , Cn} be the set of criteria. Assume that W =
(w1, w2, . . . , wn) be the weight vector of all criteria, which

satisfies 0 ≤ wj ≤ 1 and
n∑

j=1
wj = 1. Under the LPHF

environment, the rating of the alternative Ai corresponding
to the criterion Cj is A(hsθij

, gsσij
) (i = 1, 2, . . . , m; j =

1, 2, . . . , n). Hence, the LPHF decision matrix A can be
written as:

A=

⎡
⎢⎢⎣

A(hsθ11 , gsσ11) A(hsθ12 , gsσ12) . . . A(hsθ1n , gsσ1n )
A(hsθ21 , gsσ21) A(hsθ22 , gsσ22) . . . A(hsθ2n , gsσ2n )

...
... . . .

...
A(hsθm1 , gsσm1) A(hsθm2 , gsσm2) . . . A(hsθmn , gsσmn)

⎤
⎥⎥⎦ .

Considering the numbers of the elements of LPHFEs of
A may not be in same length, we want to normalize the
decision matrix A. By using the value of t , we normalize
the rating of all alternatives associates with each criterion
Cj by using Definition 3.5, respectively, (j = 1, 2, . . . , n).
The normalized decision matrix is denoted as A′ =
(A(hs′

θij
, gs′

σij
))m×n. For each criterion Cj , we get hs′

θ1j
=

hs′
θ2j

= . . . = hs′
θmj

and gs′
σ1j

= gs′
σ2j

= . . . = gs′
σmj

.

6 Extension of TOPSIS for MCDM game
with LPHFEs

Based on the outcomes represented in Hwang and Yoon
[16], we calculate two reference solutions when we adopt
TOPSIS. The two reference solutions are the PIS and
the NIS. Here the PIS maximizes the profit criteria and
minimizes loss criteria but with the NIS, the opposite is true.
By using the outcomes of Joshi and Kumar [20], we provide
a new direction to obtain the PIS and the NIS based on A′.
At this point, the PIS and the NIS are explained as:

A′+ = {x+
1 , x+

2 , . . . , x+
n } and A′− = {x−

1 , x−
2 , . . . , x−

n }.
For the PIS A′+, it can be calculated by the following

formula:

A′+ = {x+
1 , x+

2 , . . . , x+
n } (6.9)

= {A({s1}, {s0}), A({s1}, {s0}), . . . , A({s1}, {s0})}.

Similarly, the NIS A′− can be calculated as:

A′− = {x−
1 , x−

2 , . . . , x−
n } (6.10)

= {A({s0}, {s1}), A({s0}, {s1}), . . . , A({s0}, {s1})}.

The algorithm for computing the distance between each
alternative with PIS and NIS is shown in Algorithm 2.

10 J. Jana and S. K. Roy



where y = 1
#hs

∑#hs
q=1 |((β1

q )2−(β2
q )2)+ max

q=1,2,...,#hs
((β1

q )2−
(β2

q )2)|2+ 1
#gs

∑#gs

q=1 |((γ 1
q )2−(γ 2

q )2)+ max
q=1,2,...,#gs

((γ 1
q )2−

(γ 2
q )2)|2 and z = |(π1)

2 − (π2)
2|2).

Depending on the results of (4.6) and Theorem 4.2, the
generalized hybrid distance between the alternative Ai and
A′+ can be determined as:

d(Ai, A
′+)

=
n∑

j=1

wjd(A(hs′
θij

, gs′
σij

), A({s1}, {s0}))

=
n∑

j=1

wj

⎛
⎜⎜⎜⎝

1
2 (

1
#hs′

θij

∑
sβq∈hs′

θij

((1 − (βq)2) + max
q=1,2,...,#hs′

θij

(1 − (βq)2))λ + 1
#gs′

σij

∑
sγq∈gs′σij

((γ 2
q )

+ max
q=1,2,...,#gs′

σij

(γ 2
q ))λ + (1 − ( 1

#hs′
θij

∑
sβq∈hs′

θij

(βq)2 + 1
#gs′

σij

∑
sγq ∈#gs′

σij

(γq)2))λ)

⎞
⎟⎟⎟⎠

1
λ

. (6.11)

Based on the results of (4.6) and Theorem 4.3, the distance between the alternative Ai and A′− can be calculated as:

d(Ai, A
′−)

=
n∑

j=1

wjd(A(hs′
θij

, gs′
σij

), A({s0}, {s1}))

=
n∑

j=1

wj

⎛
⎜⎜⎜⎝

1
2 (

1
#hs′

θij

∑
sβq∈hs′

θij

((βq)2 + max
q=1,2,...,#hs′

θij

(βq)2)λ + 1
#gs′

σij

∑
sγq∈gs′σij

((1 − (γq)2)

+ max
q=1,2,...,#gs′

σij

(1 − (γq)2))λ + (1 − ( 1
#hs′

θij

∑
sβq∈hs′

θij

(βq)2 + 1
#gs′

σij

∑
sγq ∈gs′

σij

(γq)2))λ)

⎞
⎟⎟⎟⎠

1
λ

(6.12)

It is pointed that first we complete the normalization
process of LPHFEs by using Algorithm 1 before the calcula-
tion process of (6.11)-(6.12). Next we determine the relative
closeness of the alternative Ai corresponding to the PIS and
the NIS as:

RC(Ai) = d(Ai, A
′−)

d(Ai, A′−) + d(Ai, A′+)
. (6.13)

The ranking orders of all alternatives can be calculated
according to relative closeness coefficient RC(Ai).

