
https://doi.org/10.1007/s10489-022-03373-y

Revisiting model’s uncertainty and confidences for adversarial
example detection

Ahmed Aldahdooh1 ·Wassim Hamidouche1 ·Olivier Déforges1

Accepted: 9 February 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Security-sensitive applications that rely on Deep Neural Networks (DNNs) are vulnerable to small perturbations that are
crafted to generate Adversarial Examples. The (AEs) are imperceptible to humans and cause DNN to misclassify them.
Many defense and detection techniques have been proposed. Model’s confidences and Dropout, as a popular way to estimate
the model’s uncertainty, have been used for AE detection but they showed limited success against black- and gray-box
attacks. Moreover, the state-of-the-art detection techniques have been designed for specific attacks or broken by others,
need knowledge about the attacks, are not consistent, increase model parameters overhead, are time-consuming, or have
latency in inference time. To trade off these factors, we revisit the model’s uncertainty and confidences and propose a
novel unsupervised ensemble AE detection mechanism that 1) uses the uncertainty method called SelectiveNet, 2) processes
model layers outputs, i.e. feature maps, to generate new confidence probabilities. The detection method is called SFAD.
Experimental results show that the proposed approach achieves better performance against black- and gray-box attacks than
the state-of-the-art methods and achieves comparable performance against white-box attacks. Moreover, results show that
SFAD is fully robust against High Confidence Attacks (HCAs) for MNIST and partially robust for CIFAR10 datasets.1

Keywords Adversarial examples · Adversarial attacks · Adversarial example detection · Deep learning robustness

1 Introduction

DL has achieved remarkable advances in different fields
in human life especially computer vision tasks like object
detection, image classification [1–3], surveillance [4], and
medical imaging [5]. Despite that, it is found that DL mod-
els are vulnerable to adversaries [6, 7]. In image classifica-
tion models, for instance, adversaries can generate AEs, by
adding small perturbations to an input image that are imper-
ceptible to humans and devices, that cause DL models to

The source code is available in https://aldahdooh.github.io/SFAD/.

� Ahmed Aldahdooh
ahmed.aldahdooh@insa-rennes.fr

Wassim Hamidouche
wassim.hamidouche@insa-rennes.fr

Olivier Déforges
olivier.deforges@insa-rennes.fr

1 INSA Rennes, CNRS, University of Rennes, IETR - UMR
6164, F-35000 Rennes, France

misclassify the input images. Such potential threat affects
security-critical DL-based applications [8] such as self-
driving cars.

Adversaries can generate AEs for white-box, black-
box, and gray-box attacks [9, 10]. In white-box attack
scenario, the adversary knows everything about the DL-
model including inputs, outputs, architecture, and weights
of the model. Hence, he is guided by the model gradient
to generate AE by solving an optimization problem [7,
11–14]. In black-box scenario, the adversary knows
nothing about the model but he leverages the transferability
property [15] of AEs and the input content. By sending
queries to the model, the adversary can craft small
perturbations that are harmonious with the input image
[16–19]. In the gray-box scenario, the adversary knows
only the input and the output of the model and hence, he
tries to substitute the original model with an approximated
model and then uses its gradient as in white-box scenario to
generate AEs.

Researchers pay attention to this threat and several
emerging methods have been proposed to detect or to defend
against AEs. More details about defense and detection
methods can be found in Section 2.

/ Published online: 19 April 2022

Applied Intelligence (2023) 53:509–531

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-022-03373-y&domain=pdf
http://orcid.org/0000-0002-7624-5253
https://aldahdooh.github.io/SFAD/
mailto: ahmed.aldahdooh@insa-rennes.fr
mailto: wassim.hamidouche@insa-rennes.fr
mailto: olivier.deforges@insa-rennes.fr


DL model’s uncertainty is one of the main methods
that has been used to determine whether an input sample
belongs to the training manifold. The uncertainty is
usually measured by adding randomness to the model
using Dropout technique [20, 21]. It is found that clean
sample predictions do not change, when randomness is
added, while it changes for AEs. Feinman et al. [22]
proposed BU metric that used Monte Carlo dropout to
estimate the uncertainty to detect AEs that are near
the classes manifold, while Smith et al. [23, 24] used
mutual information method to estimate the uncertainty. The
prediction risk of these methods is higher compared to the
recent uncertainty method, SelectiveNet [25], that is used
in this work. On the other hand, it was shown in [26]
that predicted class probabilities, i.e. model’s confidence,
of in-of-distribution samples are higher than of out-of-
distribution. Model’s confidence was used in [26–29] to
implement AE detectors. Uncertainty and confidence based
detectors showed limited success against black- and gray-
box attacks. Uncertainty and confidence based detectors
are usually threshold-based detectors as shown in Fig. 1(a).
To enhance detectors’ performance, one recommendation
goes to the direction of providing ensemble detection
methods, as shown in Fig. 1b. Although state-of-the-art
detectors achieve promising results, they may have one or
more limitation(s); not performing well with some known
attacks [30], broken by attackers [31, 32], performance
of baseline detectors is not consistent [33], increase the
model parameters overhead [34], time consuming [35], or
introduce latency [36] in the inference time.

In this paper and in order to mitigate the aforemen-
tioned limitations, we revisit the model’s uncertainty and
confidence to propose a novel ensemble AE detector that
hasn’t had any knowledge of AEs, i.e. unsupervised detec-
tor, as shown in Fig. 2. The proposed method has the
following attributes; 1) it investigates SelectiveNet capabil-
ity in detecting adversarial examples since it measures the

uncertainty with less risk. According to the author’s knowl-
edge, the SlelectiveNet [25] is not used in adversarial attacks
detection models. 2) Unlike other detectors [29, 37, 38], the
proposed method uses the model’s last N-layers outputs, i.e.
feature maps, to build N-CNNs M that have different pro-
cessing blocks like up/down sampling, auto-encoders [39,
40], noise addition [41–43], and bottleneck layer addition
[44] that make the representative data of last layers more
unique to the input data distribution to yield better model’s
confidence. To reduce the effect of white-box attacks, the
output of M is transferred/distilled to build the last CNN
S. 3) The proposed model ensembles the proposed detec-
tion techniques to provide the final detector. This step has
a great impact in reducing the adversary’s capability to
craft perturbations that can fool the detector, since he has
to fool every detection technique. We name the proposed
method as Selective and Feature based Adversarial Detec-
tion (SFAD). The high-level architecture of the SFAD is
illustrated in Fig. 1b.

A prototype of SFAD is tested under white-box, black-
box and gray-box attacks on MNIST [45], and CIFAR10
[46]. Under the white-box attacks, the experimental results
show that SFAD can detect AEs at least with accuracy of
89.8% (many with 99%) for all tested attacks except for
the PGD attack [14] with at least 65% detection accuracy
in average. For black- and gray-box attacks, SFAD shows
better performance than other tested detectors. Finally,
SFAD is tested under the HCA [47] and it shows that
it is fully(100%) and partially(57.76%) robust on MNIST
and CIFAR10 respectively. SFAD sets the thresholds to
reject 10% of clean images. Moreover, comparisons with
state-of-the-art methods are presented. Hence, our key
contributions are:

– We propose a novel unsupervised ensemble model for
AE detection. Ensemble detection makes SFAD more
robust against white-box and adaptive attacks.

Fig. 1 a High-level architecture of the uncertainty/confidence-based
detectors. b High-level architecture of the uncertainty/confidence-
based ensemble detectors. The input sample is passed to the CNN
model to do class prediction. The detector, i.e. the uncertainty method,

estimates the uncertainty of the input samples using model hidden lay-
ers. Using a predefined threshold, the input sample is not adversarial
if the uncertainty exceeds the predefined threshold

510 A. Aldahdooh et al.



Fig. 2 a SFAD’s architecture. N-last representative output of DNN
is used to build N Selective Adversarial Example classifiers. The
confidence output, i.e. pred. probabilities, of the N classifiers is con-
catenated to be as input for Selective Knowledge Transfer classifier.
b Feature maps processing blocks. c SelectiveNet architecture [25] d
Detection Process: Selective probabilities (P

mj
s and PS

s ) are used in

the Selective detection process. Confidence/Prediction probabilities,
(P

mj
c and PS

c ), are used in the confidence detection process. Confi-
dence/Prediction probabilities, (PF

c and PS
c ), are used in the mismatch

detection process. The total detection is the ensemble of the three
detection modules

– We investigate the SelectiveNet’s, as an uncertainty
model, capability in detecting AEs.

– We show that, by processing the feature maps of last N-
layers, we can build classifiers for better confidence dis-
tribution. We provide an ablation experiments to study
the impact of the feature processing blocks.

– SFAD prototype proves the concept of the approach and
lets the door open in future to find the best N layers
and the best N(or M) CNNs combinations to build the
detector’s classifiers.

– Unlike tested state-of-the-art detectors, SFAD prototype
shows better performance under gray- and black-box
attacks. SFAD prototype shows that it is fully robust on
MNIST and partially robust on CIFAR10 when attacked
with HCAs. For instance, Local Intrinsic Dimensionality
(LID) method [48] reported very high detection accuracy
on the tested attacks, but fails on HCAs [31, 47].

2 Related work

2.1 Detectionmethods

Defense techniques like adversarial training [7, 14, 49,
50], feature denoising [51–53], pre-processing [54, 55], and

gradient masking [56–59] try to make the model robust
against the attacks and let the model correctly classify
the AEs. On the other hand, detection methods provide
adversarial status for the input image. Detection techniques
can be classified according to the presence of AEs in the
detector learning process into supervised and unsupervised
techniques [33]. In supervised detection, detectors include
AEs in the learning process. Many approaches exist in
the literature. In the feature-based approach [38, 60–63],
detectors use clean and AEs inputs to built their classifier
models from scratch by using raw image data or by using
the representative layers’ outputs of a DNN model. For
instance, in [38], the detector quantizes the last ReLU
activation layer of the model and builds a binary v classifier.
As reported in [38], this detector is not robust enough and is
not tested against strong attacks like Carlini-Wagner (CW)
attacks. While the work in [61] added a new adversarial
class to the NN model and train the model from scratch with
clean and adversarial inputs. This architecture reduces the
model accuracy [61]. In the concurrent recent work [63],
Wang et al. used the saliency map features of clean and
adversarial examples to learn the classifier’s detector. In
the statistical-based approach [22, 48], detectors perform
statistical measurement to define the separation between
clean and adversarial inputs. In [22], KD estimation, BU, or

511Revisiting model’s uncertainty and confidences for adversarial example detection



combined models are introduced. Kernel-density feature is
extracted from clean and AEs in order to identify AEs that
are far away from data manifold while Bayesian uncertainty
feature identifies the AEs that lie in low-confidence regions
of the input space. LID method is introduced in [48] as a
distance distribution of the input sample to its neighbors to
assess the space-filling capability of the region surrounding
that input sample. The works in [31, 47] showed that
these methods can be broken. Finally, the network invariant
approach [62, 64] learns the differences in neuron activation
values between clean input samples and AEs to build a
binary NN detector. The main limitation of this approach is
that it requires prior knowledge about the attacks and hence
it might not be robust against new or unknown attacks.

On the other hand, in unsupervised detection, detectors
are trained with clean images only to identify the AEs.
It is also known as prediction inconsistency models since
it depends on the fact that AEs might not fool every NN
model. That’s because the input feature space is almost
limited and the adversary always takes that as an advantage
to generate the AEs. Hence, unsupervised detectors try
to reduce this limited input feature space available to
adversaries. Many approaches have been presented in
the literature. The Feature Squeezing (FS) approach [30]
measures the distance between the predictions of the input
and the same input after squeezing. The input will be
adversarial if the distance exceeds a threshold. The work in
[30] squeezes out unnecessary input features by reducing
the color bit depth of each pixel and by spatial smoothing of
adversarial inputs. As reported in [30], FS is not performing
well with some known attacks like FGSM. Instead of
squeezing, denoising based approach, like MagNet [65],
measures the distances between the predictions of input
samples and denoised/filtered input samples. It was found
in [32, 53] that MagNet can be broken and do not scale
to large images. Recently, a network invariant approach
was introduced [35]. They proposed a NIC method that
builds a set of models for individual layers to describe the
provenance and the activation value distribution channels.
It was observed that AEs affect these channels. The
provenance channel describes the instability of activated
neurons set in the next layer when small changes are present
in the input sample while the activation value distribution
channel describes the changes with the activation values of
a layer. The reported performance of this method showed
its superiority against other state-of-the-art models but other
works reported that the baseline NIC’s detectors are not
consistent [33], increase model parameters overhead [34],
are time consuming [35], and increase the latency in the
inference time [36].

