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Abstract
Constrained Multiobjective Problem (CMOP) is widely used in engineering applications, but the current constrained
Multiobjective Optimization algorithms (CMOEA) often fails to effectively balance convergence and diversity. For this
purpose, a two-stage co-evolution constrained multi-objective optimization evolutionary algorithm (TSC-CMOEA) is
presented to solve constrained multi-objective optimization problems. This method divides the search process into two
phases: in the first stage, the synchronous co-evolution is used, and the population corresponding to the help problem and the
population corresponding to the raw problem cooperate with each other and share the offspring to produce better solutions,
so as to quickly cross the infeasible region and approach the Pareto front; The second stage discards the help problem when
it fails and maintains only the evolution of the main population to save computing resources and enhance convergence.
The combination of synchronous co-evolution and staged strategy allows the population to traverse infeasible regions more
efficiently and converge quickly to feasible and non-dominant regions. The test results on benchmark CMOPs show that
the convergence and population distribution of TSC-CMOEA is significantly better than those of NSGA-II, NSGA-III,
C-MOEA/D, PPS, ToP and CCMO.

Keywords Constraint handling technique · Multiobjective optimization · Coevolution ·
Constrained multi-objective evolutionary algorithms

1 Introduction

In scientific research and engineering practice, many
practical optimization problems ultimately boil down to
solving constrained multi-objective optimization problems,
such as WEB server placement problem [1], microgrid
optimization scheduling problem [2], and near-space
communication deployment problem [3], etc. This type
of constrained multi-objective problems (CMOP) can be
defined as the following form:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

minimize F(x) = (f1(x), . . . , fm(x))T

subject to gi(x) ≥ 0, i = 1, . . . , q

hj (x) = 0, j = 1, . . . , p

x ∈ R
n

(1)
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F(x) represents m objective functions that need to be
optimized at the same time. fi (x) represents the i −
th objective function, gi (x)andhj (x) represent inequality
constraints and equality constraints, respectively, and q
and p represent the number of inequality constraints and
equality constraints, respectively. Due to the complexity
of CMOP, traditional mathematical methods are difficult
to obtain ideal results. The Evolutionary Algorithm (EA),
as a type of optimization method developed by simulating
biological evolution theory has many advantages in solving
CMOP problems. Therefore, constrained multi-objective
optimization algorithms have received widespread attention.

In the past two decades, multi-objective evolutionary
algorithms (MOEAs) have achieved good results in solving
various multi-objective problems [4]. When using MOEAs
to solve CMOP, it is necessary to adopt appropriate con-
straint processing techniques to solve equality constraints
and inequality constraints. Almost all constraint handling
methods are to define an overall constraints violation func-
tion and minimize it [5]. Early MOEAs usually treated
constraints and goals equally. For example: Penalty func-
tion method [6], which adds the constraint to the objective
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function by multiplying the constraint with a penalty factor,
thereby transforming the constrained optimization problem
into a special unconstrained problem; The dynamic penalty
method [7] is to construct the penalty factor as a function
that changes with the number of iterations or iteration time,
so as to dynamically adjust the problem. If the penalty factor
changes according to the feedback information during the
search process, it is called an adaptive penalty method [8].
However, it is difficult to achieve a good balance between
constraints and goals by adjusting the penalty factor [9].
In order to solve the deficiencies in the penalty function
constraint processing method, T.P. Runarsson et al. pro-
posed a random sorting constraint processing method [10],
which use a process similar to bubble sorting to deal with
constrained optimization problems. Based on the random
parameter θ , we can judge whether the current solution
is based on the objective or the constraint. When θ is 0,
the objective based sorting rule is used for random sort-
ing; When θ is 1, constraint based sorting rules are used
for random sorting. Decomposition based MOEA usually
does not consider the Pareto domination, but it also uses a
similar idea to solve the problem of judging infeasible solu-
tion in the aspect of constraint processing [11]. Specifically,
when updating the solution of the weight vector, consider
the degree of constraint violation of the solution, and pre-
fer the solution with less constraint violation [12]. In the
algorithm, when the angle between two feasible solutions is
large, the relationship between the two solutions is consid-
ered as non-dominant, and the algorithm in [13] considers
the minimization of objective values and the minimiza-
tion of constraint violations as a two-objective optimization
problem to be optimized.

However, there are two problems with the above meth-
ods: 1) There may be many non-zero local minima in the
overall constraint violation function, which may lead to
infeasible regions being searched. 2) The possible domains
in the search space may be discontinuous, making it dif-
ficult to move from one area to another [14, 15]. In
summary, existing multi-objective evolutionary algorithms
(MOEAs) have encountered difficulties in solving CMOP.
To solve these difficulties, many advanced constrained mul-
tiobjective optimization algorithms (CMOEAs) have been
proposed. For example, the two archive coevolution algo-
rithm (CTAEA) [16], which saves both convergence and
diversity archives, improve the convergence of the popula-
tion while maintaining the distribution of the population,
and ultimately search for a non-dominant feasible region.
PPS designs and uses a push-pull search method, which
first pushes the population to the unconstrained Pareto front
(PF), and then pulls the population into the feasible region.
However, both the CTAEA’s diversity archive throughout
the search process and the PPS locates the push phase of

unconstrained PF has done a lot of useless work in the
infeasible regions [17, 18].

In this regard, this paper proposes a staged coevolution
algorithm to solve the above two dilemmas and improve
search efficiency. The main contributions of this paper are
as follows:

1. Aiming at the problem that the population is trapped
in the local optimal feasible region, a new coevolution
method is proposed. This method keeps the relative
synchronization between the help population and
the main population, makes the auxiliary population
become more efficient auxiliary main population, and
helps the population find the ideal non-dominated
feasible region.

2. Aiming at the problem of waste of computing resources,
a two-stage optimization strategy is designed. When
the help population plays a positive guiding role,
the coevolution stage is maintained; when the help
population cannot play a role, the stage is changed in
time so that the algorithm can search more efficiently.

3. A new algorithm, TSC-CMOEA, is obtained by
combining these new coevolution methods with two-
stage optimization strategies. Tests on multiple test sets
show that TSC-CMOEA has great potential in solving
CMOPs.

