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Abstract
Multi-label algorithms often use an identical feature space to build classification models for all labels. However, labels
generally express different semantic information and should have their own characteristics. A few algorithms have been
proposed to find label-specific features to construct discriminative classification models. Some use global label correlation to
make the reconstructed features more discriminative, but they usually neglect the local correlation between labels. To solve
this problem, we propose a new algorithm, named learning Label-specific Features with Global and Local label Correlation
(LFGLC). The algorithm integrates both global and local label correlation to extract label-specific features for each label.
Specifically, global label correlation is calculated by the label co-occurrence frequency between label pairs, and local label
correlation is learned from the neighborhood of each instance. Comprehensive experiments on 12 multi-label data sets
clearly manifest that the proposed algorithm performs competitively in feature selection and multi-label classification.
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1 Introduction

Multi-label learning aims to predict multiple labels simulta-
neously for an instance. It has received considerable atten-
tion due to its applications in a wide range of domains,
such as image recognition, natural language processing,
and complex networks. For instance, multi-label learning
for fundus images can effectively improve the accuracy of
diagnosis [1]; with increasing information on the internet,
multi-label learning for online text can enhance retrieval
accuracy [2]; and multiple labels on user profiles can be
helpful for individual recommendations and marketing on
social networks [3].

Compared with single-label problems, multi-label data
often have large feature spaces. The number of features can
reach tens of thousands when describing semantics [4–6],
and some can be redundant or irrelevant for classification
tasks. Moreover, high-dimensional feature space often
brings negative impacts on classification tasks. Therefore,
a number of algorithms concentrate on feature compression
techniques to obtain a low-dimension expression of multi-
label data, effectively improving the performance of
multi-label classification. Mutual information is widely
used for feature compression, which enables efficient
performance in multi-label classification [7, 8]. However,
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most feature compression algorithms construct an identical
low-dimensional feature space for all labels [9, 10]. In other
words, different labels share the same feature expression.
In multi-label problems, labels reflect different semantics.
Therefore, labels have unique features, named label-specific
features, which can be used to distinguish them. These
features are mostly related to corresponding labels and they
are the most appropriate to distinguish labels. Zhang and
Wu [11] introduced the concept of label-specific features in
the method LIFT for the first time in 2015. Although there
are some variants of LIFT, such as LETTER [12], LSDM
[13], LF-LPLC [14], the research of label-specific features
is ongoing.

In multi-label problems, labels do not occur indepen-
dently but present some dependence. In other words, some
labels tend to appear together in many instances, while oth-
ers rarely co-occur. Using label correlation is conducive to
learning the more efficient and robust classification model
[15]. Labels sometimes have few positive instances, in
which case it is important to use label correlation. To make
full use of label correlation has become a major research
direction in multi-label classification, and is important in
many algorithms [16–19]. Considering the complexity of
real-world label correlation, some label correlations are
global and some others may be local. Although most exist-
ing algorithms have considered global [20–22] or local [15,
23, 24] label correlation for multi-label learning, both global
and local label correlation are less taken into account.

As discussed above, label-specific features and label
correlation are two important characteristics for multi-label
learning. We unify these and propose label-specific features
with global and local label correlation (LFGLC), which
calculates global and local label correlation by label co-
occurrence and neighborhood information, respectively, and
adds label correlation to linear regression with the �1-norm
to learn label-specific features for each label.

LFGLC makes the following contributions:

1. LFGLC integrates both global and local label correla-
tion to select label-specific features. To the best of our
knowledge, this is the first work to make reconstructed
features more discriminative.

2. Linear regression modeled by LFGLC can be simulta-
neously applied to multi-label classification and feature
selection.

3. Experiments on multiple data sets with different sizes
and domains show that LFGLC outperforms several
multi-label classification and feature selection algo-
rithms in terms of both example-based evaluation met-
rics and label-based evaluation metrics.

The rest of this article is organized as follows. Section 2
reviews related work on label correlation and label-specific
features for multi-label learning. Section 3 describes LFGLC.

Experimental results and analysis are shown in Section 4.
Section 5 presents conclusions.