Uncertainty-based detectors Following the observation
that the prediction of clean image remains correct with many

dropouts, while the prediction of AE changes. Feinman et al.
[22] proposed BU metric. BU uses Monte Carlo dropout to
estimate the uncertainty, to detect those AEs that are near
the classes manifold, while Smith et al. [23] used mutual
information method for such a task. In [24], Sheikholeslami
et al. proposed an unsupervised detection method that
provides a layer-wise minimum variance solver to estimate
model’s uncertainty for in-distribution training data. Then,
a mutual information based threshold is identified.

Confidence-based detectors Aigrain et al. [27] built a
simple NN detector that uses the model’s logits of clean and
AEs to build a binary classifier. Inspired by the hypothesis
of that, for a given perturbed image, different models yield
different confidences, Monteiro et al. [28] proposed a bi-
model mismatch detection method. The detector is a binary
RBF-SVM classifier that takes as input the output of two
classifiers of clean and AEs. On the other hand, Sotgiu et
al. proposed an unsupervised detection method that uses the
last N representative layers’ outputs of the classifier to built
three SVM classifiers with RBF kernel. The confidence
probabilities of the SVMs are combined to build the last
SVM-RBF classifier. Then, a threshold is identified to reject
inputs that have less maximum confidence probability.

2.2 SelectiveNet as an uncertainty model

Let X be an input space, e.g. images, and Y a label
space. Let P(X, Y ) be the data distribution over X × Y .
A model, f : X → Y , is called a prediction function,
� : Y × Y → R

2 is a given loss function. Given a
labeled set Sk = (xi, yi)

k
i=1 ⊆ (X × Y)k sampled i.i.d.

from P(X, Y ), where k is the number of training samples.
The true risk of the prediction function f w.r.t. P is
R(f ) � EP(X,Y )[�(f (x), y)] while the empirical risk of the
prediction function f is r̂(f | Sk) � 1

k

∑k
i=1 �(f (xi), yi).

Here, we briefly demonstrate the SelectiveNet as stated
in [25]. The selective model is a pair (f, g), where f is a
prediction function, and g : X → {0, 1} is a binary selection
function for f ,

(f, g)(x) �
{

f (x), if g(x) = 1;
don’t know, if g(x) = 0.

(1)

A soft selection function can also be considered, where
g : X → [0, 1], hence, the value of (f, g)(x) is calculated
with the help of a threshold τ as expressed in the following
equation

(f, g)(x) �
{

f (x), if g(x) ≥ τ ;
don’t know, if g(x) < τ .

(2)

The performance of a selective model is calculated using
coverage and risk. The true coverage is defined to be

512 A. Aldahdooh et al.



the probability mass of the non-rejected region in X and
calculated as

φ(g) � EP [g(x)], (3)

while the empirical coverage is calculated as

φ̂(g | Sk) �
1

k

k∑

i=1

g(xi) (4)

The true selective risk of (f, g) is

R(f, g) � EP [�(f (x), y)g(x)]
φ(g)

, (5)

while the empirical selective risk is calculated for any given
labeled set Sk as

r̂(f, g | Sk) �
1
k

∑k
i=1 �(f (xi), yi)g(xi)

φ̂(g | Sk)
. (6)

Finally, for a given coverage rate 0 < c ≤ 1 and �, a
set of parameters for a given deep network architecture for
f and g, the optimization problem of the selective model is
expressed as:

θ∗ = arg min
θ∈�

(R(fθ , gθ ))

s.t. φ(gθ ) ≥ c,

(7)

and can be solved using the Interior Point Method (IPM)
[66] to enforce the coverage constraint. That yields to
unconstrained loss objective function over samples in Sk ,

L(f,g) � r̂�(f, g | Sk) + λ�(c − φ̂(g | Sk))

�(a) � max(0, a)2,
(8)

where c is the target coverage, λ is a hyper-parameter
controlling the relative importance of the constraint, and �

is a quadratic penalty function. As a result, SelectiveNet is a
selective model (f, g) that optimizes both f (x) and g(x) in
a single model in a multi-task setting as depicted in Fig. 2c.
For more details about the SelectiveNet model, readers are
advised to read [25].

3 Adversarial Detection (SFAD) method

3.1 SFAD’s classifiers design

It is believed that the last N layers in the DNN F have
potentials in detecting and rejecting AEs [29, 37]. In [67]
and [37], only the last layer (N = 1) is utilized to
detect AEs. At this very high level of presentation, AEs
are indistinguishable from samples of the target class. This
observation is enhanced when DNR [29] used the last three
layers to build SVM with RBF kernel based classifiers.
Unlike other works, in this work, 1) feature maps of the
last layers Zj , where j = {1, 2 . . . , N}, are processed.

In the aforementioned methods, the representatives of the
last layers are not processed and basically the detectors
represent another approximation of the baseline classifier
which is considered as a weak point. 2) MTL is used
via the SelectiveNet. MTL has an advantage of combining
related tasks with one or more loss function(s) and it does
better generalization especially with the help of the auxiliary
functions. For more details about MTL, please refer to these
recent review papers [68, 69].

In this section, the Adversarial Detection (SFAD) method
is demonstrated. As depicted in Fig. 2a, SFAD consists of
two main blocks; the selective AEs classifiers M block (in
blue), where M = {mj }Nj=1, and the selective knowledge
transfer classifier S block (in orange). In the training phase,
we have two steps; the first is to train the M classifiers, and
the second step is to train the S classifier. Hence, M, and S
are trained separately. While in the inference/test time, the
output of F , M, and S blocks, i.e. model’s uncertainties and
confidences, are used in the detection process, as depicted
in Fig. 2d.

3.2 Selective AEs classifiers block: training theM
classifiers

As shown in Fig. 2a, the aim of M block is to build
N individual classifiers, M = {mj }Nj=1. It was shown
that perturbation propagation becomes clear when the DNN
model goes deeper, hence, using N-last layers have potential
in identifying the AEs. Unlike works in [29, 37], we process
the representative last N-layer(s) outputs Zj in different
ways in order to make clean input features more unique, as
shown in Fig. 2b and discussed in the next Section 3.2.1.
This will limit the feature space that the adversary uses
to craft the AEs [30, 65]. Moreover, each of the last N-
layer output has its own feature space which makes each
mj classifier be trained with different feature space. Hence,
combining and increasing the number of N will enhance the
detection process.

For simplicity and as recommended in [29], we set N =
3 in the implemented prototype and hence, each individual
layer output is assigned to a classifier as shown in Fig. 2a.
Let the last N layers’ outputs zji of xi from Sk are z1i , z2i ,
and zNi , respectively, where, j = {1, 2, . . . , N}. zji are
individually the inputs of the mj classifier.

The outputs of the mj classifier are denoted as mji(zji).
Let Y ′ = Y + 1 be a label space of mj , where the extra
label is denoted for the selective status, hence mj represents
a function mj : Zj → Y ′ on a distribution P(Zj , Y

′)
over Z × Y ′. We refer to the selective probability of mj

as P
mj
s and the confidence probabilities of mj as P

mj
c . mj

optimizes the overall loss function

Lmj
= αL(mj ,gmj

) + (1 − α)Lhmj
, where α = 0.5, (9)

513Revisiting model’s uncertainty and confidences for adversarial example detection



where L(mj ,gmj
) is the selective loss function of mj , as

discussed in Section 2.2, and Lhmj
is the auxiliary loss

function of mj and are calculated as following:

L(mj ,gmj
) � r̂�(mj , gmj

| Sk) + λ �(c − φ̂(gmj
| Sk)),

�(a) � max(0, a)2,

Lhmj
= r̂(hmj

| Sk) = 1

k

k∑

i=1

�(hm(zji), yi).

Studying the value of α is out of the paper scope, but
other task balancing methods, may be applied like, uncer-
tainty [70], GradNorm [71], DWA [40], DTP [72], and
MGDA [73].

3.2.1 Feature maps processing

As depicted in Fig. 2b each selective classifier consists of
different processing blocks; auto-encoder block, up/down-
sampling block, bottleneck block, and noise block. These
blocks aim at giving distinguishable features for input
samples to let the detector recognize the AEs efficiently.

Auto-encoder Auto-encoders are widely used as a recon-
struction tool and its loss is used as a score for different
tasks. For instance, it is used in the detection process of AEs
in [65]. It is believed that AEs gave higher reconstruction
loss than clear images. This process is a.k.a attention mech-
anism [74, 75] and it is used to focus on better representation
of input features especially on the shallow classifiers.

Up/down-sampling Up sampling and down sampling are
used in different deep classifiers [39, 40]. The aim of down
sampling, a.k.a pooling layers in NN, is to gather the global
information of the input signal. Hence, if we consider the
clean input signal as a signal that has global information
and then we expand the global information by bi-linear up
sampling and then down sample by average pooling, we will
measure the ability of global information reconstruction of
the input signal. Besides, this process can be seen as a use
case of the reconstruction process.

Noise Adding noise has a potential impact in making NN
more robust against AEs and it has been used in many
defense methods [41–43]. In this work, we add a branch
in the classifier that adds small Gaussian noise to the input
signal before and after the auto-encoder block. Then, the
noised and clean input features are concatenated before the
bottleneck block.

Bottleneck The bottleneck block [44] consists of three
convolutional layers; 1×1, 3×3, and 1×1 convolutional
layers. The bottleneck name came from the fact that the

3×3 convolutional layer is left as a bottleneck between 1×1
convolutional layers. It is mainly designed for efficiency
purposes but according to [74, 76] it is very effective
in building shallow classifiers which helps having better
representation of input signal.

3.3 Selective knowledge transfer block: training
theS classifier

The block S aims at building selective knowledge transfer
classifier. It concatenates the confidence values of Y classes
of the M classifiers. The idea behind the block S is that
each set of its input is considered as a special feature of
the clean input. Hence, we transfer this knowledge, mj

confidence probabilities, of clean inputs to the classifier.
Besides, in the inference time, we believe that AE will
generate a different distribution of the confidence values and
if the AE is able to fool one mj , it may not fool the others.

As Fig. 2a shows, the confidence probabilities of mj

classifiers are concatenated to be as an input Q =
concat (P

m1
c , P

m2
c , . . . , P

mN
c ) for the selective knowledge

transfer block S. The S classifier consists of one or more
dense layer(s) and yields the selective probability of S
as PS

s and the confidence probabilities of S as PS
c . S

represents a function S : Q → Y ′ on a distribution
P(Q, Y ′) over Q × Y ′. Hence, it optimizes the following
loss function

LS = αL(S,gS ) + (1 − α)LhS , where α = 0.5, (10)

where L(S,gS ) is the selective loss function of S, as
discussed in Section 2.2, and LhS is the auxiliary loss
function of S and are calculated as following:

L(S,gS ) � r̂�(S, gS | Sk) + λ�(c − φ̂(gS | Sk)),

�(a) � max(0, a)2.

LhS = r̂(hS | Sk) = 1

k

k∑

i=1

�(hS(qi), yi).

3.4 Detection process in the test time

After having the M and the S classifiers trained, we can use
them with the baseline classifiers F to detect the AEs in the
inference/test time, As depicted in Fig. 2d. Specifically, the
output of baseline model PF

c , the outputs of M block, P
mj
s

and P
mj
c , and the output of S block, PS

s and PS
c , are used

in the ensemble detection process. First of all, the following
thresholds have to be identified:

– the confidence threshold value

thc = max(thSc , thm1
c , thm2

c , ..., thmN
c )

514 A. Aldahdooh et al.



where th
mj
c is the confidence threshold for the selective

AEs classifier mj , and thSc is the confidence threshold
for the S classifier.

