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Abstract
Action segmentation involves locating and classifying human action segments in an untrimmed video, which is very important
for understanding human activities. Segmenting actions in the video is a very challenging task due to the problem of ambiguous
frames. Previous studies on this topic usually required additional inputs or constructed highly complicated network structures to
achieve good performance. However, these additional inputs are not easy to obtain, and complicated network structures increase
the costs of computation and storage. Hence, to mitigate these problems, we propose a bottom-up improved multistage temporal
convolutional network (BUIMS-TCN) for action segmentation. Specifically, we first propose a smoothed dilated 1D convolution
to learn the inherent local temporal dependencies. Second, we design an adaptive temporal fusion module (ATFM), which is a
simple yet effective multiscale temporal-context information fusion module, to obtain better semantic feature representations.
Finally, we introduce a new loss function to solve the imbalance between easy and hard samples. To the best of our knowledge,
this is the first time that the above improvements have been incorporated into the action segmentation task. Extensive experi-
ments verify that our model significantly outperforms the state-of-the-art baselines on three challenging benchmark datasets:
Georgia Tech Egocentric Activities (GTEA), 50Salads, and the Breakfast dataset.

Keywords Action segmentation . Smoothed dilated 1Dconvolution .Adaptive temporal fusionmodule . Temporal convolutional
network

1 Introduction

The automatic analysis of human actions in videos plays a
critical role in various applications, such as anomaly detection
[1, 2], human-computer interactions [3], intelligent services
[4, 5], vision understanding [6], and intelligent control [7].
In the past few years, most studies focused on recognizing
human actions in short, trimmed videos, and they have
achieved great success due to the development of deep learn-
ing and large datasets [8–15]. However, videos in the real
world usually contain multiple action segments, and they are
untrimmed and relatively long [16]. To better understand hu-
man behaviors in these long videos, it is necessary to deter-
mine when and which categories of action segments occur
sequentially in such a video. Hence, action segmentation has
attracted more and more attention [17]. Action segmentation
aims to simultaneously detect and classify each action seg-
ment in a video in time [18]. To obtain a good action segmen-
tation result, activities consisting of dozens of actions in a long
video should be effectively modeled.

Previous action segmentation methods, which are com-
monly based on sliding windows [19, 20], segmental models

[21, 22] and recurrent models [23], cannot capture long-range
temporal patterns and latent dependencies effectively. In ad-
dition, they are usually difficult to interpret and correctly train
[18]. To relieve these drawbacks, temporal convolutional net-
work (TCN) [18]-based action segmentation methods are de-
veloped. TCN-based methods contain a hierarchy of temporal
convolutional filters (e.g., dilated 1D convolution) that have a
large temporal receptive field with fewer parameters. Hence,
TCN-based methods can not only model temporal patterns in
long videos but also have high efficiency and require less
memory.

The multistage temporal convolutional network (MS-
TCN) [24] is a recently proposed state-of-the-art method
based on a TCN and has become a widely used backbone
network for action segmentation tasks. MS-TCN is composed
of a series of dilated 1D convolutions and residual connection
structures, which can expand the temporal receptive field with
a small number of parameters and be applied to the full tem-
poral resolution of a video. Though MS-TCN and some other
TCN-based action segmentationmethods can achieve exciting
action segmentation results [1, 16], they still have two draw-
backs: over-segmentation and ambiguous boundaries [1].
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Over-segmentation means that incorrect predictions occur
inside an action segment (as shown in Fig. 1b), and this is
commonly caused by visual features in one action segment be-
ing too similar to those in other action segments. An ambiguous
boundary indicates that an incorrect prediction occurs at the start
or end of an action segment (as shown in Fig. 1d), which is
caused by visual features of the boundary of two adjacent action
segments changing too little (e.g., the action segment label sud-
denly changes from ‘add_oil’ to ‘add_vinegar’ at the boundary
of two adjacent actions, but the visual features of these adjacent
frames are gradually transformed). In this paper, we collectively
refer to over-segmentation and ambiguous boundaries as the
ambiguous frame problem for convenience.

When segmenting different actions in a video, the labels of
informative frames are relatively easy to predict, while ambig-
uous frames are difficult to classify so that they will directly
affect the prediction accuracy of the action segmentation mod-
el. Some existing studies [1, 16, 25] alleviate the ambiguous
frame problem bymanually adding additional labels to videos,
designing complex input features, or adding more complex
modules/branches to the architecture of MS-TCN, but they
will highly increase the model complexity and the computa-
tional cost. That is, these works focus on introducing more
information or more modules into MS-TCN to mitigate the
ambiguous frame problem. To our knowledge, no work con-
siders how to improve the underlying structure of MS-TCN to
solve the ambiguous frame problem without an additional
cost.

The underlying architecture ofMS-TCNmainly consists of
dilated 1D convolutions, residual connections and a loss func-
tion. In this paper, we first analyze the drawback of each
module of MS-TCN that leads to the ambiguous frame prob-
lem in action segmentation results. Then, we provide corre-
sponding improvements to relieve each drawback.

Chen et al. [26] proposed dilated convolution (also known
as atrous convolutions), which has attracted much attention
because it can expand the receptive field with fewer parame-
ters. However, dilated convolution will yield grid artifacts [27,
28]. Grid artifacts generally refer to losing local spatial infor-
mation when adopting dilated 2D convolutions to process 2D
information (e.g., images). We believe that the problem of
grid artifacts also exists in TCNs that use dilated 1D convolu-
tions to process temporal information, and we term this kind
of grid artifact as the temporal grid artifact. Some related
works [27, 29, 30] have attempted to solve the problem of
grid artifacts. However, few studies focused on solving the
problem of temporal grid artifacts in temporal sequence
modeling tasks (e.g., action segmentation).

To further clarify the concept of temporal grid artifacts, we
first introduce the valid feature ratio (VFR) [30]. VFR is the
ratio of the number of feature vectors involved in the compu-
tation to the total number of feature vectors in the convolution
patch. When directly adopting dilated 1D convolutions to ex-
tract the temporal sequence context information, VFR usually
decreases exponentially with the increase of the number of
convolution layers, which will result in losing the local

Fig. 1 Illustration of the ambiguous frame problem: over-segmentation
and an ambiguous boundary. a–e Frames selected from one video
containing several sequential action segments, where the informative
frame represents the frame that can be correctly classified. b Over-
segmentation occurs in the ‘add_oil’ action segment; that is, some

intermediate frames in the ‘add_oil’ action are incorrectly predicted as
‘add_vinegar’. dAn ambiguous boundary appears at the beginning of the
‘add_vinegar’ action segment, which means that some frames at the
boundary of the ‘add_oil’ and ‘add_vinegar’ actions are not correctly
classified
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temporal information and the dependence among the long-
range temporal sequence information. As shown in Fig. 2, in
convolution layer 2, the kernel size, dilation rate and receptive
field of the dilated 1D convolution are 3, 2 and 5, respectively.
Hence, the VFR of this dilated 1D convolution is 3/5, which
means that the actual receptive field is 3 and the number of
local temporal information loss is 2. In convolution layer 3,
the VFR of the dilated 1D convolution is 3/9, which means the
actual receptive field is still 3 but the number of local temporal
information loss increases to 6. The phenomenon of local
temporal information loss is termed temporal grid artifacts,
which is one of the main factors that cause the ambiguous
frame problem in action segmentation. Inspired by [29], we
propose a smoothed dilated 1D convolution (SC), which in-
troduces a smoothing operation into dilated 1D convolution,
to mitigate the temporal grid artifacts caused by dilated 1D
convolution.