2 Related work

Our work is related to label correlation and label-specific
features for multi-label learning. We present related algo-
rithms on label correlation and label-specific features based
algorithms.

2.1 Label correlation

Making full use of label correlation is a major research
direction of multi-label classification. [16–19, 25]. Label
correlation strategies can be divided into three types [26]:
first-order, second-order and high-order. First-order algo-
rithms ignore label correlation completely, including BR
[27], LIFT [11] and MLkNN [28]. Second-order algorithms
consider pairwise label correlation, such as CPNL [29], PCT
[30] and GBRAML [31]. High-order algorithms consider
the correlation between more than two labels, such as CC
[20], BNCC [32] and MLMF [33].

In terms of relation extraction or the use of perspective,
label correlation based algorithms can be categorized as
global, local, and global-local combined relation algorithms.

2.1.1 Global relation algorithm

A global relation algorithm, such as CC [20], CLSF [21]
and A-GCN [22], assumes that label correlation is global.
In other words, the correlation between labels exists in all
training data. For example, CC puts all labels in a random
sequence. Binary classifier outputs of previous labels are
added to a label’s original feature space as new features, and
the corresponding binary classifiers are learned in accor-
dance with this sequence. Label correlation is constructed
on all training data. A-GCN uses a label graph to learn
global label correlations with word embeddings.

2.1.2 Local relation algorithm

In a local relation algorithm, label correlation exists in
part of the training data. For example, “apple” and “fruit”
have a strong relation in gourmet magazines, while “apple”
and “digital equipment” often occur together in technical
journals. Obviously, the dependence relations of labels only
exist in some data in this case. If such label correlation is
extracted or used from the global perspective, unnecessary
and even misguided constraints will be imposed over
all instances, which will decrease the performance of
classification models. LPLC [15] considers label correlation
locally, finding the positive and negative label correlation of
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each label for all training instances. Then, for each testing
instance, the maximum posterior probability is used for
prediction based on the local positive and negative label
correlation of its k-nearest neighbors. Ma [23] divides the
training data into several groups, whose instances share
different label correlations.

2.1.3 Global-local combined relation algorithm

Global-local combined relation algorithms consider both
global and local label correlation to establish a high-
efficiency classification model. For example, GLOCAL
[34] learns both global and local label correlation by
manifold regularization. GLkEL [35] selects the most
correlated k-labelsets from label space by approximated
joint mutual information to evaluate global label correlation.
Then, it clusters the training data into different groups and
evaluates the local label correlation in each group.

2.2 Label-specific features

Multi-label algorithms often use identical feature expres-
sions to build classification models for different labels. In
other words, different labels use the same feature matrix
in the learning process. However, the LIFT [11] algorithm
assumes that labels have unique expressions. The concept
of label-specific features has evident differences from the
concept of traditional feature compression.

At present, there are twomain methods to construct label-
specific features. One is feature extraction and the other is
feature selection. The former one is represented by LIFT,
while the latter one is represented by LLSF [36].

2.2.1 Feature extraction based label-specific features

LIFT [11] extracts label-specific features for each label
through feature extraction. Specifically, instances related
to any label are viewed as positive instances, and other
instances as negative. K-means [37] is utilized to cluster
on the positive and negative instance sets. Distances from
each original instance to the centers of these clusters
are calculated, which form the new features. Next, binary
classifiers are learned on these label-specific features. For
different labels, distributions of positive and negative instances
are different so that the reconstructed label-specific
features vary from each other. Extensive experiments have
demonstrated the effect of LIFT, resulting in the proposal of
a number of algorithms.

Based on LIFT, LF-LPLC [14] integrates label-specific
features and local pairwise label correlation, where the
specific features of each label are expanded by uniting the

related features from correlated labels. This enriches the
labels’ semantic information and somewhat solves the class-
imbalance problem. LETTER [12] extracts label-specific
features from instance and feature levels. From the instance
level, sparse and prototype constraints are used to find
more discriminative instance centers. From the feature level,
clustering is utilized to find feature centers from the original
features of positive and negative instances. The final label-
specific features are composed of centers extracted from the
above two levels. Related work includes LSDM [13], ELIFT
[38], and so on.