6.1 Decisionmaking procedure

Now we develop a decision making procedure of the
application of extended TOPSIS in LPHF-MCDM game
based on the above-mentioned (see Section 6) results.

• Step 1: In real-life decision making problem, first we
determine the set of alternatives A = {A1, A2, . . . , Am}
and the set of criteria C = {C1, C2, . . . , Cn}.
Furthermore, the criteria have a weighting vector W =

(w1, w2, . . . , wn), t and λ, where 0 ≤ wj ≤ 1 and∑n
j=1 wj = 1. Finally, we establish LPHF-MCDM

game A = (A(hsθij
, gsσij

))m×n, where A(hsθij
, gsσij

)

is the rating of the alternative Ai (i = 1, 2, . . . , m)

corresponding to the criterion Cj (j = 1, 2, . . . , n).
• Step 2: By using the value of t , we normalize the

LPHF-MCDM game based on Definition 4.5, which
is indicated as A′ = (A(hs′

θij
, gs′

σij
))m×n (i =

1, 2, . . . , m) (j = 1, 2, . . . , n).
• Step 3: Depending on (6.9) and (6.10), we determine

the PIS A′+ = {x+
1 , x+

2 , . . . , x+
n } and the NIS A′− =

{x−
1 , x−

2 , . . . , x−
n }.

• Step 4: Based on Definition 4.5, we further normalize
the reference solutions A′+ and A′− according as
LPHF-MCDM game A′ = (A(hs′

θij
, gs′

σij
))m×n.

• Step 5: For each alternative Ai , we determine the
generalized hybrid distance d(Ai, A

′+) between the
alternative Ai and A′+ by using (6.11). Furthermore,
the generalized hybrid distance d(Ai, A

′−) between the
alternative Ai and A′− is computed by using (6.12).
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• Step 6: By using the (6.13), we also determine the
relative closeness of the alternative Ai corresponding to
the respective PIS A′+ and NIS A′−, which is indicated
as RC(Ai).

• Step 7: At last we rank all the alternatives according to
their score.

7 Real-life problems

In this section, two real-life examples are provided to check
the applicability and feasibility of the proposed method for
solving an LPHF-MCDM game.

Example 7.1 Assume that a northern American based com-
pany wants to expand their policy in several continents to
become more popular in the world. The aim is to consider
the most effective continent according to the group strat-
egy objective. For this purpose, the company (here as DM)
prepare a team to choose the top among five possible alter-
natives (strategies) after their preliminary analysis and are
defined as A1: Expand to African market; A2: Expand to
the southern American market; A3: Expand to the Asian
market; A4: Expand to European market and A5 : Expand
to all four continents. To assess these strategies, the com-
pany considers the economical condition as the prime factor
for the next year. For this purpose, they determine each
strategy based on four criteria and they are as follows:
C1: Relaxation in corporate tax; C2: Risk of production;
C3: Benefit in short term and C4: Benefit in long term.
Moreover, the weight vector of the criteria is given W =
(0.15, 0.25, 0.20, 0.40). Since the criteria are qualitative,
these are compatible and only feasible for the DM to dis-
close the ratings by using linguistic terms. Hence, the DM
builds a seven point linguistic scale to evaluate the whole
problem, which is S = {s0 = very poor, s1 = poor, s2 =
slightly poor, s3 = medium, s4 = slightly medium, s5 =
good, s6 = very good}. Based on LPHF environment, DM
invites the team to determine these alternatives based on
these criteria with LPHFEs. Hence the LPHF-MCDM game
A is shown in Table 2.

7.1 Decisionmaking analysis based on TOPSIS

Depending on LPHF-MCDM game, we depict the decision
making analysis of our proposed method. Assume that
t = 0.5 and λ = 2. At first, we normalize the LPHF-
MCDM game by using Definition 4.5. So the normalized
LPHF-MCDM game A′ is shown in Table 3.

According to the normalized LPHF-MCDM game i.e.,
Table 3, we obtain the normalization of reference solutions
A+ and A− which are as:

A′+ = {x+
1 , x+

2 , x+
3 , x+

4 }
=

(
A({s1, s1, s1, s1}, {s0, s0, s0}), A({s1, s1, s1, s1}, {s0, s0, s0}),
A({s1, s1, s1, s1}, {s0, s0, s0}), A({s1, s1, s1, s1}, {s0, s0, s0})

)
.

A′− = {x−
1 , x−

2 , x−
3 , x−

4 }
=

(
A({s0, s0, s0, s0}, {s1, s1, s1}), A({s0, s0, s0, s0}, {s1, s1, s1}),
A({s0, s0, s0, s0}, {s1, s1, s1}), A({s0, s0, s0, s0}, {s1, s1, s1})

)
.

By using (6.11) and (6.12), we calculate the generalized
hybrid distances d(Ai, A

′+) and d(Ai, A
′−) for the

alternatives Ai (i = 1, 2, . . . , 5). The outcomes are shown
in Table 4.