Regarding the residual connection structure, Yu et al. [31]
mentioned that the residual structure composed of dilated con-
volutions passes the high-frequency signals of the previous
layer backward, making the problem of grid artifacts more
serious. To address this problem, we propose an adaptive tem-
poral fusion module (ATFM) inspired by [32, 33]. ATFM can
adaptively integrate the temporal information of different scales
and reduce grid artifacts caused by residual connections.

In a long and untrimmed video, there is a large gap between
the numbers of informative frames and ambiguous frames, as
shown in Fig. 1. The ambiguous frame can be seen as a hard
sample that is difficult to correctly recognize, and the infor-
mative frame can be seen as an easy sample that is easily
correctly recognized. The loss function in MS-TCN has not
considered the imbalance of the numbers of easy and hard

samples. This causes the large numbers of easy samples to
overwhelm the classifier during the training, thereby
degrading the network performance. To alleviate this prob-
lem, we introduce the focal loss [34] into the MS-TCN to
construct our network. The focal loss can automatically re-
duce the weights of easy samples during the training process
and make the model quickly focus on hard samples.

In this paper, we combine the abovementioned three im-
provements to construct an end-to-end trained network named
bottom-up improved multistage temporal convolutional net-
work (BUIMS-TCN). BUIMS-TCN requires the same inputs
asMS-TCN and can maintain a similarly lowmodel complex-
ity. We evaluate BUIMS-TCN on three challenging action
segmentation datasets: the Georgia Tech Egocentric
Activities (GTEA) [35], 50Salads [36], and Breakfast [37]
datasets. A large number of qualitative and quantitative exper-
iments show that BUIMS-TCN can significantly mitigate the
ambiguous frame problem. In summary, our work makes four
main contributions:

1) We propose an SC to maintain the exponential expansion
of the receptive field without the loss of information.

2) We devise an ATFM that can more effectively integrate
multiscale temporal context information and reduce grid
artifacts caused by residual connections.

3) We introduce a new loss function to solve the problem of
the imbalance between easy and hard samples, which
makes the model focus on hard-to-recognize ambiguous
frames during the training process.

4) To the best of our knowledge, this work is the first explo-
ration of the ambiguous frame problem caused by MS-
TCN’s underlying structure. Our proposed BUIMS-TCN

Fig. 2 Illustration of temporal grid artifacts. Taking a single-stage TCN
as an example, the cuboid represents a dilated 1D convolution. In
convolution layer 1, the kernel size is 3, and the dilation rate is 1. In
convolution layer 2, the kernel size is 3, and the dilation rate is 2. By
analogy, in the convolution of layer i, the kernel size is 3, and the dilation
rate is 2i-1. The red circles represent the features covered by a nonzero

value in dilated convolution filters during the computation process, and
the green circles represent the features covered by zero. The brown circles
represent the remaining feature vectors that need to be computed for each
layer. As the number of layers increases, the VFR decreases, and more
local temporal information (the features covered by zero in dilated
convolution filters) is lost, which leads to temporal grid artifacts
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is end-to-end trained and requires no additional costs
compared to MS-TCN. Extensive experiments demon-
strate that BUIMS-TCN can achieve significant improve-
ments over the state-of-the-art methods on the three chal-
lenging action segmentation datasets.

2 Related works

2.1 Action segmentation

With successful deep learning (DL) applications in the fields
of image classification [38] and natural language processing
[39, 40], considerable progress has been achieved in DL-
based action segmentation tasks. TCNs [18] is a famous DL
method, and the emergence of TCNs is a milestone in the field
of action segmentation. Many researchers adopt TCN-based
models for temporal action segmentation [23, 41, 42]. These
models can capture long-range dependencies across frames
without consuming massive labor costs and computing re-
sources, which avoids the disadvantages of the models based
on recurrent neural networks (RNNs) [43–45], sliding win-
dows [19, 20] and other methods [46–48].

The recently proposed MS-TCN [24] is a state-of-the-art
multistage TCN. Due to the good performance of MS-TCN, a
lot of action segmentation studies [1, 16, 25] regard MS-TCN
as a backbone network and add some additional manual la-
bels, inputs, or more complicated network structures/branches
to solve the ambiguous frame problem. For example, Chen
et al. [16] proposed a self-supervised temporal domain adap-
tation (SSTDA) method, which contains two self-supervised
auxiliary tasks (binary and sequential domain prediction) that
are jointly aligned and embedded in the cross-domain feature
space of local and global temporal dynamics. Wang et al. [1]
proposed a dual-branch structure containing a stage cascade
and a barrier generation module to solve the ambiguous frame
problem. The stage cascade repeatedly inputs features into
each stage, while the barrier generation module evaluates the
boundary confidence and finally aggregates two branches by
local barrier pooling. Ishikawa et al. [25] proposed a model
consisting of an action segmentation branch (ASB) and a
boundary regression branch (BRB). The BRB requires manu-
al annotation of the ground truth of the action boundaries to
participate in the training process, and the action boundaries
predicted by the BRB refine the output from the ASB to mit-
igate the ambiguous frame problem.

The above MS-TCN based methods have obtained good
action segmentation results, but to our knowledge, no research
designs a new model based on analyzing the relationship be-
tween MS-TCN’s underlying structure and the ambiguous
frame problem. Hence, how to solve the ambiguous frame
problem based on improving the underlying structure of

MS-TCN is the main motivation of this paper and the main
differences between our work and the abovementioned works.

2.2 Grid artifacts in dilated convolutions

Dilated convolution is widely used in deep convolutional neu-
ral networks (DCNNs) for 2D image processing, such as se-
mantic image segmentation [26, 32] and object detection [49,
50]. Dilated convolution can expand the receptive field with-
out additional parameters, but it has the problem of grid arti-
facts. Some existing solutions [27–31] have been proposed to
address the grid artifacts problem. For instance, Wang et al.
[27] proposed a hybrid dilated convolution (HDC), which
compensates the local information of a single dilated convo-
lution by adopting multiple dilated convolutions with the dif-
ferent dilation rates, and then integrated dense upsampling
convolution (DUC) is used to restore the resolution of image
segmentation. Yu et al. [31] added some traditional convolu-
tion blocks after the dilated convolution layer, and Hamaguchi
et al. [28] added several dilated convolution layers with a
decreasing dilation rate to alleviate the grid artifacts problem.
These degridding methods tried to avoid losing local spatial
information in a single dilated convolutional layer by adding
different blocks in dilated convolutional layers, but the com-
putational cost will increase exponentially with the number of
dilated convolutional layers. Different from these studies,
Wang and Ji [29] proposed two simple and effective
degridding methods, which solve grid artifacts by smoothing
the dilated convolution operation itself. Wu et al. [30] pro-
posed a Kronecker convolution, which first adopts the
Kronecker product expansion convolution kernel to consider
the partial features neglected by dilated convolutions and then
designs a tree structure to fuse the multiscale Kronecker con-
volutions. The abovementioned methods have achieved good
performances, but methods [27, 28, 31] dramatically increase
the computational cost. Method [30] does not greatly increase
the computational cost, but it requires presetting a parameter
to determine the shape of the convolution. Method [29] is a
relatively good method among those mentioned.