2.2.2 Feature selection based label-specific features

The above algorithms all adopt feature transformation to
extract label-specific features. However, the LLSF algo-
rithm proposed by Huang [36] learns label-specific features
through a feature selection technique. LLSF assumes that
each label is only related to some of the original features,
and it expresses such sparsity in linear regression with �1
constraint. Nonzero regression parameters indicate that the
corresponding features are label-specific, and other features
are not.

The objective function of LLSF assumes that strongly
correlated labels have more label-specific features than
weakly correlated labels. Since LLSF implements feature
selection through linear regression, it can learn binary
classification models based on the selected features. MCUL
[39] also utilizes �1-norm regularization on the coefficient
matrix to learn sparse label-specific features, so as to deal
with missing and completely unobserved labels. NSLSF
[40] considers that the sparsity assumption does not hold
in some applications, and proposes a feature selection
based approach to select label-specific features. It translates
logic labels to numeric labels to convey more semantic
information and embeds the label correlation. Linear
regression with �1 constraint describes the discrimination of
label-specific features based on the numeric labels.

3 Proposed algorithm

Given a multi-label data set D = {(xi , yi )|1 ≤ i ≤ n} with
n instances, we denote feature set X = [x1, x2, . . . , xn]T ∈
Rn×d , where d is the dimension of features. And let Y =
[y1, y2, . . . , yn]T ∈ {0, 1}n×l denotes label set, where l is
the number of labels. If yij = 1, instance xi belongs to
label yj , and otherwise, yij = 0. LFGLC aims to use linear
regression with the �1-norm to find label-specific features
for each label, based on which it transforms multi-label
classification to several binary classifications. To further
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improve the performance of classification, both global and
local label correlation are taken into account. Label-specific
features selected from the original features can achieve
higher discriminability for classification.

As shown in Fig. 1, the main process of LFGLC can
be summarized as the following three parts: global label
correlation calculation, local label correlation calculation
and label-specific feature selection. In global label correla-
tion calculation, pairwise label correlation is calculated by
the label co-occurrence frequency. In local label correla-
tion calculation, the label correlation is calculated according
to the instance and its neighbors. In label-specific feature
selection, linear regression with the �1-norm on parameters
and constraints on label correlations is employed to select
features for each label.

3.1 Label-specific feature selection

As mentioned, label-specific features are more discrimina-
tive, so as to construct effective classification models for
all labels. We use linear regression with the �1-norm to
find label-specific features, as introduced in LLSF [36]. The
objective function can be formulated as:

min
W L(W) + R(W), (1)

where L(W) is formulated as:

L(W) = 1

2

n∑

i=1

‖xiW + b − yi‖2, (2)

where W = [w1, w2, . . . , wl] ∈ Rd×l denotes the coeffi-
cient of linear regression, and b = [b1, b2, . . . , bl] ∈ R1×l

denotes the bias of linear regression. The bias b can be
added to the coefficient W when the constant value 1 is

added as an additional dimension to feature set X. Then
L(W) can be simplified to:

L(W) = 1

2

n∑

i=1

‖xiW − yi‖2

= 1

2
T r((XW − Y )T D(XW − Y )),

(3)

where D is a diagonal matrix and its diagonal element dii is
formulated as:

dii = 1

‖xiW − yi‖2
. (4)

To select features for each label, the �1-norm is added to
the coefficient W ,

R(W) = ‖W‖1, (5)

and can make the coefficient W sparse. For each
wi = [wi1, wi2, . . . , wid ]T , the value of wij indicates
the discriminability of the j-th feature to label yi . If wij=0,
then the j-th feature is not helpful to label yi , and otherwise
it can be regarded as a label-specific feature to label yi .

The above label-specific feature selection does not con-
sider label correlation. We next will utilize both global and
local label correlation to further constrain the coefficient.