– selective threshold th
mj
s for each selective AEs classi-

fier mj .
– selective threshold thSs for the S classifier.

Following the steps in [29], we select our thresholds using
a subset of the clean test samples at a level when 10% (at
most) of clean samples can be rejected by the ensemble
detection. Once the thresholds are calculated we run the
detection process as follows:

1. Confidence detection: is set to 1 if max(PS
c ) < thc and

is set to 0 otherwise, where 1 means adversarial input.
2. Selective detection: is set to 1 if PS

s < thSs or P
m1
s <

th
m1
s or . . . or P

mN
s < th

mN
s and is set to 0 otherwise.

3. Mismatch detection: is set to 1 if argmax (PS
c ) 	=

argmax (PF
c ) and is set to 0 otherwise.

4. Ensemble detection: The input sample is adversarial
if it is detected in confidence, selective, or mismatch
detection process.

4 Experimental settings

4.1 Datasets

The proposed prototype is evaluated on CNN models trained
with two popular datasets; MNIST [45] and [46] CIFAR10.

MNIST is hand-written digit recognition dataset with
70000 images (60000 for training and 10000 for testing)
and ten classes and CIFAR10 is an object recognition
dataset with 60000 images (50000 for training and 10000
for testing) ten classes.

4.2 Baseline classifiers

For the baseline models, two CNN models are trained; one
for MNIST and one for CIFAR10. For MNIST, we trained
6-layer CNN with 98.73% accuracy while for CIFAR10 we
trained 8-layer CNN with 89.11% accuracy. The classifier’s
architectures for MNIST and CIFAR10 are shown in Table 1
and Table 2, respectively.

In order to evaluate the proposed prototypes against
gray-box attacks, we consider that the adversaries know
the training dataset and the model outputs and do not
know the baseline model architectures. Hence, Table 3 and
Table 4 show the two alternative architectures for MNIST
and CIFAR10 classifiers. For MNIST, the classification
accuracies are 98.37% and 98.69% for Model #2 and Model
#3, respectively. While for CIFAR10, the classification
accuracies are 86.93% and 88.38% for Model #2 and Model
#3 respectively.

Table 1 MNIST baseline classifier architecture

Layer Description

Conv2D + ReLU 32 filters (3 × 3)

Conv2D + ReLU + Max Pooling(2 × 2) 32 filters (3 × 3)

Conv2D + ReLU 64 filters (3 × 3)

Conv2D + ReLU + Max Pooling(2 × 2) 64 filters (3 × 3)

Dense + ReLU + Dropout (p = 0.3) 256 units

Dense + ReLU 256 units

Softmax 10 classes

4.3 SFAD Settings

As described in Section 3 and Fig. 2, we introduce here the
implementation details for the detector components.

4.3.1 Selective AEs classifiers block

It consists of an autoencoder, up/down sampling, bottleneck,
and noise layers. Each has the following architecture:

Autoencoder As shown in Fig. 3, let the input size be
Z × w × h. In the encoding process, the number of 3 × 3-
kernel filters are set to Z/2, Z/4, and Z/16, respectively.
In the decoding process, the number of filters Z are sym-
metrically restored. Finally, to maintain the input samples
characteristics that we have before autoencoding, the input
is added/summed to the output of the autoencoder.

Up/down-sampling As shown in Fig. 4, let the input size be
Z×w×h. The input size is doubled by bilinear up sampling
in the first two consecutive layers and then restored by
average pooling in the last two layers. Finally, to maintain
the features before up/down sampling, the input is added to
the output of up/down-sampling.

Bottleneck It is a three-convolutional layer module with
kernels of size 1 × 1, 3 × 3, and 1 × 1. The architecture of
the bottleneck layers are shown in Fig. 5. The number of the
filters for each layer is 1024, 512, and 256.

Noise For this layer, the GaussianNoise layer model from
Keras library is used with small standard variation of 0.05.

Dense layers A dense layer with 512 output is used
followed by batch normalization and ReLU activation
function.

SelectiveNet A dense layer with 512 outputs is used fol-
lowed by batch normalization and ReLU activation func-
tion. After that, as original SelectiveNet’s implementation
suggests, a layer that divides the result of the previous layer

515Revisiting model’s uncertainty and confidences for adversarial example detection



Table 2 CIFAR10 baseline
classifier architecture Layer Description

Conv2D + BatchNorm + ReLU 64 filters (3 × 3)

Conv2D + BatchNorm + ReLU + Max Pooling(2 × 2) + Dropout (p = 0.1) 64 filters (3 × 3)

Conv2D + BatchNorm + ReLU 128 filters (3 × 3)

Conv2D + BatchNorm + ReLU + Max Pooling(2 × 2) + Dropout (p = 0.2) 128 filters (3 × 3)

Conv2D + BatchNorm + ReLU 256 filters (3 × 3)

Conv2D + BatchNorm + ReLU + Max Pooling(2 × 2) + Dropout (p = 0.3) 256 filters (3 × 3)

Conv2D + BatchNorm + ReLU + Max Pooling(2 × 2) + Dropout (p = 0.4) 512 filters (3 × 3)

Dense 512 units

Softmax 10 classes

Table 3 MNIST classifiers architectures for gray-box setting

Model Layer Description

Model #2 Conv2D + BatchNorm + ReLU 64 filters (3 × 3)

Conv2D + BatchNorm + ReLU + Max Pooling(2 × 2) + Dropout (p = 0.5) 64 filters (3 × 3)

Dense + BatchNorm + ReLU + Dropout (p = 0.5) 128 units

Softmax 10 classes

Model #3 Conv2D + ReLU + Max Pooling(2 × 2) 32 filters (3 × 3)

Conv2D + ReLU + Max Pooling(2 × 2) 64 filters (3 × 3)

Dense + ReLU + Dropout (p = 0.5) 256 units

Dense + ReLU 256 units

Softmax 10 classes

Table 4 CIFAR10 classifiers architectures for gray-box setting

Model Layer Description

Model #2 Conv2D + BatchNorm + ReLU 32 filters (3 × 3)

Conv2D + BatchNorm + ReLU + Max Pooling(2 × 2) 32 filters (3 × 3)

Conv2D + BatchNorm + ReLU 64 filters (3 × 3)

Conv2D + BatchNorm + ReLU + Max Pooling(2 × 2) 64 filters (3 × 3)

Conv2D + BatchNorm + ReLU 128 filters (3 × 3)

Conv2D + BatchNorm + ReLU + Max Pooling(2 × 2) + Dropout (p = 0.4) 128 filters (3 × 3)

Dense + BatchNorm + ReLU + Dropout (p = 0.5) 512 units

Softmax 10 classes

Model #3 Conv2D + ReLU 64 filters (3 × 3)

Conv2D + ReLU + Max Pooling(2 × 2) 64 filters (3 × 3)

Conv2D + ReLU 128 filters (3 × 3)

Conv2D + ReLU + Max Pooling(2 × 2) 128 filters (3 × 3)

Dense + ReLU + Dropout (p = 0.5) 256 filters (3 × 3)

Dense + ReLU 256 filters (3 × 3)

Softmax 10 classes

516 A. Aldahdooh et al.



Z/2 Z/4 Z/16 Z/4 Z/2

Z Z

Fig. 3 Autoencoder architecture

by 10 is used as a normalization step. Finally, a dense
layer of one output is used with sigmoid activation func-
tion. We set λ = 32, c = 1 for MNIST and c = 0.9
for CIFAR10, and coverage threshold to 0.995 for MNIST
and 0.9 for CIFAR10. More details about selectiveNet
hyper-parameters are found in [25].

4.3.2 Selective Knowledge Transfer block

It consists of one dense layer with 128 outputs followed
by batch normalization and ReLU activation function. The
selective task of the knowledge transfer block consists of a
dense layer with 128 outputs followed by batch normaliza-
tion and ReLU activation function. After that a normalisa-
tion layer that divides the result of the previous layer by 10
is used as recommended by the original implementation of
SelectiveNet. Finally, a dense layer of one output is used
with sigmoid activation function. We set λ = 32, c = 1
for MNIST and c = 0.9 for CIFAR10, and coverage thresh-
old to 0.7 for MNIST and CIFAR10. More details about
selectiveNet hyper-parameters are found in [25].

4.4 Threat model, attacks, and state-of-the-art
detectors

4.4.1 Threat model

We follow one of the threat models presented in [47, 77];
Zero-Knowledge adversary threat model. It is assumed that
the adversary has no knowledge that a detector is deployed
and he generates the white-box attacks with the knowledge
of the baseline classifier. For cases when an adversary has
perfect or limited knowledge of the detector, we assume that
the adversary’s work will be so hard since SFAD adopts
ensemble detection, and hence, we leave this as future work.

2×w×h

4×w×h

Z Z

2×w×h
Z

Fig. 4 Up/down-sampling architecture

1024×1×1

512×3×3

Z

256×1×1

Z`

Fig. 5 Bottleneck architecture

Instead, we tested SFAD robustness with the recommended
strong high confidence attack [31, 47], a variant of CW
attack, that is rarely tested in other detectors.

4.4.2 Adversarial attacks

We test SFAD against different types of white and black
box attacks. For the white box attacks, we use FGSM [7],
PGD [14], CW [13], and DF attacks. While for the black-
box attacks, we use TA [19], PA [18], and ST [17]. For the
comparison with the state of the art algorithms, more black
box attacks are considered like SA [78], and HopSkipJump
[79] attacks. The attack settings are shown in Table 5.

Fast Gradient Sign Attack (FGSM) [7] It is a L∞-norm attack
and uses the model gradients to generate the AE. The sign
of gradient for each pixel of the input x is used to build the
AE x′ as follows:

x′ = x + ε sign(∇x�(x, y)), such that x′ ∈ [0, 1]n (11)

where ε is a parameter to control the perturbation amount
such that ||x′ − x||∞ < ε.

Projected Gradient Descent (PGD) [14] It is the iterative
version of the FGSM attack. PGD attack applies FGSM
attack k times and starts from a random perturbation in
Lp-ball around the input sample. It is expressed as:

x′
i+1 = x′

i + α sign(∇x�(x
′
i , y)),

such that x′
1 = x + rand(noise) ,

x′
i+1 ∈ [0, 1]n , and i = 1 to k

(12)

where α is the parameter to control the ith iteration step size
and it is 0 < α < ε.

Carlini-Wagner (CW) [13] CW followed the optimization
problem of the BFG [6] and replaced the loss function with
an objective function:

g(x′) = max(max
i 	=t

(Z(x′)i) − Z(x′)t , −k), (13)

where Z is the softmax function and k is the confidence
parameter. Hence, CW solves the following optimization
problem to build the AE:

min
δ

||δ|| + c g(x′), such that x′ ∈ [0, 1]n, (14)

517Revisiting model’s uncertainty and confidences for adversarial example detection



Table 5 Considered adversarial attacks and their parameters

Scenario Attack norm Parameters

White box FGSM L∞ ε ∈ {0.05, 0.075, 0.1, 0.2, 0.4}
PGD L∞ ε ∈ {0.05, 0.075, 0.1, 0.2, 0.4}, εstep = ε/10, max. iterations=100

CW L∞ confidence=0, max. iterations=1000, learning rate=0.01

DF L2 ε = 1e−6, max. iterations=100

Black box SA L∞ ε = 16/255, p = 0.05, max. iterations=300, restarts=1

PA L0 L0=10 for MNIST and find the minimum for the CIFAR, and textitmax. iterations=100

TA L∞ threshold=find minimum, and max. iterations=100

ST - -For MNIST, translation= 10 and rotation=60, and for CIFAR, translation= 8 and rotation=30

HopSkipJump L∞ type=untargeted and unmasked, iteration steps=40, and maximum evaluations=100

where δ is the amount of perturbation and c is a regular-
isation parameter that we continuously search for to find
minimum δ.

DF [12] Given a binary affine classifier C = {x : f (x) = 0},
where f (x) = wT x + b, DF attack defines the orthogonal
projection of x0 onto C as the minimal perturbation that
is needed to change the classifier’s decision, and it is
calculated as δ∗ = − f (x)

||w||2 w. At each iteration, DF attack
solves the following optimization problem

argmin
δi

||δi ||2,

such that f (xi) + ∇f (xi)
T δi = 0

(15)

and these perturbations are accumulated to get the final pertur-
bation.