The above methods [27–31] focus on relieving spatial grid
artifacts in dilated 2D convolutions, rather than temporal grid
artifacts in dilated 1D convolutions. Therefore, to alleviate
temporal grid artifacts, we are inspired by [29] and propose
an SC. To the best of our knowledge, this is the first time that
temporal grid artifacts have been considered in action segmen-
tation from the perspective of dilated 1D convolution.

2.3 Multiscale feature fusion

In the field of image segmentation, the full convolutional net-
work (FCN) [51] has a relatively good performance.
Therefore, many segmentation methods have been proposed
based on the architecture of FCN, which are mainly divided
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into two categories: dilated FCNs [26, 32, 52, 53] and
encoder-decoder networks [54–57].

Dilated FCNs adopt dilated convolution to maintain the
receptive field and combine multiscale context modules to
process high-level semantic features. For instance, Chen
et al. [32] proposed atrous spatial pyramid pooling (ASPP),
which employs parallel atrous convolutional layers with mul-
tiple dilation rates to capture multiscale contextual informa-
tion. Zhang et al. [53] proposed a context-encoding module to
capture global contextual information.

Encoder-decoder networks are composed of two parts—an
encoder and a decoder. The encoder extracts multilevel feature
maps, which are then combined with features processed by the
decoder to produce the final result. Ronneberger et al. [55]
introduced a skip connection to construct U-Net, which em-
ployes an encoder to learn features and uses the activation of a
corresponding decoder to gradually restore spatial informa-
tion. Lin et al. [56] proposed a generic multipath refinement
network (RefineNet) that first concatenates features extracted
by multiple windows with different sizes, then fuses them
with the learnable weights. Chen et al. [57] combined the
advantages of encoder-decoder networks and dilated FCNs,
specifically, they employed a decoder to replace spatial pyra-
mid pooling to refine segmentation results.

MS-TCN is a dilated FCN that utilizes a residual connec-
tion structure to fuse temporal contextual information. Yu
et al. [31] pointed that the residual structure composed of
dilated convolutions (called a dilated residual structure) passes
the high-frequency signal from the previous layer by the same
weight, which makes the temporal grid artifacts more serious.
However, to the best of our knowledge, there is no relevant
research on how to improve the dilated residual structure to
decrease temporal grid artifacts. In this paper, we propose an
ATFM that can adaptively fuse multiscale temporal context
information, thereby greatly alleviating the temporal grid arti-
facts and ambiguous frame problem brought about by the
dilated residual structure.

2.4 Sample imbalance

Sample imbalance is very common in the field of object de-
tection. For instance, the object detection methods including
one-stage detectors [58–60] and two-stage detectors [61–63]
will first detect a large number of candidate positions of ob-
jects in an image, but only a few positions contain real objects.
Hence, the number of negative samples (candidate positions
are the background) is much larger than the number of posi-
tive samples (candidate positions contain objects). In general,
negative samples are easily classified and do not provide
much useful information to train the model, but due to a large
number of negative samples, negative samples will dominate
the training process, which makes the network biased toward
identifying these easily classified negative samples while

ignoring difficult-to-classify positive samples [34]. This re-
sults in network performance degradation. To solve this prob-
lem, some studies [64, 65] implement online hard example
mining (OHEM) by sampling hard samples during training
or utilizing more complex sampling/reweighting schemes. Li
et al. [66] proposed a gradient harmonizing mechanism
(GHM), which measures the distribution of easy and hard
samples according to a gradient. Lin et al. [34] proposed a
new loss function named focal loss that prevents easily clas-
sified negative samples from overwhelming the model during
the training process. Focal loss solves the imbalance between
easily and difficultly classified samples by reshaping the stan-
dard cross-entropy loss to automatically reduce the weight of
easily classified samples and make the model focus on diffi-
cultly classified samples.

The loss function adopted in MS-TCN does not consider
the serious problem of the sample imbalance. In this paper, we
introduce focal loss [34] into our proposed network. Extensive
experiments show that adding focal loss can alleviate the
problem of sample imbalance, enabling the model to effec-
tively identify ambiguous frames.

3 Our work

In this section, we introduce the details of our proposed
BUIMS-TCN. The architecture of BUIMS-TCN is shown in
Fig. 3. In BUIMS-TCN, we first propose an SC to learn local
temporal dependencies for solving the ambiguous frame prob-
lem. Then, we design an ATFM to adaptively fuse multiscale
context information and relieve the defect of residual connec-
tions, which can further alleviate the ambiguous frame prob-
lem. Finally, we adopt a new loss function to focus on mining
the information of hard samples (difficult-to-classify sam-
ples), which can solve the ambiguous frame problem caused
by the imbalance between the numbers of easy and hard sam-
ples. Our proposed BUIMS-TCN can be trained end-to-end
without additional labor costs or complicated network struc-
tures/branches, and only a few parameters are needed to be
optimized to obtain the best performance. In addition, it is
worth noting that all the modules of BUIMS-TCN are divisi-
ble and plug-and-play; hence, our modules can be easily
transplanted for other tasks.

3.1 Smoothed dilated 1D convolution

Dilated convolutions [26] can effectively expand the receptive
field of the given convolution filter without increasing the
number of parameters and computational costs. Dilated con-
volution has received extensive attention in the field of deep
learning, but Wang and Ji [29] pointed that there are no de-
pendencies among the input or output units in a dilated con-
volution because neighboring units in the next layer are
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related to totally different sets of units in the previous layer,
which leads to the problem of grid artifacts. In dense predic-
tion tasks such as image segmentation, grid artifacts will result
in losing local spatial information and lacking contextual in-
formation during training.

The recently proposed MS-TCN is composed of a series of
dilated 1D convolutions. We believe that grid artifacts also
exist in action segmentation based on MS-TCN, and we call
them temporal grid artifacts. In the previous sections, we have
clearly illustrated that temporal grid artifacts are one of the
main factors that cause the ambiguous frame problem.
Hence, to alleviate the temporal grid artifacts, we propose a
smoothed dilated 1D convolution (SC) operation. In the fol-
lowing text, we first briefly introduce dilated 1D convolution
and then give the details of our proposed SC.

For a dilated 1D convolution with a filter w of size k, its
output Z at the position i is defined as:

Z i½ � ¼ ∑k
s¼1 f iþ r � s½ �w i½ � ð1Þ

where f represents the 1D input and r represents the dilation
rate. When r = 1, the dilated 1D convolution degenerates into
a standard 1D convolution. To intuitively understand dilated
1D convolution, we can regard the dilated 1D convolution as
inserting r − 1 zeros between the two adjacent weights ofw in
the 1D convolution. Therefore, the receptive field of the dilat-
ed 1D convolution becomes r × (k − 1) + 1.