The main content of the rest of this paper is organized
as follows: Section 2 is the basic knowledge of CMOPs,
and introduces the shortcomings of algorithms such as
CTAEA and CCMO in solving CMOP problems. In order
to overcome the shortcomings of existing algorithms,
an improved algorithm, TSC-CMOEA, is proposed in
Section 3. The validity of TSC-CMOEA and its essential
reasons is analysed in depth. Section 4 is the experimental
part, which compares and analyses TSC-CMOEA with
several CMOEAs which currently perform well, such as
PPS, ToP and CTAEA. Section 5 is the conclusion of this
article.

2 Related work

When solving most CMOPs, the feasibility of the solution
is often considered before the convergence, so some
MOEAs give priority to the feasibility of the solution
in the dominance relationship. In NSGA-II, Deb et
al. proposed a dominance-based constraint processing
method called CDP [11]. This method embeds the
feasibility criterion into Pareto dominance, in which feasible
solutions dominate infeasible solutions, and solutions
with lower constraint violations dominate solutions with
higher constraint violations. Specifically, first, the overall

17955



C. Fan et al.

constraint violation degree of each solution is obtained by
calculating formula (2).

CV(x) =
p∑

i=1

max {gi(x), 0} +
q∑

j=1

∥
∥hj(x)

∥
∥ (2)

Where gi(x) and hj(x) are the i − th inequality constraint
and the j − th equality constraint of CMOP. If any of
the following conditions is met, the solution x is said to
dominate another solution y: 1) If CV(x) = 0 and CV(y) =
0, any fi(x) ≤ fi(y) , and there is at least one dimension
fi(x) ≤ fi(y); 2) CV(x) ≤ CV(y). CDP constraint
processing technology can be used in other MOEAs based
on the advantages of Pareto.

ε Constraint processing technology [12] relaxes the
definition of feasibility on the basis of CDP constraint
processing technology, and sets the condition for judging
feasible and infeasible solutions, that is, the overall
constraint violation degree to a value can be dynamically
adjusted ε, When the overall constraint violation degree of
a solution is less than ε, the current solution is considered to
be a feasible solution [12].

The most recent CMOEA can be divided into four cate-
gories according to the constraint processing technology:

The first type of CMOEA is derived from the rigor
of constrained single-objective optimization, which mainly
relies on penalty functions, such as MOSOS [19] and
Iε+NSGA-II [8]. This idea is simple and easy to implement,
but its performance is sensitive to the setting of the penalty
factor with the corresponding penalty function. Too large
a penalty factor can lead to indifference to an infeasible
solution, while too small a penalty factor can lead to
acceptance of an infeasible solution.

The second type of CMOEA, they mainly use feasibility
information. For example, NSGA-II [11] proposes a
constraint dominance principle (CDP) in NSGA-II. When
comparing a pair of feasible solutions, this is exactly the
same as the classical Pareto advantage, while infeasible
solutions are compared according to their constraint
conflicts. CDP is one of the most popular constraint
processing technologies in EMO due to its simplicity and
efficiency. In addition, Fan et al. proposed an angle-based
CDP algorithm (MOEA/D-ACDP) [13], which utilizes
classical Pareto advantage to compare infeasible solutions
within a given Angle. However, the constraint information
used by these methods is relatively simple, and they often
need to be used together with other methods to achieve
better results.

The third type of CMOEA, such as CM2M2 [20], is
designed to increase selection pressure with useful infea-
sible solutions. CM2M2 proposed a CMOP evolutionary

algorithm based on two groups of weight vectors. In partic-
ular, it maintains a set of “infeasible” weight directions to
facilitate constrained multi-objective optimization.

The fourth class is based on ε functions, which use ε

as a tolerance threshold for constraint conflicts containing
infeasible solutions (e.g. ε de-HP [12]). However, the setting
of ε can affect convergence to a large extent, where a large ε

value exerts a large selection pressure on convergence, while
a small ε value fine-tunes the local area.

Coevolution technology has achieved good results in
solving many difficult optimization problems such as multi-
objective optimization problems [21], dynamic optimization
problems [22], and large-scale optimization problems
[23]. But in terms of handling constraints, coevolution
technology is still in its infancy. [17] In [24], the
coevolutionary genetic algorithm and differential evolution
algorithm for solving constrained optimization problems
are respectively proposed [25]. These two algorithms
evolve into multiple populations at the same time, and
each population is assigned an independent penalty factor
to balance constraints and objectives [26]. In [27], the
algorithm decomposes the constraints and assigns a
population to each constraint, where each population first
tries to satisfy its assigned constraints, and then evolves
another constraint from other populations.

Literature [28] proposed a multi-objective particle swarm
optimization algorithm. The algorithm uses one population
to store available particles and another population to
store unavailable particles. Among them, available particles
evolve into Pareto optimal, and unavailable particles
evolve into available particles. In addition, once the
infeasible solution becomes feasible, it can be transferred
to the feasible solution group. In [17], the differential
coevolution framework is used to solve constrained multi-
objective problems. In this paper, the constrained multi-
objective problem with m constraints is transformed into m
constrained single-objective optimization problems, and m
populations used to solve the constrained single-objective
optimization problem are evolved to solve the original
CMOP.

For more advanced coevolutionary algorithms, they
put more emphasis on the coordination of multiple
populations.Both CTAEA and CCMO are among the most
advanced coevolutio algorithms.

CTAEA [28] is an evolutionary algorithm that evolves
two populationes. In CTAEA, the convergence-oriented
archiving (CA) evolves into optimization constraints and
objectives, and the diversity-oriented archiving (DA)
evolves into optimization objectives only. At the same time,
the two populations cooperate with each other in mating
selection and environmental selection. Usually CTAEA
selects one parent from CA and another parent from DA to
produce offspring. Therefore, most offsprings are located
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Fig. 1 Population distribution
when problems occur in CTAEA

between CA and DA. The offsprings produced by this
method not only have the diversity of DA, but also have the
convergence of CA to a certain extent.