3.2 Global label correlation calculation

As introduced in Section 2, labels do not occur indepen-
dently but present some dependence in multi-label prob-
lems. Exploiting label correlation can effectively improve
the performance of multi-label classifiers. Similar to LLSF
[36], we assume that two strongly correlated labels may
share more label-specific features than weakly correlated
labels. Then the inner product between the corresponding

Fig. 1 Global and local label correlation, label-specific features for
each label are represented in different colors. The thickness of the con-
nection between labels indicates the strength of correlation. Note: For

ease of reading and understanding of these images, please read the
corresponding online version of the paper (colors have been retained)
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coefficients of labels will be large when these labels are
strongly correlated, and otherwise it will be small. Here we
denote GC(W) as global label correlation, as shown in (6).

GC(W) = 1

2

l∑

i=1

l∑

j=1

cijw
T
i wj = 1

2
T r(WCWT ), (6)

cij = |yi�yj |
|yi ∪ yj | , (7)

where cij is the correlation coefficient between label yi and
label yj . y

i and yj are the i-th column and the j-th column
of Y . It can be seen from (7), the value of cij will be small
when there are more co-occurrence labels between yi and
yj , and otherwise it is large.

3.3 Local label correlation calculation

As discussed in Section 2, label correlation also exists in
some of instances. A classification model that considers
local label correlation can be more suitable to real-world
problems. Motivated by previous work [28], instance may
have more similar labels with its neighbors. The proposed
algorithm finds the k-nearest neighbors of each instance by
Euclidean distance firstly. Then in the neighborhood of an
instance, the probabilities of labels are calculated by (8).

N i = 1

k

k∑

i=1

yNi
, (8)

whereN i denotes the probabilities of labels in the neighbor-
hood of an instance, and yNi

denotes the labels of the i-th
neighbor. Based on (8), local label correlation LC(W) can
be formulated as:

LC(W) =
n∑

i=1

‖xiW − N i‖22

= ‖XW − N‖2F .
(9)

3.4 Optimization via accelerated proximal gradient

According to the definition of each term, we unify label-
specific feature selection and label correlation, and can
rewrite the whole objective function of LFGLC as:

F(W) = 1

2
T r((XW − Y )T D(XW − Y ))

+ α

2
T r(WCWT ) + β

2
‖XW − N‖2F + γ ‖W‖1,

(10)

where α, β and γ are nonnegative parameters that control
the contribution of each term. The objective function is a
convex optimization problem. To solve the nonsmoothness
caused by �1-norm, the accelerated proximal gradient
method is employed to optimize this objective function.

General accelerated proximal gradient method can divide
the objective function into the following two parts [43]:

min
W F(W) = f (W) + g(W), (11)

f (W) and g(W) are convex, but f (W) is smooth while
g(W) is nonsmooth. f (W) holds Lipschitz continuous
gradient: ‖∇f (W1) − ∇f (W2)‖ ≤ Lf ‖W1 − W2‖,
where Lf is the Lipschitz constant. f (W) and g(W) are
formulated as:

f (W) = 1

2
T r((XW − Y )T D(XW − Y ))

+ α

2
T r(WCWT ) + β

2
‖XW − N‖2F ,

(12)

g(W) = γ ‖W‖1. (13)

∇f (W) denotes the derivative of f (W) and it can be
calculated by:

∇f (W)=XT DXW−XT DY+αWC+β(XT XW−XT N).

(14)

Given W1 and W2, we have

‖∇f (W1) − ∇f (W2)‖2F
= ‖XT DX�W + α�WC + βXT X�W‖2F
≤ 3‖XT DX�W‖2F + 3‖α�WC‖2F + 3‖βXT X�W‖2F
≤ 3‖XT DX‖22‖�W‖2F + 3‖αC‖22‖�W‖2F
+ 3‖βXT X‖22‖�W‖2F
= 3(‖XT DX‖22 + ‖αC‖22 + ‖βXT X‖22)‖W‖2F ,

(15)

thus, the Lipschitz constant Lf can be calculated as:

Lf =
√
3(‖XT DX‖22 + ‖αC‖22 + ‖βXT X‖22). (16)

The pseudocode of the optimization of LFGLC is
summarized in Algorithm 1. Steps 6-12 are the iteration
process of the accelerated proximal gradient method.
Previous work [42] showed that for a sequence bt satisfying
b2t − bt ≤ b2t−1, the convergence rate can be improved to