Inspired by [29], we adopt separable and shared operations
to smooth the dilated 1D convolution to enhance the dependen-
cies between the local temporal features, which can effectively
alleviate the temporal grid artifacts. “Separable” refers to the
separable convolution from [67], and “shared” means that the
weights in the convolutions for all channels are shared [29].
Specifically, a separable and shared convolution with a kernel
size of (2r − 1) is inserted before the dilated 1D convolution,
thereby adding temporal dependencies among the feature maps
produced by periodic subsampling [29]. The smoothing

operation involves only a constant parameter (2r − 1) that is
independent of the number of channels so that the increased
computational cost can be ignored. Figure 4 shows the structure
of one SC with the kernel size of 3 and the dilation rate of 2.

Next, we further introduce the details of separable and
shared operations in the SC. Figure 5 shows the separable
and shared operations, and Fig. 6 shows the “smoothing pro-
cess” of the SC.

In Fig. 5, we take the inputs and outputs of 4 feature chan-
nels as an example. The separable convolution operation in-
cludes 4 different 1D convolutions in total, with one convo-
lution for each channel, while the separable and shared con-
volution operation only includes one 1D convolution shared
among all channels.

In Fig. 6, the white boxes in the dilated 1D convolutions
indicate that the weight values of those positions are 0, which
means that the input features covered by white boxes will not
be computed when using dilated 1D convolutions to process
the input features. Hence, the output features will lose some
local temporal information. For example, as shown in Fig. 6a,
the output feature marked by the blue dotted circle does not
contain any information from the input feature in the neigh-
boring position marked by a magenta dotted circle. This is
because when we use a dilated 1D convolution to process
the input features to obtain the output feature marked by the
blue dotted circle, the feature marked by the magenta dotted
circle is covered by 0 and does not participate in the convolu-
tion operation.

To avoid losing local temporal information, we add a sep-
arable and shared convolution operation before the dilated 1D
convolution to generate SCs, as shown in Fig. 6b. We also
take the input feature marked by the magenta dotted circle as
an example. Since the input features are first processed by a
separable and shared convolution with a kernel size of 3, the
feature information marked by the magenta dotted circle is
smoothly transferred to the intermediate output feature
marked by the green dotted circle. Then, the intermediate

Fig. 3 Overview of BUIMS-TCN. Given an untrimmed video, we extract
inflated 3D (I3D) features and input them into BUIMS-TCN. Each stage
of BUIMS-TCN is composed of several SCs, and a loss layer is added

after each stage. The ATFM is only embedded in the first stage, and the
prediction results are obtained in the final stage
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output feature is further processed by a dilated 1D convolu-
tion, which is the same as the dilated 1D convolution in
Fig. 6a, to obtain the final output feature. Therefore, the output
feature marked by the blue dotted circle contains the feature
information marked by the magenta dotted circle because the
feature marked by a green dotted circle exerts the role of
information transfer. That is, the feature at the nonzero posi-
tion contains the local temporal information from its neigh-
boring zero position when using the SCs, which effectively
alleviates the loss of local temporal information and enhances
the long-range temporal dependencies.

In the field of signal processing, signal filtering is the pro-
cess of extracting the part of the signal that we are interested
in, which aims to filter noise or false components in the signal,
improve the signal-to-noise ratio, smooth signal, and so on.
The “smooth” in our paper is similar to the signal filtering. For
example, in Fig. 6b, the “Intermediate Output Features”
marked by the green dotted circle is obtained by weighted
summing itself (the corresponding position of “Input
Features”) and other features (e.g., the feature marked by the
magenta dotted circle) in the neighborhood through a separa-
ble and shared convolution with a kernel size of 3, which is
similar to the signal filtering operation (e.g., Gaussian filter).
Thus, it can maintain more useful information and avoid the
information loss (e.g., the features marked by the magenta
dotted circle will be lost) brought by directly adopting the
dilated 1D convolution to process the input features. That is,
the “smooth” can improve the “signal-to-noise ratio” to some

extent, thus it is beneficial for improving the action segmen-
tation results.

3.2 Adaptive temporal fusion module

It is usually beneficial to fuse features from different scales for
high-level semantic recognition tasks. MS-TCN fuses and
passes multiscale temporal information backward through the
residual connection structure. Yu et al. [31] pointed that the
residual connection passes the high-frequency signal of the
previous layer with the same weight, producing more serious
temporal grid artifacts and thus also exacerbating the ambigu-
ous frame problem.

Inspired by [32, 33], we propose a simple yet effective
multiscale temporal context information fusion module
named adaptive temporal fusion module (ATFM). ATFM in-
troduces an attention mechanism to adaptively weight hierar-
chical temporal context features and effectively aggregate
multiscale temporal information, which can reduce the trans-
mission of invalid high-frequency signals and improve the
fusion performance. Specifically, we first extract multiscale
temporal context features and concatenate them as the input
of the ATFM. Then, ATFM automatically assigns a temporal
weight map to the temporal context features of each scale.
Finally, ATFM aggregates these features to generate high-
level semantic temporal context information. The implemen-
tation form is as follows:

on ¼ f n on−1ð Þ ð2Þ

Fig. 4 Structure of the SC. The
SC adds separable and shared
convolutions before the dilated
1D convolution. The gray circles
represent the smoothed feature
maps, and the brown circles
represent the original feature
maps

Fig. 5 Illustrations of the separable and shared operations. a shows the separable convolution proposed by [67]; b shows the separable and shared
convolution proposed by [29]. Ch_i represents the i-th channel, and T = 5 indicates that there are 5 frames
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H xð Þ ¼ E g o1; o2;…; onð Þ; n∈Nð Þ ð3Þ
where o0 = x and x represent the input features (I3D features)
of the network; on represents the output of the n-th dilated 1D
convolutional layer; fn represents the convolution operation of
the corresponding layer; H represents the output result of the
ATFM; E represents the adaptively weighted fusion operator;
g represents the concatenation operator; and N represents the
number of dilated 1D convolutional layers in each stage. The
temporal feature sizes of all scales are (P × Q), P represents
the number of feature channels, and Q represents the number
of frames.

As shown in Fig. 7, the ATFM module consists of a 1D
convolution with a kernel size of 1, a rectified linear unit
(ReLU), a 1D convolution with a kernel size of 3, an activa-
tion function (sigmoid), and other additional operations.
ATFM is a plug-and-play module with few parameters. It is
worth mentioning that we only add ATFM into the first stage
since ATFM is designed to fuse the multiscale temporal con-
text information. In our proposed BUIMS-TCN, the informa-
tion input into the first stage is the semantic features, while the
information input into the subsequent stages is the softmax
values of the output of the previous stage. Thus, we can obtain
the best action segmentation results when only integrating

ATFM into the first stage. In the experiments, we also prove
that only integrating ATFM into the first stage of BUIMS-
TCN can greatly alleviate the ambiguous frame problem to
achieve the best performance.

3.3 Loss function

We explore the relationship between MS-TCN’s underlying
structure and the ambiguous frame problem in a bottom-up
manner, that is, from the convolution operation to the residual
connection structure and finally to the loss function.