However, this method also has some problems as shown
in Fig. 1: (1) From the distribution of the white dots Off1
population in Fig. 1, it can be seen that most individuals of
Off1 are located in the infeasible area, and these offspring
do not have good diversity or convergence. (2) Combining

the black CA population and the white DA population in
Fig. 1, it can be seen that Off1 is mainly distributed in
the middle area between the CA and the DA, and cannot
effectively update the CA to have better diversity. Therefore,
CTAEA ultimately cannot find a sufficient number of
feasible and well-convergent solutions [10].

CCMO [17] is a coevolutionary algorithm that simultane-
ously calculates two objectives problems-the original prob-

Fig. 2 Population distribution
when problems occur in CCMO
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lem and the auxiliary problem. Usually, the original problem
in CCMO is solved by Population 1. The auxiliary problem
is defined as the original problem that removes the con-
straints and is solved by Population 2. The two populations
have no other associations except for sharing offspring,
which is called weak association. Specifically, Population
1 of CCMO generates its own offspring 1 through a pre-
defined method, and Population 2 also generates its own
offspring 2 through a predefined method. Two progeny pop-
ulations are mixed with select individuals through their
respective environments to finally solve the problem. This
method is effective in the early stage of the algorithm,
and the offspring produced by the auxiliary population
can often help the population quickly cross the infeasible
region [29].

But in the later stage of the algorithm, this method often
has some problems, as showed in Fig. 2. (1) The offspring
populations produced by Population 1 and Population 2 are
near their respective populations. Offspring 1 and Offspring
2 seem to have nothing to do with each other and cannot
cooperate well. (2) The calculation of Population 2 is not
helpful to the main population, which is almost a waste of
computing resources. As some recent studies have revealed,
most existing MOEAs have encountered difficulties in
obtaining a set of feasible solutions to a set of discrete
and widely distributed CMOPs. In particular, the limitations
of current coevolutionary algorithms are mainly due to the
lack of interaction and waste of computing resources in the
synergy between populations [18, 30, 31].

3 The proposed algorithm

3.1 Algorithm framework

In order to alleviate the current CMOEA’s difficulty
in effectively balancing convergence and diversity and
waste of computing resources when processing complex
CMOPs, this paper proposes a constrained multi-objective
optimization algorithm (TSC-CMOEA) based on two-
stage coevolution. As described in Algorithm 1, the TSC-
CMOEA proposed in this paper is divided into two stages.
Lines 6-21(marked by ‘�’) in Algorithm 1 are the first stage
of TSC-CMOEA. In this stage, the coevolution constraint
processing technology is used to make the population
quickly approach the real PF. The main purpose of this
stage is to quickly cross a large number of discontinuous
infeasible regions with the help of help problems; When the
help problem can no longer help the population evolution
well, TSC-CMOEA switches to the second stage (as shown
in lines 23-28 marked by ‘�’ in Algorithm 1). This
stage uses CDP constraint processing technology to better
complete the search. This stage is mainly to increase the

diversity of the population while reducing unnecessary
function calculation requests.

Algorithm 1 Procedure of the proposed TSC-CMOEA.

Require: fraw raw CMOP fhelp (helper problem), N (population
size)

Ensure: Population 1(final population)
Population 1 RandomInitialization(N)
Population 2 RandomInitialization(N)
Evaluate Population1 by fraw
Evaluate Population1 by fhelp
while termination conditions are not met do

if TSC-CMOEA is in its first phase &(rk ) then
Parent1 Select N/2 parents from Population1 by the

mating selection of MOEA
Parent2 Select N/2 parents from Population2 by the

mating selection of MOEA
Off1 Generate N/2 offsprings based on Parent1 by

the operators of MOEA;
Off2 Generate N/2 offsprings based on Parent2 by

the operators of MOEA;
Population1 Population1 Off1 Off2

if Problem interaction condition is satisfied then
Population2 Population2 Off1 Off2

else
Population2 Population2 Off2

end if
Evaluate Population1 by fraw
Evaluate Population1 by fhelp
Population1 Select N solutions from Population1

by the environmental selection of MOEA
Population2 Select N solutions from Population2

by the environmental selection of MOEA
else

Parent1 Select N/2 parents from Population1 by
the mating selection of MOEA

Off1 Generate N/2 offsprings based on Parent1 by
the operators of MOEA;

Population1 Population1 Off1
Evaluate Population1 by fraw
Population1 Select N solutions from Population1

by the environmental selection of MOEA
end if

end while

3.2 The first stage

This section will specifically describe the evolutionary
process of the first stage. It can be seen from Algorithm
1: In the first stage, the used dominance relationship and
crowding distance are used as mating selection strategies,
and two parent sets, Parent 1 and Parent 2, are selected
from Population 1 and Population 2, respectively. Then,
the two parent sets are generated by simulated binary
crossover and polynomial mutation operators to generate
offspring populations, Offspring 1 and Offspring 2. After
that, Population 1 combined with the offspring population
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Offspring 1 used an environmental selection strategy based
on fitness to select individuals. Population 2 is combined
with Offspring 1 every 10 iterations, and with Offspring 2
in other iterations, and then individuals are selected using
an environment selection strategy based on fitness.

Such a population combination strategy can make the
main population and the auxiliary population relatively
synchronized. It is worth noting that the individual
selection strategy used in TSC-CMOEA is different from
the commonly used selection strategy used in NSGA-
II. Specifically, the environment selection strategy used
in TSC-CMOEA is similar to that proposed in SPEA2.
First, determine the solution set storing all the solutions
dominated by x and the solution set Sx storing all the
solutions dominated by x, and find the �√2n� nearest
neighbor of x in the population. Then calculate an fit(x) for
each individual, f it (x) is defined as following

fit(x) =
∑

y∈Sx

∥
∥Ry

∥
∥ + 1

dist (x, x′) + 2
(3)

Where the first component of f it (x) calculates the
total number of solutions that dominate x, and the second
component calculates the reciprocal of the Euclidean
distance from x to its �√2n� − th nearest neighbor. The
smaller the value of f it (x), the better the quality of the
solution. This individual selection strategy considers the
distribution of the population more. Population 2 uses
a special offspring population combination strategy to
keep the original problem and the auxiliary problem as
synchronous as possible. This operation can improve the
utilization efficiency of the auxiliary problem. It should be
noted that the solutions in Population 1 are all calculated
from the raw problem fraw, and Population 1 is also the final
output result of the first stage.