O(t−2) when letting W(t) = Wt + b(t−1)−1
bt

(Wt − Wt−1),
where Wt is the coefficient W obtained at the t-th iteration.
The �1-norm can be solved by the soft-thresholding operator
Sε[w] in each iteration, and the step size ε of the soft-
thresholding operator is set to γ

Lf
in this optimization

process.
After learning the coefficientW , the prediction of the test

data Xt can be calculated by sign(St − τ). St = XtW , τ is
the threshold which is set to 0.5 in LFGLC. The pseudocode
of the test procedure is summarized in Algorithm 2.
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3.5 Discussion

Note that LFGLC is similar to LLSF [36] and JFSC
[41]. LLSF uses cosine similarity to calculate global label
correlation and the correlation among labels is added to
linear regression with the �1-norm to select label-specific
features for each label. Based on LLSF, JFSC adds a Fisher
discriminant-based regularization term to obtain a large
inter-class distance and a small inner-class distance for
classification. These algorithms perform competitively on
label-specific feature selection and classification, but they
neglect local label correlation. Different from them, LFGLC
is devoted to take both global and local label correlation
into consideration. Global label correlation is calculated by
the label co-occurrence frequency between label pairs, and

Table 1 Experimental data sets

Data set #Instance #Feature #Label Cardinality Domain

flags 194 19 7 3.392 images

cal500 502 68 174 26.044 music

emotions 593 72 6 1.869 music

genbase 662 1185 27 1.252 biology

medical 978 1449 45 1.245 text

image 2000 294 5 1.236 images

yeast 2417 103 14 4.237 biology

health 5000 612 32 1.662 text

corel5k 5000 499 374 3.522 images

arts 5000 462 26 1.636 text(web)

education 5000 550 33 1.461 text(web)

corel16k001 13766 500 153 2.859 images

local label correlation is calculated by each instance with its
neighbors. Both are added to linear regression with the �1-
norm to select more discriminative label-specific features
for multi-label classification.

3.6 Complexity analysis

The complexity of the optimization of LFGLC includes
initialization and iteration. In initialization, the step of
initializing coefficient W1 has complexity O(nd2 + d3 +
ndl + d2l). Step 2 calculates the global label correlation
matrix C, and it needs O(nl2). In step 3, the calculation
of N includes finding the k-nearest neighbors of each
instance and calculating the probabilities of labels in the
neighborhood, which needs O(n2d + nkd). In iteration,
step 5 calculates the diagonal matrix D, with complexity
O(ndl). The calculation of the Lipschitz constant Lf in
step 6 has complexity O(nd2 + d3 + l3). To calculate the
derivative of f (W) in step 8 has complexityO(nd2 +d2l +
ndl + dl2).

4 Experiments

4.1 Data sets

Experiments were conducted on 12 real-world multi-label
data sets, as described in Table 1. “Cardinality” is the
average number of labels of each instance in one data set.
All these data sets can be obtained from mulan1, lamda2,
and meka3.

1http://mulan.sourceforge.net/datasets.html
2http://lamda.nju.edu.cn
3http://meka.sourceforge.net
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4.2 Evaluationmetrics

For a given testing data set Dt = {(xi , yi )|1 ≤ i ≤ nt },
the ground-truth label of the i-th instance xi is represented
as yi ∈ {0, 1}l , and let ŷi ∈ {0, 1}l denotes the predicted
label of the i-th instance xi . There are 7 multi-label
evaluation metrics used for the evaluation of LFGLC. These
evaluation metrics can be divided into the following two
types: example-based evaluation metrics and label-based
evaluation metrics.