As shown in Fig. 1, the ambiguous frames are difficult to
recognize, and the number of ambiguous frames in long un-
trimmed videos is usually far less than the number of infor-
mative frames that are easy to recognize. The design of the
loss function of MS-TCN ignores the problem of the imbal-
ance between the numbers of ambiguous and informative
frames. This leads to a large number of easily classified infor-
mative frames being used to train the classifier model, which
thereby overwhelms the cross-entropy loss and dominates the
gradient, causing the model to quickly converge to a locally
optimal solution. To solve this problem, we introduce the
focal loss function [34], which can solve the problem of

Fig. 6 “Smoothing process” of the SC. a Dilated 1D convolutions with a
kernel size of 3 and a dilation rate of 2 adopted to deal with the input
features (5 frames and 4 channels); b the corresponding SC, which

contains an additional separable and shared convolution operation,
utilized to deal with the same input features. Ch_i represents the i-th
channel, and T = 5 indicates that there are 5 frames
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sample imbalance by reshaping the standard cross-entropy
loss to reduce the weight of informative frames during the
training process.

To clearly illustrate the impact of focal loss, we first
explain in detail how hard and easy samples are defined.
Hard samples are frames with large classification errors;
that is, hard samples are frames that are difficult to correctly
classify. In contrast, easy samples are frames that are easy
to correctly classify (in our paper, easy samples are also
called informative frames, while hard samples are also
called ambiguous frames). In the process of training, the
smaller the predicted probability yt, c of a sample from class
c, the harder it is to classify correctly. Therefore, samples
from class c with a small predicted probability yt, c are
defined as hard samples, while samples from class c with
a large yt, c are regarded as easy samples. In the following
text, we will provide a further explanation of focal loss to
illustrate why it can reduce the weight of easy samples
during the training process.

The focal loss is proposed based on the cross-entropy loss.
The cross-entropy loss Lcls [24] can be defined as:

Lcls ¼ 1

T
∑T

t¼1−log yt;c
� � ð4Þ

where yt, c represents the model’s predicted probability for
class c at time t; T represents the length of the video; and C
represents the number of classes.

The cross-entropy loss ignores the class imbalance. To ad-
dress this problem, a weighting factor α ∈ [0, 1] is introduced
for different classes [34], and the α-balanced cross-entropy
loss can be described as:

L
0
cls ¼

1

T
∑T

t¼1−αlog yt;c
� � ð5Þ

The α-balanced cross-entropy loss is a simple extension of
cross-entropy loss. Although this loss balances the importance
of samples in the different classes, it does not distinguish
between easy and hard samples [34].

To reduce the weight of easy samples and thus focus train-
ing on hard samples, a modulating factor (1 − yt, c)

γ is further
introduced to generate the focal loss Lfl [34]:

Lfl ¼ −α 1−yt;c
� �γ log yt;c

� � ð6Þ

where γ is a tunable focusing parameter and γ ≥ 0. γ is used to
smoothly adjust the rate at which easy samples are
downweighted. In the experiments, γ is set to 2 because this
value can achieve the best performance.

In the focal loss, when a sample is misclassified and yt, c is
small, the modulating factor (1 − yt, c)

γ is close to 1, which
means that the modulating factor does not affect the loss val-
ue. Conversely, when yt, c is large and near 1, the modulation
factor (1 − yt, c)

γ is close to 0, which means that the loss value
of well-classified easy samples is downweighted. That is, the
focal loss can reduce the weights of easy samples during the
training process.

Different loss functions consider the different aspects of the
model (e.g., the cross-entropy loss focuses on optimizing all
temporal sequence frames which can obtain a good framewise
classification accuracy, while the focal loss focuses on opti-
mizing ambiguous frames, which can reduce over-
segmentation errors), so combining them can ensure that the
model converges to the global optimum. Therefore, to further
solve the ambiguous frame problem and obtain the best action
segmentation performance, we fuse the original loss functions
(cross-entropy loss Lcls and smoothing loss LT − MSE) of MS-
TCN and the focal loss as the final loss function in our

Fig. 7 Illustration of the ATFM
module. ATFM introduces the
attention mechanism to
adaptively weight multiscale
temporal context features and
output a high-level semantic
feature map
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proposed BUIMS-TCN. Thus, the final loss function has the
following form:

L ¼ Lcls þ λLT−MSE þ Lfl ð7Þ

where Lcls is the cross-entropy loss (as shown in Eq. (4)); LT −

MSE is the smoothing loss of MS-TCN, which is defined in
Eqs. (8)–(10); and λ is a hyperparameter that sets the weight
of LT − MSE.

LT−MSE ¼ 1

TC
∑t;c

eΔ2

t;c ð8Þ

eΔt;c ¼ Δt;c : Δt;c≤τ
τ : otherwise

�
ð9Þ

Δt;c ¼ logyt;c−logyt−1;c
�� �� ð10Þ

where τ is a hyperparameter used to truncate the smoothing
loss LT − MSE.

4 Experiments

4.1 Experimental setup

4.1.1 Implementation setting

We use PyTorch to implement the proposed BUIMS-TCN.
BUIMS-TCN has 4 stages, and each stage includes 10 dilated
convolution layers. The dilation rate of each layer is double
that of the previous layer. Dropout is used after each layer and
the probability is set to 0.5. The number of convolutional
patches in each convolution layer is 64, and the size of the
convolution kernel is 3. The parameter λ in Eq. (7) is set to
0.15, and the parameter τ in Eq. (9) is set to 4. We set the
values of these hyperparameters in our proposed BUIMS-
TCN to the same as those in MS-TCN, which aims to better
compare the performance of MS-TCN and BUIMS-TCN. In
addition, in focal loss Lfl, we set γ = 2, and α is selected
according to the dataset. In all experiments, we use the
Adam optimizer with a learning rate of 0.0005 without weight
decay.

4.1.2 Datasets

We utilize three challenging benchmark datasets, the GTEA
[35], 50Salads [36], and Breakfast [37] datasets, to evaluate
the performance of the proposed BUIMS-TCN.

50Salads is constructed by recording salad-making activi-
ties performed by 25 actors. This dataset is composed of 50
videos corresponding to 17 action classes. Each video is ap-
proximately 6.4 min long and contains 9000 to 18,000 frames
and an average of 20 action instances. We perform 5-fold

cross-validation on the 50Salads dataset and report the aver-
age action segmentation results for evaluation.

GTEA contains 28 egocentric videos of 7 daily activities
performed by 4 subjects. The videos in this dataset are record-
ed by a camera mounted on the actor’s head. On average, each
video contains 11 action classes (including the background
class) and 20 action instances. We perform 4-fold cross-vali-
dation on the GTEA dataset and compute the average action
segmentation results for evaluation.

The Breakfast dataset is the largest one in these three
datasets. This dataset includes 1712 videos with a total dura-
tion of 66.7 h and a total of 48 different action classes. The
videos in this dataset are the record of people cooking break-
fast in 18 different kitchens. On average, each video contains
6 action instances. We perform 4-fold cross-validation on the
Breakfast dataset and calculate the average action segmenta-
tion results for evaluation.

In all datasets, the temporal video resolution is 15 fps, and
the input of our proposed BUIMS-TCN is the inflated 3D
(I3D) [10] features of the video frames.