The solution in Population 2 is calculated from the help
problem fhelp derived from the raw problem. Usually the
help problem fhelp is selected as the original problem fraw
without considering constraints.

3.3 The second stage

From the 23th line(marked by ‘�’) of Algorithm 1, we
can see that the input of the second stage is the output of
the first stage, Population 1. At this time, Population 1 is
very close to the real PF, but due to the coevolution of
some characteristics, the diversity is slightly insufficient.
As can be seen from lines 23-28(marked by ‘�’) of
the code in Algorithm 1, the processing of the entire
problem in the second stage is similar to the processing
of the main population in the first stage. Two Parent
sets, Parent 1 and Parent 2, are selected from Population
1 by using dominant relationship and crowding distance
as mating selection strategies. Then, the two parent sets

are used to generate progeny populations, Offspring 1,
through the simulated binary crossover and polynomial
mutation operators, respectively. After that, Population 1
combined with the offspring population Offspring 1 uses
the environmental selection strategy to generate a new
Population 1. In the second stage, because the help problem
can no longer support the main population well, we do
not calculate Population 2 in the second stage to save the
calculation.

The main steps of TSC-CMOEA include two stages, and
it is particularly critical to completing the stage conversion
at the right time. The strategy for the switching phase is as
follows: rk < δ, where rk represents the rate of change of
the lowest point in the population at the lowest l offspring,
and δ is a minimum value set by the user (set δ = 1e − 3
in this article). Note that δ is an empirical value.rk is the
change rate of the ideal point in the population. Through
a large number of experiments, we found that when the δ

value is set to a low value (1e − 3), the switching algorithm
stage is effective, but the δ value does not tend to zero. We
believe that when the population change rate is less than a
certain threshold, is the best time to switch algorithm. If you
let δ = 0, you don’t switch between the two phases, and the
second phase doesn’t work.The rate of change of the lowest
point in the last l generation is defined as follows:

rk =
∥
∥zk − zk−l

∥
∥

max
{∥
∥zk−l

∥
∥ , 1e − 6

} (4)

Where zk is the ideal point of generation k and zk−l is the
ideal point of generation (k − l). In (4) 1e − 6 is to ensure
that the denominator is not zero, so its value can be closer
to 0.

In general, the proposed TSC-CMOEA evolves Popu-
lation 1 in the first stage to solve the raw problem, and
at the same time evolves Population 2 to solve the help
problem. The offspring produced by the two populations
are shared conditionally. When the phase transition condi-
tions are met, the proposed TSC-CMOEA enters the second
phase. The second stage is based on Population 1 evolved
in the first stage. CDP constraint processing technology
cooperates with NSGA-II to evolve Population 1 to solve
CMOPs.

It is worth noting that in the first stage, Population 1
may often fall into a narrow feasible area, and sharing the
offspring of Population 2 can help it jump out of the local
optimum. At the same time, because fhelp is usually simpler
than fraw, the solution in Population 2 usually has better
convergence than the solution in Population 1. Therefore,
descendants generated by Population 2 are likely to improve
the convergence of Population 1 after the sharing operation.

The coevolution of the two populations can greatly
improve the speed and accuracy of the algorithm’s
convergence, but it also comes with some minor problems.
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For example, because there is a mapping relationship
between the PF of the help problem and the real PF, and
this relationship can sometimes only lead the population
to find a part of the PF, so that the diversity of the
population is greatly lost. Therefore, when the coevolution
constraint processing technology cannot complete the task
well, it is very necessary to switch to an effective constraint
processing technology in time. After Population 1 ends the
first stage, the auxiliary problem cannot help the original
problem in the second stage; by entering the second stage,
the main population makes full use of some infeasible
solutions to expand the diversity of the population.

3.4 Analysis of TSC-CMOEA

In the first stage, we deal with both populations simulta-
neously, strengthening the tie between the populations by
mixing the two offspring populations. Population 1 is a
constrained population, and feasible solutions are fully con-
sidered to ensure the feasibility of the algorithm. Population
2 is an unconstrained population, which usually approaches
the unconstrained PF preferentially than population 1, and
the offspring generated by population 2 has higher con-
vergence. Therefore, the introduction of two-population
strategy not only retains feasible solutions well, but also
achieves higher convergence, making the performance of
the two populations complementary.

In the second stage, the algorithm to the end, there
is some distance between the unconstrained PF and the
constrained PF, this time to maintain double population
strategy is not cost-effective, because of the population are
near the real PF for local search, population 2 unconstrained
PF for population 1 help has been very small. So, in the
second stage, we removed population 2 and maintained
only one population, with the main purpose of conducting
a more detailed local search on the results of the first stage.
This operation directly reduces the evaluation times of the
function and indirectly improves the performance of the
algorithm.

Also, at the end of the algorithm, the population
1 with high convergence obtained in the first stage is
used to conduct local search with a method similar to
dominance, which directly improves the performance of the
algorithm.Therefore, the performance of the algorithm is
improved by the two strategies proposed by us.

In order to analyze the effectiveness and mechanism
of TSC-CMOEA, we show the early, middle and last
population distribution of TSC-CMOEA on the MW9 in
Fig. 3, and compare the distribution results with CTAEA
and CCMO.

As showed in Fig. 3(a c), Population 1 of CCMO
is responsible for the convergence of early populations

relatively concentrated, and Population 2 auxiliary problems
are widely distributed. Some individuals in the final
population cannot skip the infeasible region ahead.