PA and TA [19] PA is a L0-norm black box attack and uses
the DEde (DE) [80] algorithm, to solve the optimization
problem:

max
δ

f (x + δ) , such that ||δ||0 ≤ d (16)

where d is a small number and equal to one in case of one-
pixel. TA generalizes (16) to L∞-norm attack to solve the
optimization problem.

ST [17] ST applies translation and rotation changes to the
input samples in order to fool the model and solves the
optimization problem:

max
δu,δv,θ

�(f (x′), y) , for x′ = T (x; δu, δv, θ) (17)

where T , δu, δv and θ are, the transform function, x-
coordinate translation, y-coordinate translation and angle
rotation, respectively.

SA [78] In order to generate perturbation δ, SA, in each
iteration, selects colored ε-bounded localized square shaped

updates at random positions using random search strategy.
Hence, it solves the optimization problem:

min
x′∈[0,1]n

�(f (x′), y) , such that ||δ||p ≤ ε (18)

where �(f (x′), y) = fy(x
′) − maxk 	=y fk(x

′). fy(x
′) and

fk(x
′) are the prediction probability scores of x′ for y and k

classes, respectively.

HopSkipJump attack [79] (HSJA) HopSkipJump is boundary-
decision based black box attack that depends on estimating
gradient-based direction. It starts from largely perturbed
adversarial example δ and moves towards the clean input
class boundary by minimizing the ||δ||2.

4.4.3 Comparison with existing detectors

State-of-the-art supervised and unsupervised detectors are
compared with SFAD. Supervised methods like KD+BU
[22], LID [48], and RAID [64] are compared with SFAD.
While unsupervised methods like FS [30], MagNet [65],
NIC [35], and DNR [29] are also considered in the compar-
isons. A brief summary for each detector are demonstrated
here:

KD+BU [22] It depends on building a binary classifier using
two main features. The first one is the uncertainty features
that are estimated using the Monte Carlo dropout technique
[21]. The second feature depends on the kernel density
estimation of each class in the training data.

rce [81] It depends on measuring the kernel density as in
[22]. Instead of using the baseline classifier to measure the
density functions, Pang et al. [81] measures the density
functions using a more robust classifier that is trained using
reverse cross entropy technique.

LID [48] Instead of measuring the kernel density, Ma et
al. in [48] used Local Intrinsic Dimensionality (LID) to

518 A. Aldahdooh et al.



calculate the distance distribution of the input sample to its
neighbors.

RAID [64] It depends on measuring the differences in neuron
activation values between clean and AEs inputs and then
builds a binary classifier with these features.

FS [30] It depends on feature squeezing approach that trans-
forms the input samples using squeezers. It uses color
bit-depth reduction, local smoothing using median filter and
non-local smoothing filter using non-local mean denoiser.
To determine the adversarial status of an input, the distance
between confidences of clean input and its squeezed version
is calculated and compared with the threshold.

MagNet [65] First, it trains denoisers using clean training
data. Then, it either 1) calculates the reconstruction error
of the input and its denoised version, or 2) measures the
distances between the predictions of an input sample and its
denoised version to determine the adversarial status of an
input.

NIC [35] It observes the behavior of clean training data
only in the intermediate DL model layers. Specifically, it
observes the provenance channel and the activation value
distribution channels. The provenance channel describes the
instability of activated neurons set in the next layer when
small changes are present in the input sample, while the
activation value distribution channel describes the changes
with the activation values of a layer. For each individual
layer, one-class classifiers (OCC) are built to model the in-
distribution training data. A final one-class classifier that
joins all one-class classifiers’ outputs is used to determine
the adversarial status of an input.

DNR [29] In this detector, Sotgiu et al. [29] uses the N-
last representative layers outputs of the baseline classifiers
to build N-SVM classifiers with RBF kernel. The output
of these classifiers are then combined to build the joint
SVM-RBF classifier. To determine the adversarial status
of an input, the detector depends on checking the maxi-
mum confidence probability if it is less than a predefined
threshold.

5 SFAD performance evaluation

In this section, we evaluate the performance of the SFAD
prototype 1) against different types of attack scenarios and
datasets, 2) against the strong high confidence attack, and
then 3) we provide a comparison discussion with state-
of-the-art detectors. As a reminder, we use only the last

three representative layers (N = 3) to build three selective
AEs classifiers since the aim is to prove the concept of the
approach and if that is changed with the best combination,
the detector accuracy will be enhanced accordingly.

5.1 Performance under white, black, and gray boxes
attacks

5.1.1 Zero-Knowledge (of detectors) adversary white-box
attacks

Table 6 shows the performance evaluation of the SFAD
prototype for MNIST and CIFAR10 datasets. It also shows
the baseline DNN prediction accuracy for the AEs in
“Baseline DNN” row and for the not detected AEs in
“prediction” row. The “Total” row is the total accuracy of
ensemble detection and truly classified/predicted samples.

For MNIST dataset, the FGSM attacks with small epsilon
(ε = 0.05, 0.075, and 0.1) slightly fooled the baseline
classifier and hence their feature space still inside or at
the border as of training dataset. The detector shows its
ability to reject those samples that are so close to the classes
borders and achieves the accuracy of 99.96%, 99.88%,
and 99.62% for ε = (0.05, 0.075, and, 0.1), respectively.
Similar observation is noticed for PGD attacks with small ε

values. For larger ε values, DF, and CW attacks, the AEs are
highly able to fool the baseline classifier since adversaries
are able to change the MNIST test samples’ feature space
to lie out of its corresponding class border and hence, for
all tested attacks except the PGD, the model was able to
catch them with accuracy above 98.65%. While the detector
achieves 68.09% and 58.93% for PGD attacks with ε =
(0.2, and, 0.4), respectively. Some PGD examples’ feature
space became indistinguishable from the trained samples
feature space. That makes SFAD not able to catch all AEs
and to enhance SFAD’s performance, the best representative
layers combination has to be used as input for the detector.

For CIFAR10 dataset, SFAD achieves comparable results
with state-of-the-art methods for FGSM (ε = 0.1, 0.2, and
0.4), DF, and CW attacks. While for FGSM (ε = 0.05,

and 0.075) and PGD attacks, the AEs have, to some extent,
indistinguishable feature space than those the detector is
trained with. In average, the model achieves accuracy of
65.2% for PGD attacks.

For both datasets, the effectiveness of selective, con-
fidence, and mismatch detection is obvious, as shown in
Table 7. The ability of the two modules to detect the AEs is
increasing when the amount of the perturbations is increas-
ing. When the amount of the perturbations increased in a
way that makes the adversarial samples feature space indis-
tinguishable from the training dataset, the ability of these
modules to detect the AEs is decreasing.

519Revisiting model’s uncertainty and confidences for adversarial example detection



Ta
bl
e
6

SF
A

D
’s

pe
rf

or
m

an
ce

ac
cu

ra
cy

(%
)

ag
ai

ns
tw

hi
te

-b
ox

at
ta

ck
s(

ε
)

on
M

N
IS

T
an

d
C

IF
A

R
10

da
ta

se
ts

at
FP

=
10

%

FG
SM

(0
.0

5)
FG

SM
(0

.0
75

)
FG

SM
(0

.1
)

FG
SM

(0
.2

)
FG

SM
(0

.4
)

FG
SM

(A
V

G
)

PG
D

(0
.0

5)
PG

D
(0

.0
75

)
PG

D
(0

.1
)

PG
D

(0
.2

)
PG

D
(0

.4
)

PG
D

(A
V

G
)

D
F

C
W

B
as

el
in

e
D

N
N

96
.3

1
92

.9
3

87
.2

28
.0

4
7.

91
-

95
.1

8
85

.8
4

56
.9

1
0

0
-

4.
68

38
.9

7

E
ns

em
bl

e
D

et
ec

tio
n

22
.9

7
31

.2
4

40
.8

8
88

.8
3

99
.8

56
.7

4
25

.6
41

.9
1

66
.7

1
68

.0
9

58
.9

3
52

.2
5

99
.1

4
61

.2
1

Pr
ed

ic
tio

n
76

.9
9

68
.6

4
58

.7
4

9.
03

0
42

.6
8

74
.3

4
57

.7
2

31
.6

9
0

0
32

.7
5

0.
19

37
.4

4

M
N

IS
T

To
ta
l

99
.9
6

99
.8
8

99
.6
2

97
.8
6

99
.8

99
.4
2

99
.9
4

99
.6
3

98
.4

68
.0
9

58
.9
3

85
99
.3
3

98
.6
5

B
as

el
in

e
D

N
N

14
.0

9
13

.4
4

12
.2

5
10

.5
9.

75
-

0.
43

0.
28

0.
22

0.
16

0.
17

-
4.

79
20

.9
5

E
ns

em
bl

e
D

et
ec

tio
n

72
.0

7
81

.8
4

88
.4

2
99

.4
1

10
0

88
.3

4
57

.5
7

63
.5

9
66

.6
7

68
.7

7
68

.7
4

65
.0

7
88

.4
5

69
.9

3

Pr
ed

ic
tio

n
6.

94
3.

28
1.

39
0.

02
0

2.
33

0.
34

0.
13

0.
07

0.
06

0.
04

0.
13

1.
35

20
.0

9

C
IF

A
R

To
ta
l

79
.0
1

85
.1
2

89
.8
1

99
.4
3

10
0

90
.6
7

57
.9
1

63
.7
2

66
.7
4

68
.8
3

68
.7
8

65
.2

89
.8

90
.0
2

Pr
ed

ic
tio

n
ro

w
is

re
la

te
d

to
ba

se
lin

e
D

N
N

to
p-

1
ac

cu
ra

cy
of

no
td

et
ec

te
d

A
E

s.
To

ta
l=

SF
A

D
’s

E
ns

em
bl

e
D

et
ec

tio
n

+
Pr

ed
ic

tio
n

Ta
bl
e
7

SF
A

D
’s

pe
rf

or
m

an
ce

ac
cu

ra
cy

(%
)

of
di

ff
er

en
td

et
ec

tio
n

pr
oc

es
se

s
ag

ai
ns

tw
hi

te
-b

ox
at

ta
ck

s(
ε
)

on
M

N
IS

T
an

d
C

IF
A

R
10

da
ta

se
ts

at
FP

=
10

%

D
et

ec
tio

n
pr

oc
es

s
FG

SM
(0

.0
5)

FG
SM

(0
.0

75
)

FG
SM

(0
.1

)
FG

SM
(0

.2
)

FG
SM

(0
.4

)
FG

SM
(A

V
G

)
PG

D
(0

.0
5)

PG
D

(0
.0

75
)

PG
D

(0
.1

)
PG

D
(0

.2
)

PG
D

(0
.4

)
PG

D
(A

V
G

)
D

F
C

W

M
N

IS
T

Se
le

ct
iv

e
18

.8
2

25
.0

2
33

.0
8

82
.2

9
98

.4
51

.5
2

20
.4

9
32

.9
1

51
.8

1
58

.0
7

48
.1

7
42

.2
9

95
.7

43
.7

1

C
on

fi
de

nc
e

8.
66

13
.7

4
20

.7
5

74
.1

8
98

.6
6

43
.2

10
.3

1
21

42
.7

3
54

.1
4

47
.4

1
35

.1
2

94
.9

6
42

.7
8

M
is

m
at

ch
3.

07
5.

66
9.