4.1.3 Evaluation metrics

We use the following evaluation metrics: the framewise accu-
racy (Acc), segmental edit distance (Edit) and segmental F1
score (F1@{10, 25, 50}) at the temporal intersection over
union (tIoU) thresholds 10%, 25% and 50% to evaluate the
action segmentation results. Acc is commonly used to evalu-
ate the framewise accuracy, which is not sensitive to over-
segmentation errors; thus, even when the segmentation results
have not the temporal continuity (e.g., the predicted labels of
frames within one action segment are not the same), high Acc
scores can still be achieved. Therefore, in addition to Acc, we
also use Edit [18] and segmental F1 score [68] to evaluate
over-segmentation errors. The larger the Acc, Edit and F1
score are, the better the action segmentation results.

4.2 Results and analysis

4.2.1 Quantitative analysis

In this section, we compare our proposed BUIMS-TCN with
the baseline and state-of-the-art methods on three challenging
benchmark datasets: the GTEA, 50Salads, and Breakfast
datasets. The comparison results are shown in Tables 1, 2, 3.

From Tables 1, 2, 3, it can be seen that our model outper-
forms the other methods on all datasets and evaluation met-
rics, except for Edit on the 50Salads dataset. For the relatively
small GTEA and 50Salads datasets, two metrics (the F1 score
and Edit) are used to evaluate the action segmentation results.
Since MS-TCN is the basic structure, comparing it directly to
our model can enable us to intuitively see the performance
improvement gained by our BUIMS-TCN. From Tables 1
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and 2, it can be seen that both the F1 score and Edit of our
BUIMS-TCN are higher (up to 3.6% and 6.1% for Edit, up to
1.9% and 4.8% for F1@10, up to 1.2% and 5.8% for F1@25,
and up to 2.0% and 7.9% for F1@50) than those of MS-TCN
on the GTEA and 50Salads datasets. Table 3 shows that on the
largest dataset Breakfast, compared to MS-TCN, the F1 score
and Edit of our BUIMS-TCN are highly improved (by up to
8.5% for Edit, up to 18.4% for F1@10, up to 17.1% for
F1@25 and up to 12.7% for F1@50). The results in
Tables 1, 2, 3 verify the effectiveness and rationality of our
BUIMS-TCN for solving the ambiguous frame problem. In
addition, from Tables 1, 2, 3, we can also see that the scale and
recognition difficulty of GTEA, 50Salads, and Breakfast grad-
ually increase, but our BUIMS-TCN gains the largest perfor-
mance improvement compared to MS-TCN on the Breakfast
dataset. That is, the more difficult the segmentation task is, the
better the performance obtained by our proposed BUIMS-
TCN.

It should be mentioned that Edit measures whether the
ordering of predicted action instances is the same as that in
the ground truth, but it does not consider the framewise accu-
racy and the specific timings of the action boundaries. The
Edit result of our BUIMS-TCN on the 50Salads dataset is
not optimal potentially because the number of action instances
in each video in 50Salads is greater than those in the other two
datasets, resulting in the videos in 50Salads containing more
combinations of action sequences. This requires the network
to have more advanced reasoning capabilities to predict
instance-level actions, but MS-TCN is only a frame-level ac-
tion reasoning network. And when we construct our BUIMS-
TCN based on the architecture of MS-TCN, all improvements
that we made aim at solving the ambiguous frame problem,

without considering the problem of instance-level ambiguous
actions. That is, we have not focused on how to improve the
accuracy of the sequence of predicted action instances. In the
future, we will try to solve instance-level action modeling
rather than only frame-level action modeling.

To determine the impact of the input features, we compare
our proposed BUIMS-TCN with MS-TCN on the GTEA
dataset based on the different I3D features extracted by the
I3D model with and without fine-turning. Fine-tuning means
that we use the I3D model fine-tuned on GTEA [24] to extract
the I3D features of videos in the GTEA dataset and apply
these extracted features as the input of each action segmenta-
tion network. The comparison results are shown in Table 4,
which shows that our model is better thanMS-TCN regardless
of whether fine-tuned I3D features are utilized.

Table 1 Comparing our BUIMS-TCNwith the state-of-the-art methods
on GTEA

GTEA F1@{10, 25, 50} Edit Acc

Spatial CNN [21] 41.8 36.0 25.1 – 54.1

Bi-LSTM [43] 66.5 59.0 43.6 – 55.5

Dilated TCN [18] 58.8 52.2 42.2 – 58.3

TUnet [55] 67.1 63.7 51.9 60.3 59.9

ST-CNN [21] 58.7 54.4 41.9 – 60.6

ED-TCN [18] 72.2 69.3 56.0 – 64.0

LCDC+ED-TCN [47] 75.4 – – 72.8 65.3

TResNet [69] 74.1 69.9 57.6 64.4 65.8

TRN [41] 77.4 71.3 59.1 72.2 67.8

TDRN+UNet [41] 78.1 73.8 62.2 73.7 69.3

TDRN [41] 79.2 74.4 62.7 74.1 70.1

MS-TCN [24] 87.5 85.4 74.6 81.4 79.2

MS-TCN++ [17] 88.8 85.7 76.0 83.5 80.1

BUIMS-TCN 89.4 86.6 76.6 85.0 80.6

Table 2 Comparing our BUIMS-TCNwith the state-of-the-art methods
on 50Salads

50Salads F1@{10, 25, 50} Edit Acc

Spatial CNN [21] 32.3 27.1 18.9 24.8 54.9

IDT+LM [46] 44.4 38.9 27.8 45.8 48.7

Bi-LSTM [43] 62.6 58.3 47.0 55.6 55.7

Dilated TCN [18] 52.2 47.6 37.4 43.1 59.3

ST-CNN [21] 55.9 49.6 37.1 45.9 59.4

TUnet [55] 59.3 55.6 44.8 50.6 60.6

ED-TCN [18] 68.0 63.9 52.6 52.6 64.7

TResNet [69] 69.2 65.0 54.4 60.5 66.0

TDRN+UNet [41] 69.6 65.0 53.6 62.2 66.1

TRN [41] 70.2 65.4 56.3 63.7 66.9

TDRN [41] 72.9 68.5 57.2 66.0 68.1

LCDC+ED-TCN [47] 73.8 – – 66.9 72.1

MS-TCN [24] 76.3 74.0 64.5 67.9 80.7

MS-TCN++ [17] 80.7 78.5 70.1 74.3 83.7

BUIMS-TCN 81.1 79.8 72.4 74.0 83.9

Table 3 Comparing our BUIMS-TCNwith the state-of-the-art methods
on the Breakfast dataset (* obtained from [42])

Breakfast F1@{10, 25, 50} Edit Acc

ED-TCN [18]* – – – – 43.3

HTK [48] – – – – 50.7

TCFPN [42] – – – – 52.0

HTK (64) [23] – – – – 56.3

GRU [44]* – – – – 60.6

GRU+length prior [45] – – – – 61.3

MS-TCN [24] 52.6 48.1 37.9 61.7 66.3

MS-TCN++ [17] 64.1 58.6 45.9 65.6 67.6

BUIMS-TCN 71.0 65.2 50.6 70.2 68.7
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4.2.2 Qualitative analysis

To further verify the performance of our proposed BUIMS-
TCN, we visualize the results obtained by BUIMS-TCN and
MS-TCN, as shown in Fig. 8. From Fig. 8, it can be seen that
in the action segmentation results of our BUIMS-TCN, the
duration of predicted action of one class is more complete,
and the actions from different classes are better distinguished.
This demonstrates that the ambiguous frame problem is well
solved by our BUIMS-TCN. It should be mentioned that
BUIMS-TCN has no additional labor costs, complicated
structures, or additional branches, and it creates only a minor
extra computational burden compared to MS-TCN; thus,
BUIMS-TCN can maintain both effectiveness and efficiency
during the processes of training and testing. For example,
training our BUIMS-TCN for 50 epochs on a single GTX
TitanXp GPU only requires approximately 12 min for the
50Salads dataset, but BUIMS-TCN can greatly improve the
performance.