Example-based evaluation metrics:
Accuracy measures Jaccard similarity between ground-

truth and predicted labels:

Accuracy = 1

nt

nt∑

i=1

|yi ∩ ŷi |
|yi ∪ ŷi |

. (17)

Precision is the proportion of positive labels that are
predicted correctly:

Precision = 1

nt

nt∑

i=1

|yi ∩ ŷi |
|ŷi |

. (18)

Recall is the proportion of ground-truth positive labels
that are correctly predicted:

Recall = 1

nt

nt∑

i=1

|yi ∩ ŷi |
|yi |

. (19)

F1 evaluates the harmonic mean between Precision and
Recall:

F1 = 1

nt

nt∑

i=1

2 · Precision · Recall

P recision + Recall
. (20)

Exact-Match evaluates howmany times the predicted and
ground-truth labels are exactly matched:

Exact − Match = 1

nt

nt∑

i=1

|yi = ŷi | (21)

Label-based evaluation metrics: There are two metrics of
averaging across the labels:

Macro F1 = 1

l

l∑

j=1

F1(T Pj , FPj , T Nj , FNj ), (22)

Micro F1= 1

l
F1

⎛

⎝
l∑

j=1

TPj ,

l∑

j=1

FPj ,

l∑

j=1

TNj ,

l∑

j=1

FNj

⎞

⎠ ,

(23)

where T Pj , FPj , T Nj , FNj are the number of true pos-
itive, false positive, true negative, and false negative
instances with respect to label yj respectively.

4.3 Comparisonmethods

We compared the multi-label classification performance of
LFGLC with several state-of-the-art algorithms:

BR [27] transforms multi-label classification to several
binary classification tasks without considering label cor-
relation, where each binary classifier corresponds to one
label.

CC [20] puts all labels in a random sequence, and in
accordance with each label, learns the corresponding binary
classifier. For each label, the binary classifier outputs of its
previous labels are added as new features.

MLkNN4 [28] finds the k-nearest neighbors for each
instance in Euclidean space. The maximum posterior
probability of each label is used to estimate the probability
based on the number of neighbors belonging to each label.
The parameter k is set to 10.

Lasso [43] uses linear regression with the �1-norm to
select features from the original feature space according to
nonzero regression coefficients, while neglecting label cor-
relation. Parameter α is searched in {2−10, 2−9, . . . , 210}.

LLSF5 [36] uses cosine similarity to calculate pairwise
label correlation, which is added to linear regression with
the �1-norm to select label-specific features for each label.
Parameters α and β are searched in {2−10, 2−9, . . . , 210}. ρ
is searched in {0.1, 1, 10}.

Based on LLSF, JFSC [41] uses a Fisher discriminant-
based regularization term to achieve a large inter-class
distance and small inner-class distance for classification.
Parameters α, β and γ are searched in {4−5, 4−4, . . . , 45}.
η is searched in {0.1, 1, 10}.

Based on LLSF, NSLSF [40] translates logic labels to
numeric labels to convey more semantic information and
embed label correlations. Parameters α and β are same as
LLSF, ρ is set to 0.5.

The searching scales of parameters α, β, γ and η

in LFGLC are same as JSFC. The number of k-nearest
neighbors is set to 10.

BR, MLkNN, and Lasso are first-order algorithms that
do not consider label correlation; LLSF, JFSC, and NSLSF
are second-order algorithms with global label correlation;
and CC can be regarded as a high-order algorithm with
global label correlation. Specifically, Lasso, LLSF, JFSC,
and NSLSF are feature selection based label-specific fea-
tures algorithms. For fair comparisons, the parameters of
these algorithms are set according to the suggestions in
their original papers. LIBSVM [44] with a linear kernel
is employed as the base binary classifier for BR and CC,
and the parameter C is set to 1. For the sake of fairness,
the threshold of LFGLC is set to 0.5, the same as other

4source code: http://cse.seu.edu.cn/PersonalPage/zhangml/index.html
5source code: http://www.escience.cn/people/huangjun/index.html
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comparison algorithms. Of course, we can get an appropri-
ate value for the threshold of every algorithm with the use
of a tuning phase. In this paper, we mainly study the effect
of label correlations and label-specific features for multi-
label classification, so we will learn the threshold in the
next study.