77
43

.4
3

63
.9

3
25

.1
7

3.
85

10
.5

28
.6

1
26

.8
6

18
.6

9
17

.7
59

.4
7

44
.9

9

E
ns

em
bl

e
22

.9
7

31
.2

4
40

.8
8

88
.8

3
99

.8
56

.7
4

25
.6

41
.9

1
66

.7
1

68
.0

9
58

.9
3

52
.2

5
99

.1
4

61
.2

1

C
IF

A
R

Se
le

ct
iv

e
41

.3
1

46
.8

53
.7

8
71

.3
4

9.
83

44
.6

1
33

.6
33

.1
8

30
.5

2
22

.6
6

18
.6

5
27

.7
2

39
.0

6
37

.4
1

C
on

fi
de

nc
e

69
.3

80
.6

1
87

.3
5

99
.0

9
99

.9
9

87
.2

7
43

.3
3

54
.6

9
60

.8
6

66
.8

3
67

.6
8

58
.6

8
85

.7
6

65
.4

7

M
is

m
at

ch
25

.4
9

35
.1

5
42

.8
8

44
.4

1
59

.6
6

41
.5

2
0

0
0.

02
0.

11
1.

32
0.

29
37

.5
34

.4
2

E
ns

em
bl

e
72

.0
7

81
.8

4
88

.4
2

99
.4

1
10

0
88

.3
4

57
.5

7
63

.5
9

66
.6

7
68

.7
7

68
.7

4
65

.0
7

88
.4

5
69

.9
3

520 A. Aldahdooh et al.



Table 8 SFAD’s performance accuracy (%) against black-box attacks on MNIST and CIFAR10 datasets at FP=10%

Dataset Attack Baseline DNN SFAD (ours)

Ensemble prediction Prediction Total

MNIST Threshold Attack 77.61 85.62 14.31 99.93

Pixel Attack 74.57 85.76 14.18 99.94

Spatial Transformation 22.04 94.74 2.85 97.59

CIFAR Threshold Attack 11.29 92.62 1.35 93.97

Pixel Attack 11.35 92.77 1.39 94.16

Spatial Transformation 52.58 72.54 24.03 96.57

Prediction column is related to baseline DNN top-1 accuracy of not detected AEs. Total = SFAD’s Ensemble Detection + Prediction

5.1.2 Black-box attacks

Table 8 shows SFAD prototype’s detection accuracy against
the TA [19], PA [18], and ST [17] attacks on MNIST and
CIFAR10 datasets. The detector is able to catch the AEs
with very high accuracy, higher than 97.56% and 93.97%
for MNIST and CIFAR10, respectively. It is clear that the
selective, confidence, and mismatch modules complement
each other. The black-box attacks significantly change
the samples features that facilitate the confidence module
detection process. While the ability of selective module is
limited for TA and PA attacks since these attacks change
one or more pixels within a threshold that is in a variation
of the input sample and yield AEs that are so close to clean
samples. Similar to white box attacks, the effectiveness of
selective, confidence, and mismatch detection is obvious for
the both datasets as shown in Table 9.

5.1.3 Gray-box attacks

Gray-box scenario assumes that the adversary has only
knowledge about the model training data and the out-
put of the DNN model. Hence, we trained two models
as substitution models named Model#2 and Model#3 for
MNIST and CIFAR10 as shown in Tables 3 and 4, respec-
tively. Then, white-box based AEs are generated using
the substitution models. The SFAD prototype is then tested
against these AEs. For both datasets, it is shown in Tables 10
and 11 that the perturbations properties generated from one
model are transferred to the tested model, Model#1. For
MNIST, see Table 10, SFAD prediction rate is much better
for PGD attacks and the prediction rate for other attacks is
comparable with the prediction rate of AEs generated from
Model#1. For CIFAR10, see Table 11, the prediction rate for
CW and DF attacks is higher than those attacks that are gen-
erated using Model#1, while the prediction rate for FGSM
is comparable with the prediction rate for FGSM attacks
that are generated using Mode1#1. Unlike other attacks,
the PGD attacks transferable properties sound to be much

stronger and have different feature space, compared to fea-
ture space of AEs that are generated from Model#1. This
reduces the ability of the detector to catch such attacks.

5.2 Robustness against high confidence attack

In [31], ten defenses and detectors were broken using Back-
ward Pass Differentiable Approximation (BPDA), Expec-
tation Over Transformation (EOT), and High Confidence
Attack (HCA). BPDA, and EOT are appropriate for defense
techniques, while HCA is used to fail detectors. HCA is
a variant of CW attack and generates adversarial exam-
ples with high confidence level. In [31], LID were broken
using HCA. In his experiment, we generate AEs using
HCA with ε = 0.3125 for MNIST and ε = 0.031 for
CIFAR10. The results show that SFAD is fully robust on
MNIST against HCA and partially robust (57.76%) on
CIFAR10. Our analysis finds that the confidence and selec-
tive detection methods are effective to detect AEs. In case
the confidence level of the attack is increased, SFAD can be
fine-tuned by selecting the proper layer outputs to build the
selective AE classifiers.

All the experiments that are conducted in this work are
tested under zero knowledge of the detector. We assume that
the adversary’s work is very hard for building an adaptive
attack to fool SFAD since it ensembles three detection
methods. Despite that, SFAD performance will drop when
the adversary is able to craft customized perturbations to
fool both the baseline classifier and the ensemble detector.

5.3 Comparisons with the state-of-the-art detectors

In this subsection we build a comparison with different
types of supervised and unsupervised detectors using the
detectors benchmark1 [82] and the results are shown in
Table 12. We compare the average FGSM and PGD results.

1The source code is available in https://github.com/aldahdooh/
detectors review

521Revisiting model’s uncertainty and confidences for adversarial example detection

https://github.com/aldahdooh/detectors_review
https://github.com/aldahdooh/detectors_review


Table 9 SFAD’s performance accuracy (%) of different detection processes against black-box attacks on MNIST and CIFAR10 datasets at
FP=10%

Dataset Attack SFAD (ours)

Selective Detection Confidence Detection Mismatch Detection Ensemble Prediction

MNIST Threshold Attack 24.36 85.48 42.37 85.62

Pixel Attack 24.65 85.57 42.88 85.76

Spatial Transformation 86.7 80.95 34.71 94.74

CIFAR Threshold Attack 12.69 92.14 37.11 92.62

Pixel Attack 12.48 92.4 37.02 92.77

Spatial Transformation 44.64 68.16 32.44 72.54

Table 10 SFAD’s performance accuracy (%) against gray-box attacks(ε) on MNIST dataset at FP=10%

Attack (ε) Model#1 Model#2 Model#3

Total Ensemble
Detection

Prediction Total Ensemble
Detection

Prediction Total

FGSM(0.05) 99.96 13.86 86.14 100 15.28 84.72 100

FGSM(0.075) 99.88 16.23 83.77 100 18.84 81.14 99.98

FGSM(0.1) 99.62 19.59 80.41 100 23.66 76.29 99.95

FGSM(0.2) 97.86 51.49 48.25 99.74 63.32 35.59 98.91

FGSM(0.4) 99.8 99.41 0.41 99.82 99.89 0 99.89

PGD(0.05) 99.94 13.57 86.43 100 15.49 84.49 99.98

PGD(0.075) 99.63 15.01 84.99 100 19.77 80.21 99.98

PGD(0.1) 98.4 18.53 81.47 100 25.73 74.21 99.94

PGD(0.2) 68.09 54.9 44.44 99.34 73.26 23.85 97.11

PGD(0.4) 58.93 91.1 0.93 92.03 82.78 0.2 82.98

DF 99.33 92.25 7.37 99.62 96.03 2.59 98.62

CW 98.65 25.16 74.82 99.98 38.57 61.33 99.9

Prediction column is related to baseline DNN top-1 accuracy of not detected AEs. Total = SFAD’s Ensemble Detection + Prediction

Table 11 SFAD’s performance accuracy against gray-box attacks(ε) on CIFAR10 dataset at FP=10%

Attack (ε) Model#1 Model#2 Model#3

Total Ensemble
Detection

Prediction Total Ensemble
Detection

Prediction Total

FGSM(0.05) 79.01 74.09 8.56 82.65 76.43 7.9 84.33

FGSM(0.075) 85.12 79.68 4.26 83.94 80.25 4.17 84.42

FGSM(0.1) 89.81 87.48 2.03 89.51 83.69 2.55 86.24

FGSM(0.2) 99.43 99.66 0.03 99.69 96.9 0.26 97.16

FGSM(0.4) 100 100 0 100 100 0 100

PGD(0.05) 57.91 20.7 5.62 26.32 18.56 4.44 23

PGD(0.075) 63.72 13.18 5.13 18.31 10.36 4.31 14.67

PGD(0.1) 66.74 12.6 5.07 17.67 9.6 4.3 13.9

PGD(0.2) 68.83 19.64 4.9 24.54 19.35 3.92 23.27

PGD(0.4) 68.78 31.76 4.35 36.11 54.21 2.37 56.58

DF 89.8 81.2 16.17 97.37 84.28 11.74 96.02

CW 90.02 45.35 53.29 98.64 55.06 42.18 97.24

Prediction column is related to baseline DNN top-1 accuracy of not detected AEs. Total = SFAD’s Ensemble Detection + Prediction

522 A. Aldahdooh et al.



Table 12 Detection accuracies for the state-of-the-art detectors against white-box and black-box attacks

footnotetext[]Top 3 are colored with red, blue, and green respectively. All detectors that are mentioned here are re-implemented

1Supervised detector, ∗ Unsupervised detector

For fair comparisons, ε values of 0.125, 0.25, and 0.3125 are
set for MNIST dataset, while for CIFAR10 are set to 0.03
and 0.06. Moreover, the supervised detectors are trained and
tested separately against each adversarial attack algorithm.
As discussed in Section 6.4, rejection/false positive rates
of SFAD can be decreased with small compromise in the
performance.

KD+BU [22] KD+BU detector is a combination of kernel
density and Bayesian uncertainty based classifiers. For both
datasets, the results show that SFAD outperforms KD+BU
detector against all tested attacks except for PGD attacks in
CIFAR10 dataset. In fact, KD+BU needs not noisy clean
and adversarial images to accurately train the detector to
identify the boundaries between clean and adversarial inputs.

RCE 2. Compared to KD [22], RCE achieves better per-
formance since its classifier yields latent representations
that better distinguish AEs from normal examples. For the
both datasets, MNIST and CIFAR10, reverse cross entropy
(RCE) yields better area under the curve scores than KD,
while it shows limited performance against the basic itera-
tive method (BIM) [11] and the HCA.

2 Detector is compared with the results that are reported in the original
paper [81]

LID [48] SFAD outperforms LID in both datasets and the
tested attacks except for PGD attacks on CIFAR10. LID
achieves better false positive rate compared to SFAD but it
fails against High Confidence Attack as reported in [47].
When LID is trained for the HCA attacks, it achieves
better results than in [47]. Our approach provides full and
partial robustness against HCA for MNIST and CIFAR10,
respectively. Similar to KD+BU, LID needs not noisy clean
and adversarial images to accurately train the detector
to identify the boundaries between clean and adversarial
inputs.

RAID3 [64]. For MNIST dataset, RAID achieves higher
detection rate for PGD attacks (ε = 0.3) and higher detec-
tion rate against FGSM and PGD attacks for CIFAR10
while our approach improved the performance against CW
and DF attacks. Besides, RAID has a better false positive
rate for MNIST only. RAID trains clean and adversarial
inputs to identify differences in neuron activation between
clean and adversarial samples. Hence, it requires a huge
knowledge of attacks and its variants to enhance its perfor-
mance.

FS [30] As stated in [30], FS requires high quality squeezers
for different baseline networks and it was shown that FS
is not performing well against tested attacks on CIFAR10

523Revisiting model’s uncertainty and confidences for adversarial example detection



dataset, while our approach generalizes better than FS at the
expense of higher false positive rate.

MagNet [65] Results reported on Table 12 is for the detec-
tion process of MagNet and defense process of MagNet
is not considered. For MNIST, comparable results are
achieved by our approach except for CW and ST attacks
where SFAD achieves better performance. For CIFAR, our
approach outperforms MagNet against the tested attacks.
Since MagNet is a denoiser-based detector, it is not guaran-
teed that the denoisers will remove all the noise and have
highly denoised inputs that respect the target threshold. This
applies specifically to L0 and L2 attacks. On the contrary,
our approach relies on confidence value changes that the
AEs will cause which makes our approach able to identify
AEs. Although MagNet yields to a less false positive rate, it
was shown in [32] that MagNet can be broken by different
strategies.