4.2.3 Structure analysis and efficiency comparison

To illustrate the differences between our proposed BUIMS-
TCN and other action segmentation networks proposed based
on MS-TCN (e.g., BCN [1], SSTDA [16], ASRF [25] and
MS-TCN++ [17]), we first briefly introduce each network
and then compare the structures of these different networks.

BCN [1] has a dual-branch structure containing a stage
cascade and a barrier generation module to solve the ambigu-
ous frame problem. The stage cascade repeatedly inputs the
features into each stage and fuses the output features of all
stages. The barrier generation module uses a multilayer
convolutional layer to compute the boundary confidence.
This dual-branch structure increases not only the number of
input features but also the number of parameters and calcula-
tions. SSTDA [16] proposes two self-supervised auxiliary
tasks (binary and sequence domain prediction). SSTDA in-
creases the number of input features, and it adds additional
structures and operations in two identical MS-TCN structures
for two auxiliary tasks, which increases the required parame-
ters and calculations, the difficulty of network convergence,
and the number of required training epochs. ASRF [25] con-
sists of a long-term feature extractor and two branches (an

action segmentation branch and a boundary regression
branch). ASRF requires manual annotate the ground truth of
the action boundary in the video for training the model. In
addition, ASRF uses two identical MS-TCN structures as
the dual-branch structure, which doubles the number of pa-
rameters and calculations. MS-TCN++ [17] modifies the first
stage of MS-TCN. Specifically, a dilated 1D convolution in
each layer is replaced with two differently scaled dilated 1D
convolutions, which increases the number of parameters and
calculations exponentially.

Comparing the structures of our proposed BUIMS-TCN
with the abovementioned networks, we can conclude that: 1)
Our BUIMS-TCN is proposed based on a single MS-TCN
with only minor modifications, while SSTDA and ASRF em-
ploy two MS-TCNs and add additional structures/operations
to the MS-TCNs, which not only increases the number of
input features and requires manual annotation of the boundary
labels (e.g., ASRF) but also highly increases the number of
parameters, calculations and the training time, as shown in
Table 5. 2) Although BUIMS-TCN, BCN and MS-TCN++
are constructed based on a single MS-TCN, the structures of
BCN and MS-TCN++ are more complex. BCN is a dual-
branch structure composed of a stage cascade branch and a
barrier generation branch, while our BUIMS-TCN is a rela-
tively simple structure that contains only one branch. MS-
TCN++ increases the number of convolution layers and
adopts two convolution kernels with different sizes in each
layer, while the number of convolution layers in our
BUIMS-TCN is the same as that in MS-TCN. In addition,
the parameters, calculations, and training time of BCN and
MS-TCN++ are larger than those of our BUIMS-TCN, as
shown in Table 5. 3) When comparing all abovementioned
networks to MS-TCN, only our BUIMS-TCN requires almost
the same parameters, calculations and training time as that of
MS-TCN, as shown in Table 5. That is, BUIMS-TCN can
improve the action segmentation performance of MS-TCN
and still maintain the same efficiency as MS-TCN.

Table 5 lists the numbers of parameters, calculations
(FLOPs) and the training times of the different networks.
“Training time” in Table 5 is the runtime (minutes) of training
50 epochs on the 50Salads dataset by a single GTX TitanXp
GPU. From Table 5, it can be found that our BUIMS-TCN is
significantly more efficient than BCN, SSTDA, ASRF and
MS-TCN++. For instance, regarding FLOPs, MS-TCN++ is
approximately 2 times our model, ASRF is approximately 6
times our model, SSTDA is approximately 32 times our mod-
el, and BCN is approximately 38 times our model. Regarding
the number of parameters, MS-TCN++ is slightly larger than
our model, ASRF is approximately 3 times our mode, SSTDA
is approximately 6 times our mode, and BCN is approximate-
ly 7 times our mode. Regarding the training time, our BUIMS-
TCN is the same as the baseline (MS-TCN) and less than all
other networks.

Table 4 Effect of fine-tuning on the GTEA dataset

F1@{10, 25, 50} Edit Acc

w/o FT MS-TCN [24] 85.8 83.4 69.8 79.0 76.3

BUIMS-TCN 88.5 86.5 76.0 82.4 78.1

with FT MS-TCN [24] 87.5 85.4 74.6 81.4 79.2

BUIMS-TCN 89.4 86.6 76.6 85.0 80.6
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Fig. 8 Qualitative results of
temporal action segmentation for
three datasets: a, b GTEA, c, d
50Salads, and e, f the Breakfast
dataset

14065Bottom-up improved multistage temporal convolutional network for action segmentation



4.2.4 Ablation study analysis

In this section, we analyze the performances of the SC, ATFM
and loss function. To ensure that all comparisons are fair, we
strictly follow the structure and parameter settings of MS-
TCN (basic structure), gradually add different modules to
the basic structure to construct new networks, and provide
the corresponding action segmentation results of each new
network.

The detailed experimental settings of the ablation study are
as follows. 1) Testing the performance of the SC: The SC is
used in different stages of the basic structure. 2) Testing the
performance of the ATFM: An ATFM is added to the basic
structure with the SC. 3)Testing the performance of the loss
function: The focal loss (Lfl) is introduced into the optimal
structure constructed by adding both the SC and ATFM, and
various combinations of Lfl and the original loss functions in
the basic structure are compared. The ablation study maintains
consistent results on the three datasets; thus, we only use the
50Salads dataset as an example to show the ablation study
results, as shown in Tables 6, 7, 8, 9.

Table 6 shows that as the number of stages adding SC
increases, the F1 score, Edit and Acc gradually improves.
The best performance is achieved when SC is used in all four
stages. This demonstrates that: 1) SC is effective in alleviating
the ambiguous frame problem and can effectively establish the
local temporal information dependencies and 2) adding SC in
all four stages does not lead tomodel overfitting. Accordingly,
this setting is adopted in the subsequent experiments.