4.4 Results of multi-label classification

The experiment used 5-fold cross-validation on each data
set to evaluate the performance of multi-label classification.
The average results of each algorithm on 12 data sets with
7 evaluation metrics are summarized in Tables 2 and 3. The
best result in a row is bolded. “↑” after a metric denotes
that a larger value indicates better performance. For each
evaluation metric, an “Ave.rank” row reports the average
rank value over all data sets for each algorithm. A smaller
rank indicates better performance. To more intuitively
reflect the average rank of these algorithms, the average
rank and overall average rank are depicted in Fig. 2.
According to the experimental results in Tables 2 and 3, the
observations are summarized as follows:

1. The proposed algorithm obviously outperforms the first-
order algorithms (BR,MLkNN, Lasso) on all evaluation
metrics, perhaps because LFGLC considers label
correlation in multi-label classification, which is
different from these first-order algorithms. Hence
the consideration of label correlation can effectively
improve multi-label classification performance.

2. Second-order (LLSF, JSFC, NSLSF) and high-order
(CC) algorithms considere global label correlation but
neglect local label correlation. LFGLC outperforms these
algorithms, which indicates the effectiveness of local
label correlation for multi-label classification. Com-
pared with similar algorithms (LLSF, JSFC, LFGLC),

the proposed algorithm can obtain more suitable regres-
sion parameters for classification.

3. On these evaluation metrics, LFGLC statistically per-
forms better on Accuracy, Precision, Recall, F1, Exact-
Match, Macro F1 and Micro F1 over all data sets.
This validates the superiority of the proposed algorithm.
It is worth mentioning that Precision and Recall are
generally contradictory. Because LFGLC considers the
possibility that each instance may have labels similar to
its neighbors, there will be more labels appearing in the
prediction. Hence it performed better at Recall.

Figure 2 shows the overall average rank of algorithms,
the order of all algorithms can be ranked as LFGLC	
NSLSF	 JFSC	 LLSF	 CC	 Lasso	 BR	 MLkNN.
In summary, the proposed algorithm performs competi-
tively in multi-label classification against other comparison
algorithms.

To analyze the statistical performance among these algo-
rithms systematically, Friedman test [45] was conducted
here. Table 4 summarizes the Friedman statistics FF and
the critical value for each evaluation metric. This shows
that the null hypothesis of equivalent performance among
these comparison algorithms is rejected at significance level
α = 0.10 for each evaluation metric.

To analyze the relative performance among these algo-
rithms, the post-hoc Nemenyi test [45] was conducted and
LFGLC is treated as the control algorithm. The performance
between control algorithm and one comparison algorithm
will be significantly different if their average ranks differ by
at least one CD (CD = 2.780 in this paper). Figure 3 shows
the CD diagrams on each evaluation metric. In each subfig-
ure, any comparison algorithm whose average rank is within
one CD to that of LFGLC is connected, and otherwise it
is considered to have significantly different performance
against LFGLC.

(a) Average rank (b) Overall average rank

Fig. 2 Results of the rank of all algorithms. Note: For ease of reading and understanding of these images, please read the corresponding online
version of the paper (colors have been retained)
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Fig. 3 Nemenyi test. The performance of those algorithms which are not significantly different from LFGLC are connected (CD=2.780 at 0.10
significance level)

4.5 Results of multi-label feature selection

To evaluate the performance of feature selection for multi-
label learning, the proposed algorithm was compared with
4 feature selection based label-specific features algorithms
(Lasso, LLSF, JSFC, NSLSF) on 5 multi-label data sets
(cal500, emotions, medical, image, education) because of
the space limitation. For each label, some features are selected
from the original features according to the corresponding
top weights from regression coefficients.

In the experiment, 5-fold cross-validation was conducted
on each data set to evaluate the results in terms of Accuracy,
F1, Exact-Match, Macro F1 and Micro F1 for all algo-
rithms. Because F1 is the harmonic mean of Precision and
Recall, for simplicity, we only select F1 to evaluate the per-
formance. The parameters of these algorithms are set the
same as for multi-label classification. The top {10%, 20%,
. . . , 50%} of the original features are taken as the selected
features. LIBSVM [44] with a linear kernel is employed as
the base classifier for all algorithms. Figure 4 displays the
average results of algorithms over each data set, and using
“ALL” as a baseline, without selecting from the original fea-
tures. According to the experimental results, the following
observations can be made:

1. All feature selection algorithms generally outperform
the baseline “ALL”, which indicates that feature
selection can effectively improve the performance of
multi-label classification to some extent.