NIC [35] NIC is the state-of-the-art detector that achieves
better performance, in general, against white box attacks
compared to other detectors, while our approach achieves
better performance against tested black box attacks. Unlike
the proposed approach, other works reported that the NIC’s
baseline detectors are not consistent [33], increase the
model parameters overhead [34], are time consuming [35],
and have latency in the inference time [36].

DNR [29] DNR adopted confidence-based detectors and is
close to our approach, but we include the feature processing
and selective modules components. The reported results
show that our approach outperforms DNR at the same false
positive rates for MNIST and CIFAR10 datasets.

Other performance comparison: SFAD has middle com-
plexity level due to classifiers training times, and has no
inference time latency, but it has a compromise on over-
head due to classifiers parameters saving. Compared to
other detectors, SFAD introduces shallow networks hence,
compared to NIC, DNR, and LID, our detector has much
less complexity. Besides, it works in parallel to the base-
line classifier and no latency is provided compared to FS
and NIC. Finally, like NIC and DNR, SFAD has to pay
a little price in terms of overhead compared to MagNet,
FS and LID.

6 Other experimental results and discussion

In this section, more performance analysis is discussed in
order to validate the SFAD prototype. First, we evaluate

SFAD against successful attacks only3. Then, the proposed
approach is tested with different N settings. Moreover,
in order to emphasize the advantages of SFAD’s feature
processing components, we provide an ablation study for
each component. Finally, performance results on different
rejection rates, i.e. false positive rates are shown.

6.1 Performance on successful attacks only

Table 13 shows the detection rate against the AEs that fooled
the baseline DNN classifier only under white-box and
black-box scenarios. For MNIST, in general, comparable
results with the state-of-the-art detectors are achieved for all
tested white and black boxes attacks (> 96.91%) except for
the PGD attacks (83.88%).

For both datasets, the impact of selective, confidence,
and mismatch detection modules are obvious. The ability
of the modules to detect the AEs is increasing when the
amount of the perturbations is increasing. When the amount
of the perturbations increases in a way that makes the
adversarial samples feature space indistinguishable from the
training dataset, the ability of these modules to detect the
AEs decreases. Mismatch detection shows a high impact
in the detection process of AEs except for PGD attacks.
Once the amount of crafted perturbation becomes high,
the performance of mismatch detection decreases. That’s
because the detector classifiers’ and the baseline DNN
classifier’s behavior will be inconsistent for highly degraded
inputs.

6.2 Results with N last layer(s) output(s)

Results shown in Fig. 6 emphasize the conclusion in [29]
that recommends to use more than one layer from the last
layers of the baseline DNN classifier to be used in detection
techniques. For MNIST dataset, the benefit of using more
than one layer appears in detecting PGD (ε = 0.2, and 0.4),
TA, and PA attacks, while it appears in all tested attacks
on CIFAR10 dataset. It means that low-/and medium-level
hidden layers hold features that will be triggered when small
perturbations are added to input samples.

6.3 Ablation study

In this section, we emphasize the advantages of SFAD’s fea-
ture processing components including noise, autoencoder,
up/down sampling, and bottleneck blocks. Tables 14 and 15
show the performance results for each block once when it is

3The AEs that are able to fool a model are called successful AEs,
otherwise, are called failed or unsuccessful AEs

524 A. Aldahdooh et al.



Ta
bl
e
13

D
et

ec
tio

n
m

od
ul

es
’

ac
cu

ra
ci

es
(%

)
ag

ai
ns

ts
uc
ce
ss
fu
lw

hi
te

-b
ox

an
d

bl
ac

k-
bo

x
at

ta
ck

s(
ε
)

on
M

N
IS

T
an

d
C

IF
A

R
10

da
ta

se
ts

at
FP

=
10

%

W
hi

te
-b

ox
at

ta
ck

s
B

la
ck

-b
ox

at
ta

ck
s

FG
SM

(0
.0

5)
FG

SM
(0

.0
75

)
FG

SM
(0

.1
)

FG
SM

(0
.2

)
FG

SM
(0

.4
)

FG
SM

(A
V

G
)

PG
D

(0
.0

5)
PG

D
(0

.0
75

)
PG

D
(0

.1
)

PG
D

(0
.2

)
PG

D
(0

.4
)

PG
D

(A
V

G
)

D
F

C
W

TA
PA

ST

M
N

IS
T

Se
le

ct
iv

e
D

et
ec

tio
n

59
.8

9
60

.7
4

64
.5

6
89

.4
98

.3
3

74
.5
8

57
.3

5
64

.2
3

68
.0

5
58

.0
7

48
.1

7
59
.1
7

95
.7

8
69

.1
6

25
.9

6
28

.0
4

87
.9

C
on

fi
de

nc
e

D
et

ec
tio

n
60

.9
9

60
.6

63
.2

9
88

.5
6

98
.5

7
74
.4

59
.4

5
63

.6
6

71
.1

6
54

.1
4

47
.4

1
59
.1
6

95
69

.9
6

99
.1

9
99

.0
8

88
.1

M
is

m
at

ch
D

et
ec

tio
n

77
.2

74
.2

1
71

.2
8

59
.0

3
62

.9
5

68
.9
3

74
.1

6
70

.1
7

64
.2

5
26

.8
6

18
.6

9
50
.8
3

58
.8

7
73

.7
3

86
.8

4
86

.8
2

40
.9

6

E
ns

em
bl

e
D

et
ec

tio
n

98
.9

98
.4

2
97

.0
7

97
.0

4
99

.7
8

98
.2
4

98
.7

4
97

.3
5

96
.3

1
68

.0
9

58
.9

3
83
.8
8

99
.3

97
.8

99
.7

3
99

.8
96

.9
1

C
IF

A
R

Se
le

ct
iv

e
D

et
ec

tio
n

44
.7

49
.0

5
54

.7
70

.1
6

10
.2

45
.7
6

33
.7

4
33

.2
5

30
.6

22
.6

8
18

.6
8

27
.7
9

39
.1

2
47

.3
2

10
.9

2
10

.8
4

60
.0

8

C
on

fi
de

nc
e

D
et

ec
tio

n
72

.5
7

81
.4

5
87

.3
5

99
.0

3
99

.9
9

88
.0
8

43
.4

4
54

.6
9

60
.8

4
66

.8
3

67
.6

8
58
.7

86
.5

3
81

.7
4

92
.7

8
93

.0
5

87
.9

6

M
is

m
at

ch
D

et
ec

tio
n

27
.6

2
36

.1
9

42
.5

8
42

.6
7

58
.5

2
41
.5
2

0
0

0.
02

0.
11

1.
33

0.
29

37
.7

9
43

.5
4

39
.1

5
38

.9
2

54
.3

5

E
ns

em
bl

e
D

et
ec

tio
n

75
.5

7
82

.8
2

88
.4

99
.3

6
10

0
89
.2
3

57
.7

4
63

.6
2

66
.6

6
68

.7
1

68
.7

4
65
.0
9

89
.3

3
87

.3
8

93
.2

1
93

.4
2

92
.7

6

525Revisiting model’s uncertainty and confidences for adversarial example detection



Fig. 6 Total model performance accuracy (%) for black and white box scenarios on MINIST and CIFAR10 datasets at FP=10% with different N

selective AEs classifiers settings

present alone and another time when it is absent for MNIST
and CIFAR10 datasets. In all settings, the selectiveNet is
present in the selective AE classifiers and in the selective
knowledge transfer classifier.

OnlyNN When all processing blocks are absent, the MNIST
results show the ability to detect FGSM, PGD of small ε

values, and CW attacks slightly better than the proposed
approach. While the proposed approach yields better results
for DF and PGD of high ε values. Since CIFAR10 dataset
is different from MNIST and has different characteristics,
the only NN component did not yield better results against
FGSM of high ε values, PGD, CW, and DF attacks.

Noise When only the noise block is used, the model
achieves comparable results to SFAD except against PGD
attacks. When we remove the noise block, the performance
of SFAD is reduced especially against PGD attacks for
MNIST and CIFAR10 datasets. The noise block helps the
detector to better distinguish the feature space of clean input
images from those features of AEs.

Autoencoder Autoencoder block shows a substantial impact
in the proposed approach. As discussed in Section 3.2.1, if
the autoencoder couldn’t reconstruct its input, different fea-
ture space might be generated for the input signal which
let SFAD able to detect the AEs. For MNIST dataset, the

Table 14 Ablation performance (%) on white-box scenarios for MNIST dataset

Attack/Model Baseline
DNN

NN Only
noise

Only
auto
encoder

Only
up/down
sampling

Only
bottle-
neck

No
noise

No auto
encoder

No
up/down
sam-
pling

No
bottleneck

Proposed

FGSM(0.05) 96.31 100 99.97 100 100 99.92 99.95 99.96 99.95 99.97 99.96

FGSM(0.075) 92.93 99.98 99.94 99.96 99.97 99.81 99.76 99.9 99.8 99.92 99.88

FGSM(0.1) 87.2 99.9 99.93 99.9 99.93 99.69 99.49 99.79 99.51 99.86 99.62

FGSM(0.2) 28.04 99.61 99.44 98.97 98.78 96.71 96.37 96.96 97.79 98.79 97.86

FGSM(0.4) 7.91 98.98 98.37 98.65 96.14 97.85 93.73 99.87 98.81 97.01 99.8

PGD(0.05) 95.18 100 99.95 99.97 99.98 99.88 99.87 99.93 99.91 99.95 99.94

PGD(0.075) 85.84 99.83 99.86 99.84 99.86 99.58 99.43 99.73 99.57 99.76 99.63

PGD(0.1) 56.91 99.35 99.2 99.06 99.09 98.09 97.65 98.43 97.7 98.92 98.4

PGD(0.2) 0 60.06 59.33 66.24 53.73 66.18 57.9 61.39 63.44 63.93 68.09

PGD(0.4) 0 43.8 42.61 52.57 40.97 46.11 45.11 43.39 46.57 47.71 58.93

DF 4.68 97.71 97.35 98.44 95.15 98.51 96.88 99 98.83 98.62 99.33

CW 38.97 99.71 99.66 99.52 99.6 98.36 97.73 98.79 98.57 99.19 98.65

526 A. Aldahdooh et al.



Table 15 Ablation performance (%) on white-box scenarios for CIFAR10 dataset

Attack/Model Baseline
DNN

NN Only
noise

Only
auto
encoder

Only
up/down
sampling

Only
bottle-
neck

No
noise

No auto
encoder

No
up/down
sam-
pling

No
bottleneck

Proposed

FGSM(0.05) 14.09 80.02 79.55 73 80.01 79.68 78.62 75.81 75.7 78.55 79.01

FGSM(0.075) 13.44 87.9 85.21 80.44 85.84 86.61 86.2 84.77 81.3 85 85.12

FGSM(0.1) 12.25 91.37 87.26 84.64 87.71 91 91.27 90.75 85.56 88.26 89.81

FGSM(0.2) 10.5 85.52 78.89 95.13 78.73 97.79 99.48 98.19 95.69 88.92 99.43

FGSM(0.4) 9.75 84.39 84.94 99.71 79.32 100 100 99.98 100 99.85 100

PGD(0.05) 0.43 0.42 0.43 4.21 0.42 1.08 36.61 7.8 48.34 12.58 57.91

PGD(0.075) 0.28 0.27 0.28 11.64 0.27 2.76 47.19 9.65 58.32 12.67 63.72

PGD(0.1) 0.22 0.22 0.22 17.72 0.22 5.22 52.68 12.09 61.49 13.42 66.74

PGD(0.2) 0.16 0.15 0.15 27.83 0.16 14.7 58.23 18.86 64.31 16.61 68.83

PGD(0.4) 0.17 0.17 0.17 33.74 0.16 22.75 60.23 23.9 65.4 18.21 68.78

DF 4.79 83.67 84.84 83.71 82.7 89.11 88.32 87.64 87.96 88.09 89.8

CW 20.95 88.98 89.05 87.03 88.33 89.46 88.63 87.7 88.14 89.26 90.02

autoencoder block enhanced the performance results com-
pared to only NN model against PGD of higher ε values,
while the performance is reduced when the autoencoder block
is removed from the proposed approach. On the other hand,
for CIFAR10 dataset, when only the autoencoder is present,
the performance results are much better against FGSM of
high ε values, PGD, CW, and DF attacks when it is com-
pared to only NN. The performance is reduced when it is
removed from the proposed approach against PGD attacks.