Based on (6.13), we also determine the relative closeness
of each alternative corresponding to the PIS A′+ and
the NIS A′−. The outcomes are shown as: RC(A1) =
0.514, RC(A2) = 0.504, RC(A3) = 0.542, RC(A4) =
0.527 and RC(A5) = 0.465. So, the ranking order of the
five alternatives is A3 > A4 > A1 > A2 > A5. In this case,
we find A3 is the best alternative.

7.2 Sensitivity analysis

Here we consider two key parameters t and λ during the
decision analysis of our extended TOPSIS. Now we study
the effect of changes on the ranking order of alternatives
with the help of parameters. The sensitivity analysis is
done in two ways by changing each of the parameters.
Firstly, taking the fixed values of t , we discuss the score of
each alternative with increasing the value of λ. Secondly,
taking the fixed value of λ, the score of each alternative
is discussed with increasing the value of t . So the impacts
of the parameters to select the best alternative are analyzed
successively.

(i) The impact of λ to select the best alternative:
By using the values of t , we normalize the decision

matrix A and determine the relative closeness of the
alternatives with the various values of λ. The results
are shown in Tables 5 and 6. In Tables 5 and 6,
we discuss two cases of t , i.e., t = 0 and t = 1
respectively. Applying the value of t , we can find
the relative closeness of each alternative with respect
to the PIS and the NIS has a decreasing trend with
increasing the value of λ. In most of the cases A3 is
the best alternative.

(ii) The impact of t to select the best alternative:
We normalize the decision matrix A with respect

to the values of λ and by using the values of t , we
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Table 2 The LPHF-MCDM game A

C1 C2 C3 C4

A1 A

(
{s0.4, s0.5, s0.6},

{s0.8, s0.9}

)
A

(
{s0.2, s0.6, s0.7, s0.8},
{s0.3, s0.5}

)
A

(
{s0.3, s0.5, s0.6},
{s0.3, s0.7, s0.8}

)
A

(
{s0.3, s0.6, s0.7, s1},
{s0.3, s0.4, s0.5}

)

A2 A

(
{s0.4, s0.6},
{s0.7, s0.8, s0.9}

)
A

(
{s0.3, s0.6, s0.7, s0.8},
{s0.7, s0.8}

)
A

(
{s0.2, s0.6, s0.7, s0.9},
{s0.3, s0.6}

)
A

(
{s0.4, s0.5, s0.9},
{s0.5, s0.6}

)

A3 A

(
{s0.7, s0.8},
{s0.5, s0.6, s0.7}

)
A

(
{s0.5, s0.8},
{s0.3, s0.4, s0.5}

)
A

(
{s0.4, s0.6, s0.8},
{s0.5, s0.6, s0.7}

)
A

(
{s0.5, s0.7},
{s0.4, s0.5, s0.7}

)

A4 A

(
{s0.4, s0.5, s0.6, s0.7},
{s0.6, s0.8}

)
A

(
{s0.3, s0.5, s0.8},
{s0.5, s0.6, s0.7}

)
A

(
{s0.2, s0.7},
{s0.4, s0.5}

)
A

(
{s0.5, s0.7, s0.8},
{s0.3, s0.4}

)

A5 A

(
{s0.2, s0.4, s0.7},
{s0.5, s0.7}

)
A

(
{s0.3, s0.5, s0.6, s0.7},
{s0.2, s0.3, s0.4}

)
A

(
{s0.6, s0.7, s0.8},
{s0.2, s0.3, s0.4}

)
A

(
{s0.2, s0.5, s0.6, s0.8},
{s0.4, s0.5, s0.55}

)

Table 3 The normalized LPHF-MCDM game A′

C1 C2 C3 C4

A1 A

(
{s0.4, s0.5, s0.5, s0.6},
{s0.8, s0.85, s0.9}

)
A

(
{s0.2, s0.6, s0.7, s0.8},
{s0.3, s0.4, s0.5}

)
A

(
{s0.3, s0.45, s0.45, s0.6},
{s0.3, s0.7, s0.8}

)
A

(
{s0.3, s0.6, s0.7, s1},
{s0.3, s0.4, s0.5}

)

A2 A

(
{s0.4, s0.5, s0.5, s0.6},
{s0.7, s0.8, s0.9}

)
A

(
{s0.3, s0.6, s0.7, s0.8},
{s0.7, s.75, s0.8}

)
A

(
{s0.2, s0.6, s0.7, s0.9},
{s0.3, s0.45, s0.6}

)
A

(
{s0.4, s0.5, s0.65s0.9},
{s0.5, s0.55, s0.6}

)

A3 A

(
{s0.7, s0.75, s0.75, s0.8},
{s0.5, s0.6, s0.7}

)
A

(
{s0.5, s0.65, s0.65, s0.8},
{s0.3, s0.4, s0.5}

)
A

(
{s0.4, s0.6, s0.6, s0.8},
{s0.5, s0.6, s0.7}

)
A

(
{s0.5, s0.6, s0.6, s0.7},
{s0.4, s0.5, s0.7}

)