It can be seen from Fig. 3(d f) that for CTAEA, DA is a
population that maintains diversity, and CA is a population
that improves convergence. In the early stage, due to the
influence of DA, the diversity of CA performed well, but
the convergence was insufficient, and the performance of
the offspring was also the same. In the middle stage,
since the DA population only considers the objectives and
ignores constraints, the DA population is distributed on the
unconstrained PF. However, CTAEA usually selects a parent
from CA, and then selects a parent from DA to produce
offspring, so most offspring are located between CA and
DA. Due to this offspring generation strategy, the offspring
produced do not have good feasibility or good convergence,
and the CA cannot be updated to achieve better diversity.
Therefore, in the end, CTAEA cannot perfectly find a
sufficient number of good enough solutions.

Figure 3(g i) shows that TSC-CMOEA and CCMO
behave similarly in the early and middle stage, because
TSC-CMOEA originated from CCMO. For the early days
of TSC-CMOEA, Population 1 considers constraints, and
Population 2 does not consider constraints. Thanks to
Population 2, the distribution and convergence of the
overall population are very good. It can be seen from
the figure that the two populations are synchronized with
each other, and the parents of TSC-CMOEA are selected
from Population 1 and Population 2, which makes some
offspring around Population 1 and Population 2, and
the surrounding offspring can enhance the diversity of
Population 1. When TSC-CMOEA enters the second stage,
it pays more attention to convergence. Therefore, the final
TSC-CMOEA results are relatively better than CTAEA and
CCMO.

4 Experimental research

4.1 Test sets

In order to evaluate the performance of TSC-CMOEA,
we selected five test sets of C-DLTZ, DC-DTLZ, MW,
LIRCMOP and DOC as the test objects. C-DLTZ and
DC-DTLZ are traditional constraint test problems, MW is
a test problem based on constraint construction method
and distance function design, LIRCMOP is a large-
scale infeasible region test problem, and DOC is a test
problem that includes decision constraints and objectives
constraints. A detailed description of these test sets,
including mathematical definitions and properties, can be
found in their original papers [30–33].
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Fig. 3 The population distribution of CCMO, CTAEA and TSC-CMOEA in the early, middle and late stages on the MW9

4.2 Parameter setting

All the algorithms participating in the comparison have
some common parameter settings. Table 1 shows the

parameter settings of the proposed algorithm and the
comparison algorithm. For the two-objective problem, the
population size is set to 100, and for the three objective
problem, the population size is set to 105. Termination
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Table 1 Paramaters set of CCMO, NSGA-II, NSGA-III, C-MOEA/D, PPS, TOP, and TSC-CMOEA

Algorithms Test set Mutation probability Distribution index Operator CR F Other parameters Function evaluations

C-DTLZ, MW SBX 0.9 - - 100000

TSC-CMOEA LIRCMOP,DOC DE 1.0 0.5 - 300000

CCMO
C-DTLZ,MW SBX 0.9 -

-
100000

LIRCMOP,DOC DE 1.0 0.5 300000

NSGA-II
C-DTLZ,MW

SBX 0.9 - -
100000

LIRCMOP,DOC 1/D 300000

NSGA-III
C-DTLZ,MW (D denotes the

20 SBX 0.9 - -
100000

LIRCMOP,DOC number of decision 300000

CMOEAD
C-DTLZ,MW variables)

SBX 0.9 - -
100000

LIRCMOP,DOC 300000

PPS C-DTLZ,MW DE 1.0 0.5 α = 0.95, τ = 0.1, 100000

LIRCMOP,DOC cp = 2, l = 20 300000

ToP C-DTLZ,MW DE 1.0 0.5 Pf = 1/3, 100000

LIRCMOP,DOC δ = 0.2 300000

conditions of all MOEAs participating in the comparison
are set so that the total number of evaluations of all
population functions reaches the specified number, and
the setting is large enough to ensure that each MOEAs
can converge. For constrained DTLZ and MW problems,
the number of function evaluations is set to 100,000,
while for LIR-CMOP and DOC problems, the number of
function evaluations is set to 300,000. Since the DE operator
has excellent performance in solving complex problems,
for LIRCMOP and DOC problems, the DE operator and
polynomial mutation are used to generate progeny, and for
the remaining problems, the SBX operator and polynomial
mutation are used to generate progeny. For the SBX
operator, the crossover probability and distribution index
are set to 0.9 and 20, respectively. For the DE operator,
the crossover rate and scale factor are set to 1.0 and
0.5, respectively. For the polynomial mutation operator,
the mutation probability and distribution index are set to
Pm = 1/n (n is the number of decision variables) and 20,
respectively. The parameters of all comparison algorithms
are set according to the suggestions in the original paper
[4, 9, 11, 17, 23, 30].

4.3 Performance indicators

The goal of CMOPS is to find a set of uniformly distributed
feasible solution sets that are as close to the real PF as
possible. In order to quantitatively compare the performance
of each algorithm, we used two popular metrics in

the experiment-Inverse Generation Distance (IGD). Their
definitions are as following:

⎧
⎪⎨

⎪⎩

IGD (P ∗, A) = y

∑
(y∗,A)

y∗∈P∗
‖P ∗‖

d (y∗, A) = miny∈A

{√
∑m

i=1

(
y∗
i − yi

)2
} (5)

Where P ∗ represents a set of representative solutions
in the real PF, and A is the approximate PF realized by
CMOEA. m represents the number of objectives. y is a
solution in A, yi is the i − th objective value of y, y∗ is the
solution with the closest Euclidean distance to y in P ∗, and
y∗
i is the y − th objective function value.
HV reflects the proximity of the undominated solution

set implemented by CMOEA to the true PF, a larger HV
means that the corresponding undominated set is closer to
the true PF.