Up/down-sampling Unlike other processing blocks, up/ down
sampling block yields less performance results against FGSM
attacks and yields comparable results against other attacks
compared to only NN model. That’s because the up/ down-
sampling restores the global information of the input signal
by the average pooling process. On the other hand, remov-
ing the sampling block from the proposed approach reduces
the performance results especially for the CIFAR10 dataset.

Bottleneck Like autoencoder block, the bottleneck block
shows its ability to distinguish input signal characteristics
especially in the proposed shallow classifiers (the selective
AEs classifiers). Compared to only NN model, the only
bottleneck model enhanced the performance results against
FGSM of high ε values, PGD, CW, and DF attacks for
CIFAR10 dataset and enhanced the performance results
against PGD of high ε values attacks for MNIST. Besides,
the performance of the proposed approach is significantly
decreased for CIFAR10 dataset when the bottleneck block
is removed.

6.4 Performance with different rejection rates (False
positive (FP))

In this subsection we show the performance results of the
proposed approach when thresholds are set to reject less
than 10% for MNIST as shown in Fig. 7. Results show that

Fig. 7 Performance comparisons between different False Positive (FP) rates and FP=10% of SFAD for white-box attacks on MNIST dataset

527Revisiting model’s uncertainty and confidences for adversarial example detection



an acceptable performance can be achieved if the thresholds
are set to less than 10%. For instance, when the false positive
rate is set to be 2%, results against PGD (ε = 0.2, , and 0.4)
attacks are significantly decreased because of the selective
detection. In all other tested attacks, the difference is up to
4% and 1.76% when FP=2% and 3%, respectively.

7 Conclusion

In this work, we have proposed a novel unsupervised and
ensemble mechanism, namely SFAD, to detect adversarial
attacks. SFAD handled the N-last layers outputs of the
baseline DNN classifier to identify AEs. It built N selective
AEs classifiers that each took one layer output of the
baseline classifier as input and then processed the input
using autoencoder, up/down sampling, bottleneck, and
additive noise blocks. Then, these feature-based classifiers
were optimized in the SelectiveNet model to estimate
the model’s uncertainties and confidences. The confidence
values of these classifiers were then distilled as input to
the selective knowledge transfer classifier to build the last
classifier. Selective and confidence thresholds were set
to identify the adversarial inputs. Selective, confidence,
and mismatch modules are jointly working to enhance
the detection accuracy. We showed that the model is
consistent and is able to detect tested attacks. Moreover,
the model is robust in different attack scenarios; white,
black, and gray boxes attacks. This robustness, with the
advantage that the model does not require any knowledge
of adversarial attacks, will lead to better generalization. The
main limitation of the model is that the best combination of
N needs to be identified to enhance the detection accuracy
and to reduce the false positive rate.

Acknowledgements The project is funded by both Région Bretagne
(Brittany region), France, and direction générale de l’armement
(DGA).

References

1. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classifi-
cation with deep convolutional neural networks. In: Advances in
neural information processing systems, pp 1097–1105

2. Simonyan K, Zisserman A (2015) Very deep convolutional net-
works for large-scale image recognition. In: Bengio Y, LeCun
Y (eds) 3rd International Conference on Learning Representa-
tions, ICLR 2015, Conference Track Proceedings, San Diego

3. Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn: Towards real-
time object detection with region proposal networks. In: Advances
in neural information processing systems, pp 91–99

4. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature
521(7553):436–444

5. Shen D, Wu G, Suk H-I (2017) Deep learning in medical image
analysis. Ann Rev Biomed Eng 19:221–248

6. Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D,
Goodfellow IJ, Fergus R (2014) Intriguing properties of neural
networks. In: Bengio Y, LeCun Y (eds) 2nd International
Conference on Learning Representations, ICLR 2014, Conference
Track Proceedings, Banff

7. Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and
harnessing adversarial examples. In: Bengio Y, LeCun Y (eds)
3rd International Conference on Learning Representations, ICLR
2015, Conference Track Proceedings, San Diego

8. Guo W, Mu D, Xu J, Su P, Wang G, Xing X (2018)
Lemna: Explaining deep learning based security applications. In:
Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pp 364–379

9. Akhtar N, Mian A (2018) Threat of adversarial attacks on deep
learning in computer vision: A survey. IEEE Access 6:14410–
14430

10. Hao-Chen HXYM, Deb LD, Anil HLJ-LT, Jain K (2020)
Adversarial attacks and defenses in images, graphs and text: A
review. Int J Autom Comput 17(2):151–178

11. Kurakin A, Goodfellow I, Bengio S (2017) Adversarial examples
in the physical world. ICLR Workshop

12. Moosavi-Dezfooli S-M, Fawzi A, Frossard P (2016) Deepfool:
a simple and accurate method to fool deep neural networks. In:
Proceedings of the IEEE conference on computer vision and
pattern recognition, pp 2574–2582

13. Carlini N, Wagner D (2017) Towards evaluating the robustness of
neural networks. In: 2017 ieee symposium on security and privacy
(sp). IEEE, pp 39–57

14. Madry A, Makelov A, Schmidt L, Tsipras D, Vladu A (2018)
Towards deep learning models resistant to adversarial attacks.
In: 6th International Conference on Learning Representations,
ICLR 2018, Conference Track Proceedings. OpenReview.net,
Vancouver

15. Papernot N, McDaniel PD, Goodfellow IJ (2016) Transferability
in machine learning: from phenomena to black-box attacks using
adversarial samples. CoRR arXiv:1605.07277

16. Chen P-Y, Zhang H, Sharma Y, Yi J, Hsieh C-J (2017) Zoo:
Zeroth order optimization based black-box attacks to deep neural
networks without training substitute models. In: Proceedings of
the 10th ACM Workshop on Artificial Intelligence and Security,
pp 15–26

17. Engstrom L, Tran B, Tsipras D, Schmidt L, Madry A (2019)
Exploring the landscape of spatial robustness. In: International
Conference on Machine Learning, pp 1802–1811

18. Su J, Vargas DV, Sakurai K (2019) One pixel attack for fooling
deep neural networks. IEEE Trans Evol Comput 23(5):828–841

19. Kotyan S, Vasconcellos Vargas D (2019) Adversarial robustness
assessment: Why both l0 and l∞ attacks are necessary, pp arXiv–
1906

20. Gal Y, Ghahramani Z (2016) Dropout as a bayesian approx-
imation: Representing model uncertainty in deep learning. In:
International Conference on Machine Learning. PMLR, pp 1050–
1059

21. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov
R (2014) Dropout: a simple way to prevent neural networks from
overfitting. J Mach Learn Res 15(1):1929–1958

22. Feinman R, Curtin RR, Shintre S, Gardner AB (2017) Detecting
adversarial samples from artifacts. CoRR arXiv:1703.00410

23. Smith L, Gal Y (2018) Understanding measures of uncertainty
for adversarial example detection. In: Globerson A, Silva R (eds)
Proceedings of the Thirty-Fourth Conference on Uncertainty in
Artificial Intelligence, UAI 2018. AUAI Press, Monterey, pp 560–
569

24. Sheikholeslami F, Jain S, Giannakis GB (2020) Minimum
uncertainty based detection of adversaries in deep neural

528 A. Aldahdooh et al.

http://arxiv.org/abs/1605.07277
http://arxiv.org/abs/1703.00410


networks. In: Information Theory and Applications Workshop,
ITA 2020. IEEE, San Diego, pp 1–16

25. Geifman Y, El-Yaniv R (2019) Selectivenet: A deep neural
network with an integrated reject option. CoRR arXiv:1901.09192

26. Hendrycks D, Gimpel K (2017) A baseline for detecting
misclassified and out-of-distribution examples in neural networks.
In: 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net

27. Aigrain J, Detyniecki M (2019) Detecting adversarial examples
and other misclassifications in neural networks by introspection.
CoRR arXiv:1905.09186

28. Monteiro J, Albuquerque I, Akhtar Z, Falk TH (2019) General-
izable adversarial examples detection based on bi-model decision
mismatch. In: 2019 IEEE International Conference on Systems,
Man and Cybernetics (SMC). IEEE, pp 2839–2844

29. Sotgiu A, Demontis A, Melis M, Biggio B, Fumera G, Feng X,
Roli F (2020) Deep neural rejection against adversarial examples.
EURASIP J Inf Secur 2020:1–10

30. Xu W, Evans D, Qi Y (2018) Feature squeezing: Detecting
adversarial examples in deep neural networks. In: 25th Annual
Network and Distributed System Security Symposium, NDSS
2018. The Internet Society, San Diego

31. Athalye A, Carlini N, Wagner DA (2018) Obfuscated gradients
give a false sense of security: Circumventing defenses to
adversarial examples. In: Dy JG, Krause A (eds) Proceedings of
the 35th International Conference on Machine Learning, ICML
2018, Stockholmsmässan. Proceedings of Machine Learning
Research, vol 80. PMLR, Stockholm, pp 274–283

32. Carlini N, Wagner DA (2017) Magnet and “efficient defenses
against adversarial attacks” are not robust to adversarial examples.
CoRR arXiv:1711.08478

33. Bulusu S, Kailkhura B, Li B, Varshney PK, Song D (2020)
Anomalous example detection in deep learning: A survey. IEEE
Access 8:132330–132347

34. Lust J, Condurache AP (2020) Gran: An efficient gradient-
norm based detector for adversarial and misclassified examples.
In: 28th European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning, ESANN 2020,
Bruges, pp 7–12

35. Ma S, Liu Y (2019) Nic: Detecting adversarial samples with
neural network invariant checking. In: Proceedings of the 26th
Network and Distributed System Security Symposium (NDSS
2019)

36. Gao Y, Doan BG, Zhang Z, Ma S, Zhang J, Fu A, Nepal S, Kim H
(2020) Backdoor attacks and countermeasures on deep learning:
A comprehensive review. CoRR aRxiv:2007.10760

37. Melis M, Demontis A, Biggio B, Brown G, Fumera G, Roli
F (2017) Is deep learning safe for robot vision? adversarial
examples against the icub humanoid. In: Proceedings of the
IEEE International Conference on Computer Vision Workshops,
pp 751–759

38. Lu J, Issaranon T, Forsyth D (2017) Safetynet: Detecting and
rejecting adversarial examples robustly. In: Proceedings of the
IEEE International Conference on Computer Vision, pp 446–454

39. Wang F, Jiang M, Qian C, Yang S, Li C, Zhang H, Wang X,
Tang X (2017) Residual attention network for image classification.
In: Proceedings of the IEEE conference on computer vision and
pattern recognition, pp 3156–3164

40. Liu S, Johns E, Davison AJ (2019) End-to-end multi-task learning
with attention. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp 1871–1880

41. Lecuyer M, Atlidakis V, Geambasu R, Hsu D, Jana S (2019)
Certified robustness to adversarial examples with differential

privacy. In: 2019 IEEE Symposium on Security and Privacy (SP).
IEEE, pp 656–672

42. Liu X, Cheng M, Zhang H, Hsieh C-J (2018) Towards robust
neural networks via random self-ensemble. In: Proceedings of
the European Conference on Computer Vision (ECCV), pp 369–
385

43. Liu X, Xiao T, Si S, Cao Q, Kumar S, Hsieh C-J (2020) How
does noise help robustness? explanation and exploration under
the neural sde framework. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp 282–
290

44. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for
image recognition. In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp 770–778

45. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-
based learning applied to document recognition. Proc IEEE
86(11):2278–2324

46. Krizhevsky A, Hinton G (2009) Learning multiple layers of
features from tiny images. Master’s thesis, Department of
Computer Science, University of Toronto

47. Carlini N, Wagner D (2017) Adversarial examples are not easily
detected: Bypassing ten detection methods. In: Proceedings of the
10th ACM Workshop on Artificial Intelligence and Security, pp 3–
14