A4 A

(
{s0.4, s0.5, s0.6, s0.7},
{s0.6, s0.7, s0.8}

)
A

(
{s0.3, s0.5, s0.55, s0.8},
{s0.5, s0.6, s0.7}

)
A

(
{s0.2, s0.45, s0.45, s0.7},
{s0.4, s0.45, s0.5}

)
A

(
{s0.5, s0.7, s0.75, s0.8},
{s0.3, s0.35, s0.4}

)

A5 A

(
{s0.2, s0.4, s0.45, s0.7},
{s0.5, s0.6, s0.7}

)
A

(
{s0.3, s0.5, s0.6, s0.7},
{s0.2, s0.3, s0.4}

)
A

(
{s0.6, s0.7, s0.7, s0.8},
{s0.2, s0.3, s0.4}

)
A

(
{s0.2, s0.5, s0.6, s0.8},
{s0.4, s0.5, s0.55}

)

Table 4 The generalized hybrid
distance for each alternative The generalized hybrid distance A1 A2 A3 A4 A5

d(Ai, A
′+) 1.373 1.304 1.238 1.320 1.348

d(Ai, A
′−) 1.452 1.328 1.466 1.472 1.549

Table 5 Ranking order of the alternatives for various values of λ with respect to t = 0

RC(A1) RC(A2) RC(A3) RC(A4) RC(A5) Ranking order

λ = 1 0.499 0.529 0.557 0.486 0.481 A3 > A2 > A1 > A4 > A5

λ = 2 0.496 0.527 0.551 0.487 0.448 A3 > A2 > A1 > A4 > A5

λ = 6 0.482 0.524 0.542 0.475 0.443 A3 > A2 > A1 > A4 > A5

λ = 8 0.481 0.523 0.541 0.474 0.442 A3 > A2 > A1 > A4 > A5

λ = 10 0.480 0.522 0.539 0.474 0.442 A3 > A2 > A1 > A4 > A5
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Table 6 Ranking order of the alternatives for various values of λ with respect to t = 1

RC(A1) RC(A2) RC(A3) RC(A4) RC(A5) Ranking order

λ = 1 0.499 0.573 0.651 0.572 0.482 A3 > A2 > A4 > A1 > A5

λ = 2 0.499 0.568 0.647 0.560 0.438 A3 > A2 > A4 > A1 > A5

λ = 6 0.487 0.563 0.641 0.547 0.418 A3 > A2 > A4 > A1 > A5

λ = 8 0.487 0.562 0.637 0.541 0.417 A3 > A2 > A4 > A1 > A5

λ = 10 0.487 0.560 0.629 0.538 0.416 A3 > A2 > A4 > A1 > A5

calculate the relative closeness of the alternative. The
results are shown in Tables 7, 8 and 9, respectively.
We discuss three cases of λ, i.e., λ = 1, λ = 2
and λ = 10. Applying the values of λ, we find the
relative closeness of each alternative with respect to
the PIS and the NIS which have an increasing trend
with increasing value of t . In most cases, the ranking
order A3 > A4 > A1 > A2 > A5 holds.

The sensitivity analysis with change trend image that the
decision-making results with respect to the parameters t and
λ are depicted in Fig. 1.

The LPHF-MCDM decision matrix (Table 10) is con-
sidered as like the matrix game problem within the DM
and Nature (the collective risks of entire types performed
together).

7.3 Sensitivity analysis

In similar way, the impacts of the parameters t and λ are
analyzed to select the best alternative during the decision
analysis of our extended TOPSIS for this example.

(i) The impact of λ to select the best alternative:
By using the values of t , i.e., t = 0, t = 0.5, t =

0.7 and t = 1, we normalize the decision matrixB and
determine the relative closeness of each alternative by
using the different values of λ. Applying the value of
t , we can find the relative closeness of each alternative
with respect to the PIS and the NIS which have a
decreasing trend with the increasing value of λ. The
results are shown in Tables 11, 12 and 13. In most of
the cases, A3 is the best alternative.

• The impact of t to select the best alternative:

We normalize the decision matrix A with the
various values of λ and by using the values of t ,
we calculate the relative closeness of the alternatives.
The results are shown in Tables 14, 15 and 16,
respectively. We discuss three cases of λ, i.e., λ =
1, λ = 2 and λ = 10. Applying the values of
λ, we find the relative closeness of each alternative
with respect to the PIS and the NIS which have an
increasing trend with the increasing value of t . In most
cases, the ranking order A3 > A4 > A1 > A2 holds.

The sensitivity analysis with change trend image that the
decision-making results with respect to the parameters t and
λ are shown in Fig. 2.