2. Label-specific features learned from LFGLC gener-
ally perform better than other comparison algorithms.
Specifically, Lasso conducts feature selection without
considering label correlation, LLSF, JFSC and NSLSF

learn label-specific features with global label correla-
tion. The results indicate that considering label corre-
lation can be useful for feature selection and consider-
ing both global and local label correlation can further
improve the performance of feature selection.

3. For different data sets, the performance of feature selec-
tion presents different change trends. The best perfor-
mance for most data sets is obtained for some interme-
diate number of selected features, perhaps because few
selected features will cause some important features
missed, and a large number of selected features may
introduce useless features, that degrade performance.

4.6 Global and local label correlation

To intuitively show the global and local label correlation
learned by LFGLC, the global pairwise label correlation
matrix and probabilities of labels in the neighborhood

Table 4 Friedman statistics FF and the critical value at 0.10
significance level in terms of each evaluation metric

Evaluation metric FF Critical value

Accuracy 20.3646

Precision 2.5683

Recall 19.5354

F1 10.2219 1.7963

Exact-Match 3.7793

Macro F1 52.1148

Micro F1 21.9060
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learned from the Image data set are depicted in Fig. 5. We
can observe from Fig. 5(a) that “mountains” is correlated
with “trees”, and “sea” is correlated with “sunset” globally.
In local label correlation (Fig. 5(b)), we randomly select
10 neighborhoods, whose label correlations are different.
For example, “mountains” is correlated with “sea” in
neighborhood 7, but “sea” is correlated with “sunset” in

neighborhood 8. These further illustrate the complexity of
label correlation.

4.7 Parameter sensitivity analysis

The objective function of LFGLC has several terms, whose
contributions are controlled by these parameters (α, β,

Fig. 4 Results of the performance of feature selection. Note: For ease of reading and understanding of these images, please read the corresponding
online version of the paper (colors have been retained)
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Fig. 5 Global and local label correlation on Image data set. The label
index from small to large represents “desert”, “mountains”, “sea”,
“sunset” and “trees”. Note: For ease of reading and understanding of

these images, please read the corresponding online version of the paper
(colors have been retained)

γ ). The performance of LFGLC will be affected when
the values of these parameters are changed. We conducted
parameter sensitivity analysis of LFGLC on the yeast data
set. Parameters corresponding to the best performance are
first selected. Then the value of one parameter is fixed,
and the values of the other two parameters are varied in
{4−5, 4−4, . . . , 45}.

Figure 6 shows the average results of 5-fold cross-
validation in terms of Accuracy, F1, Exact-Match, Macro
F1, Micro F1. It can be seen that the best performance
of Accuracy, F1 and Micro F1 is mostly obtained at the

endpoint of the coordinate plane. But for evaluation met-
ric Exact-Match and Macro F1, some intermediate val-
ues of parameters achieve the best performance. Exper-
imental results show that the performance of LFGLC is
sensitive to parameters change in some intervals, and met-
rics generally achieve the best performance with different
parameter values. Thus, to obtain the best performance on
a certain data set, we suggest finding parameter values
by searching on the validation set. Searching parameters
will obviously cost much time especially for large-scale
data sets.

Fig. 6 Parameter sensitivity
analysis of LFGLC. Note: For
ease of reading and
understanding of these images,
please read the corresponding
online version of the paper
(colors have been retained)
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5 Conclusion

In this paper, we propose a new label-specific feature selec-
tion and multi-label classification algorithm LFGLC, which
considers the complexity of real-world label correlation.
Both global and local label correlation are taken into
account to learn more discriminative label-specific features.
For each label, label-specific features are selected from
original features according to the nonzero regression coef-
ficients. Experimental results show that combining global
and local label correlation can be useful for multi-label
learning. The proposed algorithm achieves a competitive
performance against several algorithms in multi-label clas-
sification and feature selection. Considering that correla-
tions between labels are not equal, we will try to find more
compatible label correlation for multi-label learning in our
future work.
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