48. Ma X, Li B, Wang Y, Erfani SM, Wijewickrema SNR,
Schoenebeck G, Song D, Houle ME, Bailey J (2018) Characteriz-
ing adversarial subspaces using local intrinsic dimensionality. In:
6th International Conference on Learning Representations, ICLR
2018, Conference Track Proceedings. OpenReview.net, Vancou-
ver

49. Xie C, Tan M, Gong B, Yuille AL, Le QV (2020) Smooth
adversarial training. CoRR arXiv:2006.14536

50. Tramèr F, Kurakin A, Papernot N, Goodfellow IJ, Boneh D,
McDaniel PD (2018) Ensemble adversarial training: Attacks
and defenses. In: 6th International Conference on Learning
Representations, ICLR 2018, Conference Track Proceedings.
OpenReview.net, Vancouver

51. Xie C, Wu Y, van der Maaten L, Yuille AL, He K (2019) Feature
denoising for improving adversarial robustness. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pp 501–509

52. Borkar T, Heide F, Karam L (2020) Defending against universal
attacks through selective feature regeneration. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp 709–719

53. Liao F, Liang M, Dong Y, Pang T, Hu X, Zhu J (2018) Defense
against adversarial attacks using high-level representation guided
denoiser. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp 1778–1787

54. Mustafa A, Khan SH, Hayat M, Shen J, Shao L (2019) Image
super-resolution as a defense against adversarial attacks. IEEE
Trans Image Process 29:1711–1724

55. Prakash A, Moran N, Garber S, DiLillo A, Storer J (2018) Deflect-
ing adversarial attacks with pixel deflection. In: Proceedings of
the IEEE conference on computer vision and pattern recognition,
pp 8571–8580

56. Papernot N, McDaniel P, Wu X, Jha S, Swami A (2016)
Distillation as a defense to adversarial perturbations against deep
neural networks. In: 2016 IEEE Symposium on Security and
Privacy (SP). IEEE, pp 582–597

57. Papernot N, McDaniel P, Goodfellow I, Jha S, Celik ZB, Swami
A (2017) Practical black-box attacks against machine learning. In:
Proceedings of the 2017 ACM on Asia conference on computer
and communications security, pp 506–519

529Revisiting model’s uncertainty and confidences for adversarial example detection

http://arxiv.org/abs/1901.09192
http://arxiv.org/abs/1905.09186
http://arxiv.org/abs/1711.08478
https://arxiv.org/abs/2007.10760
https://arxiv.org/abs/2006.14536


58. Gu S, Rigazio L (2015) Towards deep neural network architectures
robust to adversarial examples. In: Bengio Y, LeCun Y (eds)
3rd International Conference on Learning Representations, ICLR
2015, Workshop Track Proceedings, San Diego

59. Nayebi A, Ganguli S (2017) Biologically inspired protection of
deep networks from adversarial attacks. CoRR arXiv:1703.09202

60. Nguyen A, Yosinski J, Clune J (2015) Deep neural networks
are easily fooled: High confidence predictions for unrecognizable
images. In: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp 427–436

61. Grosse K, Manoharan P, Papernot N, Backes M, McDaniel PD
(2017) On the (statistical) detection of adversarial examples.
CoRR arXiv:1702.06280

62. Metzen JH, Genewein T, Fischer V, Bischoff B (2017)
On detecting adversarial perturbations. In: 5th International
Conference on Learning Representations, ICLR 2017, Conference
Track Proceedings. OpenReview.net, Toulon

63. Wang S, Gong Y (2021) Adversarial example detection based on
saliency map features. Appl Intell:1–14

64. Eniser HF, Christakis M, Wüstholz V (2020) RAID: ran-
domized adversarial-input detection for neural networks. CoRR
arXiv:2002.02776

65. Meng D, Chen H (2017) Magnet: a two-pronged defense against
adversarial examples. In: Proceedings of the 2017 ACM SIGSAC
conference on computer and communications security, pp 135–
147

66. Potra FA, Wright SJ (2000) Interior-point methods. J Comput
Appl Math 124(1-2):281–302

67. Bendale A, Boult TE (2016) Towards open set deep networks.
In: Proceedings of the IEEE conference on computer vision and
pattern recognition, pp 1563–1572

68. Ruder S (2017) An overview of multi-task learning in deep neural
networks. CoRR arXiv:1706.05098

69. Vandenhende S, Georgoulis S, Proesmans M, Dai D, Gool LV
(2020) Revisiting multi-task learning in the deep learning era.
CoRR arXiv:2004.13379

70. Kendall A, Gal Y, Cipolla R (2018) Multi-task learning using
uncertainty to weigh losses for scene geometry and semantics.
In: Proceedings of the IEEE conference on computer vision and
pattern recognition, pp 7482–7491

71. Chen Z, Badrinarayanan V, Lee C-Y, Rabinovich A (2018)
Gradnorm: Gradient normalization for adaptive loss balancing in
deep multitask networks. In: Dy JG, Krause A (eds) Proceedings
of the 35th International Conference on Machine Learning, ICML
2018, Proceedings of Machine Learning Research, vol 80. PMLR,
Stockholmsmässan, pp 793–802

72. Guo M, Haque A, Huang D-A, Yeung S, Fei-Fei L (2018)
Dynamic task prioritization for multitask learning. In: Proceedings
of the European Conference on Computer Vision (ECCV),
pp 270–287

73. Sener O, Koltun V (2018) Multi-task learning as multi-objective
optimization. In: Advances in Neural Information Processing
Systems, pp 527–538

74. Zhang L, Tan Z, Song J, Chen J, Bao C, Ma K (2019) Scan:
A scalable neural networks framework towards compact and
efficient models. In: Advances in Neural Information Processing
Systems, pp 4027–4036

75. Zhang L, Yu M, Chen T, Shi Z, Bao C, Ma K (2020) Auxiliary
training: Towards accurate and robust models. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp 372–381

76. Zhang L, Song J, Gao A, Chen J, Bao C, Ma K (2019) Be
your own teacher: Improve the performance of convolutional
neural networks via self distillation. In: Proceedings of the IEEE
International Conference on Computer Vision, pp 3713–3722

77. Biggio B, Corona I, Maiorca D, Nelson B, Šrndić N, Laskov
P, Giacinto G, Roli F (2013) Evasion attacks against machine
learning at test time. In: Joint European conference on machine
learning and knowledge discovery in databases. Springer, pp 387–
402

78. Andriushchenko M, Croce F, Flammarion N, Hein M (2020)
Square attack: a query-efficient black-box adversarial attack via
random search. In: European Conference on Computer Vision.
Springer, pp 484–501

79. Chen J, Jordan MI, Wainwright MJ (2020) Hopskipjumpattack: A
query-efficient decision-based attack. In: 2020 ieee symposium on
security and privacy (sp). IEEE, pp 1277–1294

80. Storn R, Price KV (1997) Differential evolution - A simple and
efficient heuristic for global optimization over continuous spaces.
J Glob Optim 11(4):341–359

81. Pang T, Du C, Dong Y, Zhu J (2018) Towards robust detec-
tion of adversarial examples. In: Advances in Neural Information
Processing Systems 31: Annual Conference on Neural Informa-
tion Processing Systems 2018, NeurIPS 2018, Montréal, pp 4584–
4594

82. Aldahdooh A, Hamidouche W, Fezza SA, Déforges O (2022)
Adversarial example detection for dnn models: A review and
experimental comparison. Artif Intell Rev

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Ahmed Aldahdooh received
his Master’s degree in Multi-
media and Data Management
from Polytech Nantes, Nantes
University, France in 2014.
Then he joined LS2N, Poly-
tech Nantes, to obtain the PhD
degree in IT and its appli-
cations in 2017. In 2020, he
joined IETR at INSA Rennes
as a research engineer. His
main research interests are,
content-aware video delivery,
video quality, image and video
processing, error concealment,
deep learning, safety of deep

learning, and adversarial examples detection.

530 A. Aldahdooh et al.

http://arxiv.org/abs/1703.09202
http://arxiv.org/abs/1702.06280
https://arxiv.org/abs/2002.02776
http://arxiv.org/abs/1706.05098
https://arxiv.org/abs/2004.13379


WassimHamidouche received
Master’s and Ph.D. degrees
both in Image Processing
from the University of Poitiers
(France) in 2007 and 2010,
respectively. From 2011 to
2013, he was a junior scien-
tist in the video coding team
of Canon Research Center
in Rennes (France). He was
a post-doctoral researcher
from Apr. 2013 to Aug. 2015
with VAADER team of IETR
where he worked under col-
laborative project on HEVC
video standardisation. Since

Sept. 2015 he is an Associate Professor at INSA Rennes and a mem-
ber of the VAADER team of IETR Lab. He has joined the Advanced
Media Content Lab of b<>com IRT Research Institute as an academic
member in Sept. 2017. His research interests focus on video coding
and multimedia security. He is the author/coauthor of more than one
hundred and thirty (+130) papers at top journals and conferences in
Image Processing, two MPEG standards, two patents, several MPEG
contributions, public datasets and open source software projects.

Olivier Déforges received the
Ph.D. degree in image pro-
cessing in 1995. He is a
Professor with the National
Institute of Applied Sciences
(INSA) of Rennes. In 1996, he
joined the Department of Elec-
tronic Engineering, INSA of
Rennes, Scientic and Techni-
cal University. He is a mem-
ber of the Institute of Elec-
tronics and Telecommunica-
tions of Rennes (IETR), UMR
CNRS 6164 and leads the
IMAGE Team, IETR Labora-
tory including 40 researchers.

He has authored over 130 technical papers. His principal research
interests are image and video lossy and lossless compression, image
understanding, fast prototyping, and parallel architectures. He has also
been involved in the ISO/MPEG standardization group since 2007.

531Revisiting model’s uncertainty and confidences for adversarial example detection


	Revisiting model's uncertainty and confidences for adversarial example detection
	Abstract
	Introduction
	Related work
	Detection methods
	Uncertainty-based detectors
	Confidence-based detectors


	SelectiveNet as an uncertainty model

	Adversarial Detection (SFAD) method
	SFAD's classifiers design
	Selective AEs classifiers block: training the M classifiers
	Feature maps processing
	Auto-encoder
	Up/down-sampling
	Noise
	Bottleneck


	Selective knowledge transfer block: training the S classifier
	Detection process in the test time

	Experimental settings
	Datasets
	Baseline classifiers
	SFAD Settings
	Selective AEs classifiers block
	Autoencoder
	Up/down-sampling
	Bottleneck
	Noise
	Dense layers
	SelectiveNet

	Selective Knowledge Transfer block

	Threat model, attacks, and state-of-the-art detectors
	Threat model
	Adversarial attacks
	Fast Gradient Sign Attack (FGSM) goodfellow2014explaining
	Projected Gradient Descent (PGD) madry2017towards
	Carlini-Wagner (CW) carlini2017towards
	DF moosavi2016deepfool
	PA and TA kotyan2019adversarial
	ST engstrom2019exploring
	SA andriushchenko2020square
	HopSkipJump attack chen2020hopskipjumpattack (HSJA)

	Comparison with existing detectors
	KD+BU feinman2017detecting
	rce PangDDZ18@Towards
	LID ma2018characterizing
	RAID eniser2020raid
	FS xu2017feature
	MagNet meng2017magnet
	NIC ma2019nic
	DNR sotgiu2020deep



	SFAD performance evaluation
	Performance under white, black, and gray boxes attacks
	Zero-Knowledge (of detectors) adversary white-box attacks
	Black-box attacks
	Gray-box attacks

	Robustness against high confidence attack
	Comparisons with the state-of-the-art detectors
	KD+BU feinman2017detecting
	RCE
	LID ma2018characterizing
	RAID3
	FS xu2017feature
	MagNet meng2017magnet
	NIC ma2019nic
	DNR sotgiu2020deep
	Other performance comparison:



	Other experimental results and discussion
	Performance on successful attacks only
	Results with N last layer(s) output(s)
	Ablation study
	Only NN
	Noise
	Autoencoder
	Up/down-sampling
	Bottleneck


	Performance with different rejection rates (False positive (FP))

	Conclusion
	References