8 Discussion

Here we extend the TOPSIS proposed by Zhang and Xu [55]
under LPHF environment, but only focus on the Pythagorean
fuzzy environment (Zhang and Xu [55] and Yager [49]). In
this situation, the membership degree and non-membership
degree of the PFN are single. With respect to our proposed
method, the membership degree and the non-membership
degree of the LPHFEs are LHFEs. Our method, by extend-
ing the TOPSIS to take into account the LPHF informa-
tion which are well-suited to tackle the ambiguity and
impreciseness inherent in MCDM game, does not need to
transform PHFEs into HFEs but directly deals with these
problems, and thus obtains better final decision results.
In particular, when we meet some situations where the
information is represented by several possible linguistic val-
ues in membership degree and non-membership degree,
our method shows its great superiority in handling those

Table 7 Ranking order of the alternatives for various values of t with respect to λ = 1

RC(A1) RC(A2) RC(A3) RC(A4) RC(A5) Ranking order

t = 0 0.532 0.494 0.533 0.531 0.444 A3 > A1 > A4 > A2 > A5

t = 0.5 0.533 0.514 0.551 0.545 0.443 A3 > A4 > A1 > A2 > A5

t = 0.7 0.533 0.515 0.561 0.547 0.444 A3 > A4 > A1 > A2 > A5

t = 1 0.534 0.516 0.561 0.546 0.446 A3 > A4 > A1 > A2 > A5
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Table 8 Ranking order of the alternatives for various values of t with respect to λ = 2

RC(A1) RC(A2) RC(A3) RC(A4) RC(A5) Ranking order

t = 0 0.423 0.475 0.520 0.509 0.458 A3 > A4 > A2 > A5 > A1

t = 0.5 0.514 0.500 0.542 0.527 0.465 A3 > A4 > A1 > A2 > A5

t = 0.7 0.515 0.501 0.553 0.528 0.467 A3 > A4 > A1 > A2 > A5

t = 1 0.516 0.504 0.571 0.545 0.468 A3 > A4 > A1 > A2 > A5

MCDM games with LPHF information. In this section, we
compare our proposed method with the method of Zhang
and Xu [55]. In order to implement the method of Zhang and
Xu [55], we consider three classic pretreatments for the ele-
ments of LHFEs: (i) the maximum; (ii) the average and (iii)
the minimum. For comparison purpose, two primary param-
eters of our proposed method are considered as: λ = 1 and
t = 0.5. Based on Table 2, we calculate individually and
compare the obtained results by using the methods of Zhang
and Xu [55] and our proposed method.

Ambika method: Motivated by Verma and Kumar [41],
which overcomes some limitations of matrix games with
Atanassov’s intuitionistic fuzzy payoffs, we introduce a
modified Ambika method of hesitant fuzzy matrix game
which was proposed by Xue et al. [46] to compare with the
extended TOPSIS for solving LPHF-MCDM game. HFS is
an extension of fuzzy set, which is constituted with only
membership function. However, for comparison purpose,
we consider the membership and non-membership functions
when using the game method in Xue et al. [46]. Since the
decision matrix is represented by LPHFEs. Here, first we
incorporate the process of modified Ambika method for
solving MCDM game with LPHFEs.

• Step 1: At first, we normalize the LPHF-MCDM game
by using Definition 8.1 which is stated as follows:

Definition 8.1 Let us consider that two LPHFEs as a1
= A(hsθ1 , gsσ1) = A({s0.2, s0.3, s0.4}, {s0.5, s0.6, s0.7})
and a2 = A(hsθ2 , gsσ2) = A({s0.2, s0.25, s0.4}, {s0.5,
s0.7}), we obtain #gsσ1 �= #gsσ2 . To tackle the LPHFEs
with various lengths are vital issues in the aggregating
process of hesitant fuzzy information. In Definition 3.6,
we define the common approaches such as minimum,
average or maximum, to the shorter length LPHFEs.

However adding the average value to the shorter length
is more significant than the minimum or maximum
value, original information is still not unchanged. Here
gsσ1 = {s0.5, s0.6, s0.7} and gsσ2 = {s0.5, s0.7}. If we
consider the average value S0.6 to gsσ2 then the two
LPHFEs have the same length but the method of
attaching elements changes the actual information of
LPHFEs. Thus the obtained result is inappropriate to
some extent. To handle this situation, we introduce a
new idea, i.e., the possibility of each linguistic element,
to the LPHFEs. We add s0.7 to gsσ2 , so the possibility of
s0.5 is s1 and the possibility of s0.7 is s0.5. Thus the gsσ2
can be converted into {ss1

0.5, s
s0.5
0.7 , s

s0.5
0.7 }. Also gsσ1 =

{s0.5, s0.6, s0.7} can be considered as {ss1
0.5, s

s1
0.6, s

s1
0.7}.

The alteration approach is not only establish a
comparison of a1 = A(hsθ1 , gsσ1) and a2 = A(hsθ2 ,

gsσ2), but also abolish any LPHF information loss.

• Step 2: Now we define the Value Index (VI) and Ambi-
guity Index (AI) of normalized LPHFEs in MCDM
game and which are follows:
VI and AI: Let us assume that the LPH-
FEs as ā′ = A( ¯hsθ

′
, ¯gsσ

′), where ¯hsθ
′ =

∪s
βq∈ ¯hsθ

′
{
s
spq

βq
: q = 1, . . . , # ¯hsθ

′}
(# ¯hsθ

′
is the

length of linguistic term in ¯hsθ
′
) and ¯gsσ

′ =
∪sγq∈ ¯gsσ ′

{
s
srq
γq : q = 1, . . . , # ¯gsσ

′
}

(# ¯gsσ
′ is the length

of linguistic term in ¯gsσ
′). Here spq and srq are the cor-

responding possibility of each linguistic element of sβq

and sγq , respectively. So the VI, V I (ā′) is defined as:

V I (ā′) =
#hs∑
q=1

βq .
pq

#hs∑
q=1

pq

−
#gs∑
q=1

γq .
rq

#gs∑
q=1

rq

,

Table 9 Ranking order of the alternatives for various values of t with respect to λ = 10

RC(A1) RC(A2) RC(A3) RC(A4) RC(A5) Ranking order

t = 0 0.385 0.438 0.482 0.468 0.510 A5 > A3 > A4 > A2 > A1

t = 0.5 0.472 0.471 0.502 0.482 0.512 A5 > A3 > A4 > A1 > A2

t = 0.7 0.531 0.541 0.542 0.503 0.525 A3 > A2 > A1 > A5 > A4

t = 1 0.522 0.528 0.532 0.512 0.529 A3 > A5 > A2 > A1 > A4
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Fig. 1 Comparison of the
closeness coefficient of the
alternative with different values
of t and λ

Table 10 The LPHF-MCDM game B

C1 C2 C3 C4

A1 A

(
{s0.2, s0.4, s0.5},
{s0.2, s0.5, s0.6}

)
A

(
{s0.1, s0.5, s0.6, s0.7},
{s0.2, s0.4}

)
A

(
{s0.2, s0.3, s0.4},
{s0.6, s0.7}

)
A

(
{s0.1, s0.5, s0.6, s1},
{s0.2, s0.3, s0.4}

)

A2 A

(
{s0.1, s0.4, s0.5, s0.8},
{s0.1, s0.4}

)
A

(
{s0.2, s0.4, s0.6, s0.7},
{s0.5, s0.6}

)
A

(
{s0.2, s0.4},
{s0.5, s0.6, s0.7}

)
A

(
{s0.3, s0.4, s0.8},
{s0.4, s0.5}

)

A3 A

(
{s0.2, s0.4, s0.6},
{s0.3, s0.4, s0.5}

)
A

(
{s0.3, s0.6},
{s0.1, s0.3, s0.7}

)
A

(
{s0.5, s0.6},
{s0.3, s0.4, s0.5}

)
A

(
{s0.4, s0.6},
{s0.4, s0.5, s0.7}

)

A4

(
{s0.1, s0.6},
{s0.2, s0.4}

)
A

(
{s0.1, s0.3, s0.7},
{s0.3, s0.5, s0.6}

)
A

(
{s0.2, s0.3, s0.4, s0.5},
{s0.4, s0.6}

) (
{s0.3, s0.5, s0.6},
{s0.1, s0.3}

)

Table 11 Ranking order of
each alternative for various
values of λ with respect to
t = 0

RC(A1) RC(A2) RC(A3) RC(A4) Ranking order

λ = 1 0.501 0.513 0.542 0.520 A3 > A4 > A2 > A1

λ = 2 0.481 0.487 0.518 0.491 A3 > A4 > A2 > A1

λ = 6 0.456 0.453 0.481 0.464 A3 > A4 > A1 > A2

λ = 8 0.453 0.450 0.477 0.461 A3 > A4 > A1 > A2

λ = 10 0.451 0.449 0.475 0.459 A3 > A4 > A1 > A2

16 J. Jana and S. K. Roy



Table 12 Ranking order of
each alternative for various
values of λ with respect to
t = 0.5

RC(A1) RC(A2) RC(A3) RC(A4) Ranking order

λ = 1 0.508 0.505 0.545 0.525 A3 > A4 > A1 > A2

λ = 2 0.489 0.482 0.519 0.498 A3 > A4 > A1 > A2

λ = 6 0.463 0.453 0.481 0.469 A3 > A4 > A1 > A2

λ = 8 0.460 0.450 0.477 0.466 A3 > A4 > A1 > A2

λ = 10 0.458 0.448 0.475 0.464 A3 > A4 > A1 > A2

Table 13 Ranking order of
each alternative for various
values of λ with respect to
t = 1

RC(A1) RC(A2) RC(A3) RC(A4) Ranking order

λ = 1 0.523 0.522 0.543 0.540 A3 > A4 > A1 > A2

λ = 2 0.506 0.499 0.518 0.515 A3 > A4 > A1 > A2

λ = 6 0.478 0.464 0.481 0.485 A4 > A3 > A1 > A2

λ = 8 0.475 0.460 0.477 0.481 A4 > A3 > A1 > A2

λ = 10 0.472 0.457 0.475 0.480 A4 > A3 > A1 > A2

Table 14 Ranking order of
each alternative for various
values of t with respect to
λ = 1

RC(A1) RC(A2) RC(A3) RC(A4) Ranking order

t = 0 0.501 0.513 0.542 0.520 A3 > A4 > A2 > A1

t = 0.5 0.508 0.515 0.543 0.525 A3 > A4 > A1 > A2

t = 0.7 0.509 0.518 0.545 0.529 A3 > A4 > A2 > A1

t = 1 0.523 0.522 0.545 0.540 A3 > A4 > A1 > A2

Table 15 Ranking order of
each alternative for various
values of t with respect to
λ = 2

RC(A1) RC(A2) RC(A3) RC(A4) Ranking order

t = 0 0.481 0.487 0.518 0.491 A3 > A4 > A2 > A1

t = 0.5 0.489 0.488 0.519 0.498 A3 > A4 > A1 > A2

t = 0.7 0.493 0.494 0.519 0.502 A3 > A4 > A2 > A1

t = 1 0.506 0.499 0.520 0.515 A3 > A4 > A1 > A2

Table 16 Ranking order of
each alternative for various
values of t with respect to
λ = 10