HV (S) = V OL

(
⋃

x∈S

[
f1(x), zr

1

] × . . .
[
fm(x), zr

m

]
)

(6)

where V OL(−) is the Leberger measure, m denotes the
number of objectives, and zr = (zr

1, ..., z
r
m)T is the user-

defined reference point in the objective space. For each
CMOP, the reference point is 1.2 times the distance from
the lowest point of the true PF. It is worth noting that larger
values of high pressure may indicate better performance in
terms of diversity and/or convergence.
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Table 2 Mean and standard deviation of the IGD values obtained by NSGA-II, NSGA-III, C-MOEA/D, PPS, TOP, and TSC-CMOEA for 30
independent runs on the constrained DTLZ test suite and the MW test suite

Problem CTAEA CCMO TSC-CMOEA2 TSC-CMOEA

C1 DTLZ1 2.3178e-2 (2.40e-4) − 2.0041e-2 (1.32e-4) − 1.9978e-2 (1.30e-4) − 1.9895e-2 (1.32e-4)

C1 DTLZ3 3.4215e-1 (1.47e+0) − 5.3559e-2 (5.87e-4) ≈ 5.3521e-2 (4.70e-4) ≈ 5.3279e-2 (5.53e-4)

C2 DTLZ2 5.6577e-2 (1.05e-3) − 4.2770e-2 (6.88e-4) − 4.2892e-2 (5.96e-4) − 4.2367e-2 (5.11e-4)

C3 DTLZ4 1.1276e-1 (2.18e-3) + 1.1965e-1 (1.36e-1) ≈ 1.1962e-1 (1.36e-1) ≈ 1.9448e-1 (2.58e-1)

DC1 DTLZ1 1.5226e-2 (3.04e-4) − 1.1389e-2 (7.15e-5) ≈ 1.1419e-2 (8.95e-5) ≈ 1.1378e-2 (9.71e-5)

DC1 DTLZ3 1.3026e-1 (3.56e-3) − 1.1391e-1 (1.03e-3) ≈ 1.1422e-1 (1.13e-3) − 1.1352e-1 (7.70e-4)

DC2 DTLZ1 2.3257e-2 (1.43e-4) − 2.0147e-2 (1.77e-4) − 2.0150e-2 (1.14e-4) − 2.0030e-2 (1.48e-4)

DC2 DTLZ3 1.7087e-1 (2.00e-1) − 5.3203e-2 (4.19e-4) − 5.3231e-2 (4.49e-4) − 5.2774e-2 (3.65e-4)

DC3 DTLZ1 9.3515e-3 (2.26e-4) − 6.8641e-3 (8.62e-5) ≈ 6.8787e-3 (7.46e-5) ≈ 6.8583e-3 (6.86e-5)

DC3 DTLZ3 1.7122e-1 (3.33e-3) − 1.5887e-1 (1.68e-3) ≈ 1.5884e-1 (1.52e-3) ≈ 1.5877e-1 (1.59e-3)

MW1 2.0250e-3 (7.04e-5) − 1.6169e-3 (1.38e-5) − 1.6138e-3 (1.28e-5) − 1.5980e-3 (9.19e-6)

MW2 1.8517e-2 (1.04e-2) ≈ 1.8705e-2 (6.65e-3) ≈ 1.7319e-2 (6.39e-3) ≈ 1.8739e-2 (6.79e-3)

MW3 4.9647e-3 (2.93e-4) ≈ 4.8251e-3 (2.69e-4) ≈ 4.8752e-3 (2.40e-4) ≈ 4.9514e-3 (5.17e-4)

MW4 4.6500e-2 (2.66e-4) − 4.0926e-2 (4.18e-4) − 4.0924e-2 (4.01e-4) − 4.0440e-2 (3.68e-4)

MW5 1.3777e-2 (3.03e-3) − 1.4200e-3 (1.39e-3) ≈ 9.9185e-4 (1.16e-3) ≈ 9.6387e-4 (1.35e-3)

MW6 9.9780e-3 (5.69e-3) + 3.5039e-2 (8.29e-2) ≈ 1.7975e-2 (1.07e-2) ≈ 1.9129e-2 (9.97e-3)

MW7 6.9005e-3 (8.27e-4) − 4.6105e-3 (3.26e-4) − 4.6303e-3 (3.69e-4) − 4.4270e-3 (3.06e-4)

MW8 5.4844e-2 (3.07e-3) − 5.1784e-2 (2.35e-2) ≈ 4.5744e-2 (2.89e-3) ≈ 4.5570e-2 (2.67e-3)

MW9 8.6074e-3 (4.97e-4) − 2.8012e-2 (1.29e-1) ≈ 5.7915e-3 (7.36e-3) ≈ 4.3940e-3 (2.19e-4)

MW10 1.2437e-2 (7.91e-3) + 3.9047e-2 (3.52e-2) ≈ 3.0207e-2 (3.31e-2) ≈ 3.0653e-2 (2.85e-2)

MW11 1.4449e-2 (2.66e-3) − 6.0670e-3 (2.22e-4) − 6.0381e-3 (2.40e-4) − 5.9255e-3 (2.47e-4)

MW12 7.9017e-3 (8.15e-4) − 4.9671e-2 (1.71e-1) − 2.6509e-2 (1.18e-1) ≈ 4.7267e-3 (1.03e-4)

MW13 3.0520e-2 (1.61e-2) + 6.6541e-2 (3.70e-2) ≈ 6.8959e-2 (3.08e-2) ≈ 6.3608e-2 (3.59e-2)

MW14 1.1140e-1 (3.75e-3) − 9.7689e-2 (1.94e-3) − 9.8669e-2 (2.01e-3) − 9.7083e-2 (2.47e-3)

LIRCMOP1 1.9526e-1 (9.02e-2) − 1.2150e-1 (7.60e-2) ≈ 1.1855e-1 (6.40e-2) ≈ 9.6198e-2 (6.14e-2)

LIRCMOP2 1.3644e-1 (3.84e-2) ≈ 9.8489e-2 (6.20e-2) ≈ 9.4549e-2 (6.64e-2) ≈ 1.0334e-1 (5.74e-2)

LIRCMOP3 2.2606e-1 (8.08e-2) − 1.0615e-1 (6.39e-2) ≈ 1.1203e-1 (6.69e-2) ≈ 9.8033e-2 (5.55e-2)

LIRCMOP4 2.2487e-1 (8.76e-2) − 1.2923e-2 (7.43e-3) + 1.2917e-1 (5.32e-2) ≈ 1.3318e-1 (6.38e-2)

LIRCMOP5 1.1615e+0 (2.35e-1) − 2.0833e-2 (1.67e-2) − 7.8872e-3 (6.12e-4) − 7.4428e-3 (5.41e-4)