ATFM is a simple yet effective multiscale temporal context
information fusion module. From Table 7, we can see that
ATFM can further mitigate the ambiguous frame problem
and improve the action segmentation performance.
Specifically, ATFM achieves the best performance when it
is added in the first stage. This is because only the features
input into the first stage contain strong semantic information,
while the features input into the subsequent stages, which are
the softmax values of the output of the previous stage, gener-
ally do not include semantic information. Hence, only adding
ATFM in the first stage can ensure that the model learns better
semantic representations and achieves good performance.
WhenATFM is embedded in the subsequent stages, the model
cannot capture any semantic information, which may even
decrease the performance of the model. This setting (only

Table 5 Numbers of parameters, FLOPs and training times of different
networks on 50Salads

Model Parameters FLOPs Training Time

BCN [1] 5.72 M 40.9 M 23 Mins

SSTDA [16] 4.60 M 34.5 M 21 Mins

ASRF [25] 2.31 M 6.56 M 15 Mins

MS-TCN++ [17] 1.00 M 2.16 M 13 Mins

BUIMS-TCN 0.82 M 1.08 M 12 Mins

MS-TCN [24] 0.80 M 0.74 M 12 Mins

Table 6 Results of testing SC on the 50Salads dataset

F1@{10, 25, 50} Edit Acc

MS-TCN (w/o SC) 76.3 74.0 64.5 67.9 80.7

MS-TCN (1 stage with SC) 78.0 75.1 66.8 70.0 81.0

MS-TCN (2 stages with SC) 78.5 75.4 67.1 71.2 81.2

MS-TCN (3 stages with SC) 78.8 75.6 67.1 71.6 81.3

MS-TCN (4 stages with SC) 79.0 75.7 67.3 71.8 81.4

Table 7 Results of testing ATFM on the 50Salads dataset

F1@{10, 25, 50} Edit Acc

MS-TCN+SC (w/o ATFM) 79.0 75.7 67.3 71.8 81.4

MS-TCN+SC (1 stage with ATFM) 80.5 76.6 69.5 72.3 82.7

MS-TCN+SC (2 stages with ATFM) 79.4 76.8 68.1 71.9 82.1

MS-TCN+SC (3 stages with ATFM) 77.3 75.2 68.2 70.6 82.6

MS-TCN+SC (4 stages with ATFM) 76.3 74.5 66.0 69.4 82.6

Table 8 Results of testing different α values on the 50Salads dataset

α F1@{10, 25, 50} Edit Acc

0.10 79.9 77.6 70.7 72.5 83.2

0.15 81.4 79.6 71.4 74.2 82.9

0.30 80.0 78.3 69.8 72.0 82.0

0.50 79.6 77.5 68.8 72.6 82.5

0.75 81.4 78.2 70.1 74.6 82.2

0.90 81.1 79.2 71.1 75.3 82.4

0.95 81.1 79.8 72.4 74.0 83.9

Table 9 Results of testing the different loss function combinations on
the 50Salads dataset

Loss Function F1@{10, 25, 50} Edit Acc

Lcls 77.3 74.9 67.0 68.7 81.8

Lfl 76.0 72.7 63.5 70.2 78.2

Lcls+Lfl 79.4 77.4 69.4 72.0 82.6

Lcls+λLT−MSE 80.5 76.6 69.5 72.3 82.7

Lfl+λLT−MSE 71.4 67.4 55.6 63.6 74.4

Lcls+λLT−MSE+Lfl 81.1 79.8 72.4 74.0 83.9
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adding ATFM in the first stage) is employed in the subsequent
experiments.

Regarding the loss function, we add the focal loss Lfl to the
previous optimal model structure with both SC and ATFM;
thus, here, the loss function can be described as Lcls + λLT −

MSE + Lflwith the default setting λ =0.15. In the focal loss Lfl,
the parameter α (shown in Eq. (7)) is used to balance the
distribution of easy samples and hard samples. Hence, we first
test the performance of the model with different α values and
then choose an optimal α value for the subsequent experi-
ments. Table 8 shows the action segmentation results with
different α values. From Table 8, we can see that when α =
0.95, the best performance is achieved, which means that the
proportion of hard samples in the 50Salads dataset is approx-
imately 5%. This allows the model to focus on recognizing
these hard samples in the process of training, which can effec-
tively solve the ambiguous frame problem. For different
datasets, the optimal α values are different. The sample distri-
bution of GTEA is similar to that of 50Salads, both of them
contain relatively few hard samples. The best results on the
GTEA dataset are obtained when α = 0.90. The ambiguous
frame problem of the Breakfast dataset is extremely serious,
that is, the number of hard samples is relatively large; thus, the
optimal result for this dataset can be obtained when α = 0.30.

To test the impact of the loss function on the performance
of the model, we test different combinations of three losses:
focal loss (Lfl), cross-entropy loss (Lcls) and smoothing loss
(LT − MSE). The testing results are shown in Table 9. In
Table 9, we use the previous optimal model structure with
both SC and ATFM, adopt α = 0.95 as a fixed parameter,
and set the other parameters to be consistent with those ofMS-
TCN.

From Table 9, several conclusions can be obtained: 1) Lcls
is superior to Lfl. This is because the former focuses on recog-
nizing all temporal sequence frames (both ambiguous frames
and informative frames), while the latter is biased toward rec-
ognizing ambiguous frames. Thus, only employing Lfl will
cause the model to be trapped in a local optimum. 2)
Combining Lcls with Lfl or LT − MSE can further improve the
action segmentation performance. This is because Lcls can
achieve good framewise classification accuracy, while it ig-
nores over-segmentation errors to some extent. In contrast, Lfl
and LT − MSE focus on identifying ambiguous frames and
maintaining consistency between neighboring frames, which
is beneficial for reducing over-segmentation errors. Hence,
integrating Lfl or LT − MSE with Lcls can greatly reduce over-
segmentation errors (e.g., the values of the F1 score and Edit
are greatly increased). 3) Combining Lfl and LT − MSE will
degrade the performance of the model. This is because both
Lfl and LT − MSE cannot guarantee framewise classification
accuracy, which leads to worse segmentation results than
those achieved by combining one of them with Lcls. In addi-
tion, combining Lfl and LT − MSE is inferior to only utilizing

Lfl. This may be because directly fusing LT − MSE and Lfl will
cause that Lfl cannot convergewell. 4) The best performance is
gained by fusing Lcls, Lfl and LT − MSE as the loss function of
the model. The reason for this is that the different loss func-
tions are complementary, and combining them can ensure that
the model converges to the global optimum.

Based on the results of the above ablation study, the opti-
mal structure containing SC in all four stages, ATFM in the
first stage, and a loss function of Lcls + λLT − MSE + Lfl is
selected as the final structure of BUIMS-TCN.

5 Conclusion

The classification and localization of action segments in long
untrimmed videos are very important for understanding hu-
man activities. In this paper, we propose a new temporal ac-
tion segmentation model named BUIMS-TCN. BUIMS-TCN
is constructed by incorporating three improvements (a
smoothed dilated 1D convolution, an ATFM and a new loss
function) intoMS-TCN’s underlying structure. Different from
the existing models, our proposed BUIMS-TCN not only
avoids additional manual labeling and complicated network
structures/branches but also maintains relatively high compu-
tational efficiency. The experimental results demonstrate that
BUIMS-TCN can effectively address the ambiguous frame
problem and achieve a state-of-the-art performance compared
with the existing models, especially on the largest dataset,
Breakfast. We hope that BUIMS-TCN can become a new
and stronger backbone for action segmentation in the future.
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