RC(A1) RC(A2) RC(A3) RC(A4) Ranking order

t = 0 0.451 0.449 0.474 0.459 A3 > A4 > A1 > A2

t = 0.5 0.458 0.452 0.474 0.464 A3 > A4 > A1 > A2

t = 0.7 0.463 0.454 0.475 0.468 A3 > A4 > A1 > A2

t = 1 0.472 0.457 0.475 0.480 A3 > A4 > A1 > A2
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Fig. 2 Comparison of the
closeness coefficient of the
alternative with different values
of t and λ

and AI, AI (ā′) is defined as:

AI (ā′) =
#hs∑
q=1

∣∣βq − βq .
pq

#hs∑
q=1

pq

∣∣. pq

#hs∑
q=1

pq

+
#gs∑
q=1

∣∣γq − γq .
rq

#gs∑
q=1

rq

∣∣. rq
#gs∑
q=1

rq

.

• Step 3: In order to the proposed value and ambiguity
indexes, the Ambika method of LPHF-MCDM is
developed to find the optimal solutions of Example 1
by solving the linear programming models (Xue et al.
[46]).

• Step 4: Finally, based on the VI, score of each
alternative is obtained by using the score function
S(Ai) = y∗

j (
∑m

i=1
⊕

V I (A)x∗
i ) and based on the AI,

the score of each alternative is obtained by using the
score function S(Ai) = y∗

j (
∑m

i=1
⊕

AI (A)x∗
i ).

Based on linear programming models, we obtain DM’s
optimal solutions (x∗

1 , u
∗
1), where x∗

1 = (1.000, 0.000,
0.000, 0.000), and (x∗

2 , u
∗
2), where x∗

2 = (0.000, 0.774,
0.008, 0.217). The value and ambiguity indexes for player

DM’s gain floor are 1.033 and 0.780. Here u∗
1 > u∗

2,

then DM’s optimal solution is x∗
2 = (0.000, 0.774, 0.008,

0.217). Similarly, we obtain Nature’s optimal solu-
tions (y∗

1 , v
∗
1), where y∗

1 = (0.000, 0.000, 0.000, 0.000,
1.000), and (y∗

2 , v
∗
2), where y∗

2 = (0.000, 0.117, 0.576,
0.307, 0.000). The value and ambiguity indexes for Nature’s
loss-ceiling are 0.000 and 0.7802. Here v∗

2 > v∗
1 , then

Nature’s optimal solution is y∗
2 = (0.000, 0.117, 0.576,

0.307, 0.000). However, there are no other optimal solu-
tions. Finally, the score of each alternative based on VI are
S(A1) = 0.000, S(A2) = 0.139, S(A3) = 0.631, S(A4) =
0.338 and S(A5) = 0.000. Also, the score of each alter-
native based on AI are S(A1) = 0.000, S(A2) = 0.091,
S(A3) = 0.449, S(A4) = 0.478 and S(A5) = 0.000. The
results are shown in Table 17.

From Table 17, the results obtained by the method of
Zhang and Xu [55] with the average and the Ambika
method (Xue et al. [46]) with the VI are compatible with
our proposed method. It exhibits that our proposed method
holds all the linguistic hesitant evaluation information.
For maximum and minimum considerations, the results
obtained from Zhang and Xu [55] and Ambika method (Xue
et al. [46]) are different from those derived by our proposed
method. In most of the cases A3 is the best alternative
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Table 17 The comparison results are obtained by Zhang and Xu [53] and Xue et al. [46] methods

The methods RC(A1) RC(A2) RC(A3) RC(A4) RC(A5) Rank CPU times

Zhang and Xu [55] method with the minimum 0.478 0.463 0.515 0.525 0.410 A4 > A3 > A1 > A2 > A5 0.121

Zhang and Xu [55] method with the average 0.523 0.505 0.545 0.536 0.434 A3 > A4 > A1 > A2 > A5 0.143

Zhang and Xu [55] method with the maximum 0.627 0.578 0.659 0.625 0.565 A3 > A1 > A4 > A2 > A5 0.126

Ambika method (Xue et al. [46]) with the VI 0.000 0.139 0.631 0.338 0.000 A3 > A4 > A2 = A1 = A5 0.134

Ambika method (Xue et al. [46]) with the AI 0.000 0.091 0.449 0. 478 0.000 A4 > A3 > A2 = A1 = A5 0.136

Proposed method 0.533 0.514 0.551 0.545 0.444 A3 > A4 > A1 > A2 > A5 0.152

according to their scores. In this case, the maximum and
the minimum pretreatments present the two extremes, which
may loss a lot of information.