LIRCMOP6 1.2520e+0 (2.86e-1) − 6.4187e-3 (3.85e-4) + 7.0491e-3 (5.13e-4) ≈ 6.9969e-3 (1.10e-3)

LIRCMOP7 1.3239e-1 (2.87e-2) − 7.4545e-3 (5.21e-4) ≈ 7.3281e-3 (2.98e-4) ≈ 7.3071e-3 (2.66e-4)

LIRCMOP8 7.4634e-1 (6.43e-1) − 7.2858e-3 (2.45e-4) ≈ 7.2412e-3 (1.79e-4) ≈ 7.2908e-3 (2.29e-4)

LIRCMOP9 3.5913e-1 (7.55e-2) − 8.3791e-2 (2.65e-2) − 1.0852e-2 (3.12e-3) ≈ 1.7788e-2 (2.10e-2)

LIRCMOP10 2.6609e-1 (1.30e-1) − 6.9414e-3 (1.02e-3) − 6.8818e-3 (5.33e-4) − 6.4508e-3 (3.41e-4)

LIRCMOP11 1.5440e-1 (2.23e-2) − 4.7263e-3 (1.10e-3) − 2.9089e-3 (1.71e-4) − 2.7702e-3 (1.05e-4)

LIRCMOP12 9.7824e-2 (2.13e-2) − 1.1425e-2 (7.01e-3) − 4.1169e-3 (3.32e-4) − 3.8654e-3 (4.88e-4)

LIRCMOP13 5.4893e-2 (7.64e-4) + 7.8422e-2 (1.35e-3) + 1.1952e-1 (1.75e-3) − 1.1794e-1 (1.83e-3)

LIRCMOP14 5.5616e-2 (1.05e-3) + 6.0956e-2 (6.90e-4) + 1.0395e-1 (1.91e-3) − 1.0272e-1 (1.56e-3)

DOC1 5.0625e+2 (2.70e+2) − 5.8383e-3 (6.42e-4) − 5.8157e-3 (6.29e-4) ≈ 5.4714e-3 (3.43e-4)

DOC2 NaN (NaN) 2.3586e-2 (6.11e-2) − 1.8901e-2 (4.01e-2) − 4.9571e-3 (2.90e-3)

DOC3 NaN (NaN) 4.8586e+2 (4.45e+2) + 5.7524e+2 (4.68e+2) ≈ 7.7070e+2 (4.75e+2)

DOC4 2.3515e+2 (2.44e+2) − 2.4100e-2 (3.34e-3) ≈ 2.3959e-2 (7.28e-3) ≈ 2.3486e-2 (7.91e-3)

DOC5 NaN (NaN) 8.7488e+0 (3.37e+1) ≈ 2.8028e+1 (5.56e+1) ≈ 1.5403e+1 (4.33e+1)

DOC6 2.6728e+1 (1.67e+1) − 2.6107e-2 (8.30e-2) − 3.2305e-2 (1.30e-1) − 3.2305e-3 (6.67e-4)

DOC7 NaN (NaN) 2.5550e-2 (1.26e-1) − 8.6632e-3 (3.36e-2) − 2.4263e-3 (9.72e-5)

DOC8 4.8122e+2 (1.89e+2) − 7.2006e-2 (5.82e-3) − 7.1983e-2 (5.29e-3) − 6.4513e-2 (3.18e-3)

DOC9 9.0351e-1 (4.19e-1) − 8.2003e-2 (1.06e-2) − 8.1497e-2 (8.87e-3) − 7.4340e-2 (8.71e-3)

+/ − / ≈ 6/34/3 5/21/21 0/21/26
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4.4 Effective test of algorithm improvement

In order to verify the effectiveness of TSC-CMOEA’s
improvement strategy, we compared it with CTAEA and
CCMO. Table 2 shows the average and standard deviation
of the IGD for 30 independent runs of CTAEA, CCMO,
TSC-CMOEA and TSC-CMOEA2 on the DTLZ, MW,
LIRCMOP and DOC test problem sets. As can be seen from
the table, TSC-CMOEA achieved the best results in 35 of
the 47 test problems, followed by CTAEA which achieved 7
best results, and finally CCMO only achieved 5 best results.
Table 2 also shows the statistical results of the Bonferroni-
corrected Friedman test at the 0.05 significance level [34].
It can be seen that TSC-CMOEA is significantly better than
CTAEA on 36 issues and significantly better than CCMO on
21 issues. TSC-CMOEA shows better convergence on these
problems, which are caused by the two-stage design of the
algorithm, and the increase in the second stage strengthens
the convergence of the population.TSC-CMOEA2 is a
variant of the TSC-CMOEA without two-phase strategy.
As can be seen from IGD value data in Table 2, TSC-
CMOEA2 has some advantages over CCMO, but it is
not very obvious. However, by comparing TSC-CMOEA2
with TSC-CMOEA, it can be found that TSC-CMOEA has
obvious advantages. This shows that the two stage strategy
can improve the performance of the algorithm more greatly.

At the same time, the two stage strategy mainly improves
the local search performance of the algorithm, so the new
coevolution method is also crucial for the population to
reach the ideal region more efficiently.

Combining Tables 2 and 3 and the above analysis, we can
see that the new coevolution method and the phased strategy
have good results.

4.5 Experimental results of DTLZ andMWproblems

In order to verify the performance of TSC-CMOEA, we
select NSGA-II, NSGA-III, C-MOEA/D, PPS and ToP
and other current algorithms that perform well in solving
constrained multi-objective optimization problems as the
comparison objects. All algorithms constrain the average
and standard deviation of the IGD values obtained during
30 independent runs on the DTLZ test suite and the MW
test suite. The IGD value of each question is calculated
according to the method suggested in [35] for approximately
10,000 reference points sampled on the PF of the question.
As showed in Table 3, the proposed TSC-CMOEA achieved
the best results on 18 issues, and secondly, CMOEA/D
achieved the best results on two issues.Then we computed
the HV values of TSC-CMOEA and the comparison
algorithm on the two test sets, DTLZ and MW. Table 4
shows the results of the HV values.The computed results are

Fig. 4 The final populations of NSGA-II, NSGA-III, C-MOEA/D, PPS, ToP and TSC-CMOEA in C1 DTLZ3
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Fig. 5 The final populations of NSGA-II, NSGA-III, C-MOEA/D, PPS, ToP and TSC-CMOEA in MW5

shown in Tables 3 and 4, and it can be seen that our proposed
algorithm achieves the lead on most of the problems.