8.1 Computational complexity analysis
with different methods

The complexity of a model is, therefore, sometimes used
to mean the difficulty in understanding the model or the
difficulty in terms of resources required in generating model
behaviour. To analyze the computational complexity of the
proposed method and the methods of Zhang and Xu [55]
and Ambika method (Xue et al. [46]), we assume that m

alternatives and n criteria. Therefore, there is mn evaluation
information. For the real-life problem (i.e., Example 1),
described in Section 7, four alternatives and four criteria are
chosen. Considering that the methods of Zhang and Xu [55]
and Ambika method (Xue et al. [46]) are based on MCDM
game. Therefore, the comparison is divided into two parts:
(i) Zhang and Xu [55] (ii) Ambika method (Xue et al. [46])

8.1.1 Comparative analysis with the existing methods
Zhang and Xu [55]

For the method in Zhang and Xu [55], the main idea is to
find the Pythagorean fuzzy PIS and Pythagorean fuzzy NIS,
and then to incorporate the distance measure to rank the
alternatives. But in proposed method, first we determine the
normalized LPHF-MCDM game by using Algorithm 1 to
obtain the PIS and NIS. After that, we calculate the rank of
alternative according to their score based on a new distance
measure by applying Algorithm 2. So in the procedures,
there is significant difference in the amount of computation
due to linguistic preference in the proposed method. Also,
the main difference is that our proposed method is scalable
to meet a variety of situations by adjusting its own
parameters, i.e., it has very good flexibility and extension.

8.1.2 Ambika method (Xue et al. [46])

In Ambika method (Xue et al. [46]), first we determine the
VI and AI of normalized LPHFEs in MCDM game and then

the Ambika method of LPHF-MCDM is developed to find
the optimal solution of Example 1 by using LINGO 17.0.9
software. At last, based on the VI and AI, the score of each
alternative is obtained.

Comparing with Zhang and Xu [55] and Ambika method
(Xue et al. [46]), our proposed method is very easy to
capture and less computational effort for solving purpose.
We develop here a simple and effective decision method
to solve an MCDM game with LPHFEs. Also two algo-
rithms are emerged to obtain the normalization of LPHFEs
and the distance between each alternative with PIS and
NIS. All the methods are solved in LINGO 17.0.9 soft-
ware except extended TOPSIS, which is solved in EXCEL
on a computer with 2.10 GH CPU and 8GB RAM. The
CPU times for solving Example 1 by considering all the
methods are depicted in Table 17. From Table 17, we see
that the proposed methods has taken more CPU times but
generated efficient solution than the other methods. Also,
we see that time for solving two examples by TOPSIS
are longest. We accommodate more information by con-
sidering LPHF-MCDM game in practical situation. From
Algorithm 2, we see that the order of computational com-
plexity is O(mn).

8.2 Pros and cons of the proposedmethod

The pros and cons of our proposed method are summarized
as follows:

• The proposed method is very flexible to deal with sev-
eral types of situations by adjusting its own parameters.

• The LPHFSs of our proposed method can advantageously
discuss more general decision-making situations.

• In addition with TOPSIS, our proposed method avoids
the satisfaction level of the alternatives to the ideal
solutions for building the decision.

• The existing decision-making methods based on aggre-
gation operators (Du et al. [11], Liu et al. [23]) simply
aggregate a series of LPHFSs into a single one. They
do not consider the relationships among attributes. But
our proposed TOPSIS can efficiently achieve trade-offs
among conflicting attributes.
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• The proposed TOPSIS method based on LPHF envi-
ronment uses the distance measure to calculate the
proximity between each alternative and ideal solutions.
It is a new way to make the decisions under the LPHF
environment.

• Ambika method of LPHF-MCDM game fully adopts
the effective significance of imprecise information of
the LPHF-MCDM games by the optimized method of
aggregating the LPHF information.

• In Ambika method, first we obtain the optimal solutions
of LPHF-MCDM game then the score of each alterna-
tive is determined. But in TOPSIS, the score of each
alternative is obtained directly. For this purpose, a com-
parison can be drawn between TOPSIS and Ambika
method to show the changes on ranking order of alter-
natives.

• The proposed method is applied to solve not only the
LPHF-MCDM game, but also develop a primary way of
LPHFS theory in decision making process.

• In this paper, the weight of each criterion is given for
extended TOPSIS. But in some real-life problems, the
weights are unknown. Therefore, it is a questionable
to select the proper weight for the decision making
problem. This can be treated as one of weak novelty of
those methods. However we trust that these could be
overcome in coming years.

9 Conclusion and future works

In this study, we have proposed a new idea of LPHFSs by
combining the concepts of HFSs, LFSs and PFSs. After
that, we have analyzed the normalization procedure and
the generalized hybrid distance of LPHFSs. By using these
results, we have established the application of LPHFSs to
MCDM game based on TOPSIS and Ambika method and
develop a ranking approach for the LPHF-MCDM game.
Here, LPHFSs are not only employ to disclose the linguistic
hesitant fuzzy evaluations of the DM’s, but also remain the
advantages of PFSs, LFSs and HFSs, which accommodates
more complex decision making conditions. Comparing with
the existing research works, LPHFSs as the generalized
format which can establish some usual linguistic hesitant
fuzzy scenarios. Our proposed method provides a solution
in the view of considering linguistic hesitant situations of
the DM and generalizes the extension of applications of
LPHF-MCDM game.

In the future, one can extend our research work to the
interval-valued LPHF environment (Garg [14]), intuitionis-
tic soft set (Cagman and Karatas [10]) and other uncertain
environment and further developing its applications.
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