Figures 4 and 5 plot NSGA-II, NSGA-III, C-MOEA/D,
PPS, ToP, CTAEA, CCMO, and TSC-CMOEA of MW5
and C1 DTLZ3, and the feasible non-dominated solutions
of the median IGD value in 30 runs. For MW5 and
MW9 problems with discontinuous feasible regions, TSC-
CMOEA shows better convergence and distribution than
other MOEAs. This is because the help problem assists the
raw problem. For Population1 which deals with the raw
CMOP and Population2 which deal with help problems, the
cooperative relationship between them effectively improves
the convergence and diversity of Population1. It can be
seen from Fig. 2 that the convergence of TSC-CMOEA is
better than that of other MOEAs, and other MOEAs still
have a large number of individuals in the feasible region far
from the real PF. Rapid convergence rate of TSC-CMOEA
is mainly attributed to the offspring produced by the help
problem, which makes it easier for the raw CMOP to skip
the infeasible region. In short, in the constrained DTLZ
problem with multi-modal landscape and a wider infeasible
region and the MW problem with a small and discontinuous
feasible region, the offspring produced by Population 2 help
Population 1 to skip the infeasible region and obtain better
convergence and diversity.

4.6 Experimental results of LIR-CMOP
and DOC problems

To further verify the performance of TSC-CMOEA,
we used more difficult test suites (ie LIRCMOP and
DOC) to perform supplementary tests. LIRCMOP contains
14 CMOPs with small feasible regions and complex
relationships between position and distance variables. DOC
contains 9 CMOPs with complex constraints in both
decision space and target space. Table 5 shows the average
and standard deviation of the IGD values obtained by
NSGA-II, NSGA-III, C-MOEA/D, PPS, ToP, and TSC-
CMOEA during 30 independent runs on the LIRCMOP
test suite and the DOC test suite. TSC-CMOEA made on
15 test questions optimal, PPS is 5, ToP is 1. And we
also computed HV values on these test sets and the results
are shown in Table 6. The data in Table 6 shows that it
performs similarly to the IGD values, and our proposed
algorithm outperforms the comparison algorithm on most of
the test problems, with only a few falling slightly back to
the PPS. Therefore, it can be concluded that the proposed
TSC-CMOEA has better overall performance than some of
the most advanced MOEAs when solving the benchmark
CMOP. This is precisely caused by the new coevolution
method and the two-stage algorithm design.
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C. Fan et al.

Table 7 HV Value of NSGAII , NSGAIII , CMOEAD , PPS , ToP and SCCMO on microgrid dispatch model, where the best result on each test
instance is highlight

Problem NSGAII NSGAIII CMOEAD PPS ToP SCCMO

DM 0.0000e+0 (0.00e+0) −1.1019e-3 (2.86e-3) −6.0606e-3 (3.72e-3) −1.6250e-2 (9.17e-3) −0.0000e+0 (0.00e+0) −2.1540e-2 (7.48e-3)

+/ − / ≈0/1/0 0/1/0 0/1/0 0/1/0 0/1/0

4.7 Experimental results of microgrid
scheduling problem

Finally, we use the proposed TSC-CMOEA to optimize
a microgrid dispatch model. The dispatch model of the
microgrid is as follows.

minimize f(x) =
{

f1 = Cex + CDG + Cem + Clc

f2 = maxPex,t − minPex,t = �Pex

subject to gj (x) ≤ 0, j = 1, 2, 3. (7)

Where Cex is the transaction cost of the external grid,
CDG is the generation cost of DG, Cem is the operation
and maintenance cost of EER and storage devices, Clc

is the compensation cost of flexible load and Pex,t is
the power exchanges value between hybrid microgrid and
external grid. The objective function is to minimize the
economic cost of the microgrid and minimize the peak-
to-valley difference between power supply and demand.
The decision variables include microgrid dispatchable units
such as energy storage ESS charging and discharging power
and levelizable load transfer. The model also has complex
constraints such as the equal power constraint of shiftable
load shift in and out, the ESS equipped capacity constraint
and the battery hourly power variation constraint. We take
the example of a microgrid system in a building of a
university in Hunan Province. Table 7 lists the HV values
obtained for five comparative MOEAs, where each MOEA
is run for 1,000 generations with a population size of 100
. As can be seen from the Table 7, TSC-CMOEA shows
better overall performance than the comparative MOEA in
the optimization of the microgrid dispatch model, obtaining
the best HV values. Therefore, it can be confirmed that the
proposed TSC-CMOEA is also effective in solving CMOPs
in applications.

5 Conclusion

In this paper, we propose a new coevolution method
and staged coevolutionary algorithm for constrained multi-
objective algorithms which are difficult to converge
or have poor distribution when dealing with complex
constraints. It is designed to solve a difficult CMOP
problem by adding a help problem and an additional
processing stage. In the algorithm, the first stage uses

the proposed new coevolution method to process CMOP,
so that the population can quickly and efficiently cross
the infeasible region. When the population change rate
is too small during the evolution process, it will switch
to the second stage; in the second stage, only the raw
problem processing part is retained. Through further
optimization of the raw problem, the expected solution
set is finally obtained. The results of comparison with
CTAEA and CCMO show that the coevolution and two-
stage strategy in this paper are effective; comparative
experiments with algorithms such as NSGA-II, NSGA-III,
C-MOEA/D, PPS and ToP show that TSC-CMOEA can
effectively avoid local optimization caused by constraints
when solving multi-objective problem. The solution results
of complex multi-objective optimization problems such as
LIR-CMOP and DOC show that TSC-CMOEA has better
convergence performance and distribution performance in
solving complex CMOP problems. In addition, if the
efficiency of the offspring generation strategy in this paper
can be improved, it may improve the performance of the
algorithm on large-scale problems.
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